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"Your power is turning our darkness to dawn, So roll on Columbia, roll on." 
~From "Roll on Columbia," 

by Woody Guthrie, American musician referring to the Columbia River 

I e v  i e w I P  c e  ,%, i e w 

Electricity: Its Uses and 
Its Visualization 

Chapter Overview 

Section R. 1 provides a brief introduction. Sections R.2-R.4 discuss electricity at home 
and elsewhere, including automobiles and computers. Section R.5 poses two electrical 
questions, and Section R.6 presents the electric fluid model and R.7 applies it to 
answer them. Section R.8 discusses why the electric fluid model must be extended, 
and how to reconcile the collective nature of the electric fluid with the behavior of 
individual electrons. Section R.9 reviews vectors, primarily addition and subtraction, 
and Section R.10 discusses two rules for multiplying vectors, the scalar product and 
the vector product. 

Rol 

R.1.1 

Introduction 

Without electricity, modern life would be impossible. Almost every item on your 
person~from your shoes to your sunglasses~owes its manufacture to electrical 
power. Indeed, since this is also true of your clothing, without electricity you 
might well be completely naked. 

This chapter discusses electricity in the home. Most importantly, it tries to 
make physical and perceptible that difficult-to-visualize stuff called electricity. 
The next chapter reports the struggles of early scientists~even as they were 
learning to ask the right questions~to grasp the elusive electricity. Together, 
both chapters provide a foundation of ideas and concepts, expressed mainly 
without equations. 

The Electric Fluid M o d e l  Serves as a Conceptual  Guide 

Once the rules to produce and detect static electricity were established, the 
major advances were (1) Stephen Gray's 1729 discovery of two classes of 
materials (conductors, which transport electricity, and insulators, which do 
not transport electricity); (2) Charles Dufay's 1733 discovery of two classes 
of electric charges and the rule that "opposites attract and likes repel"; and 
(3) Benjamin Franklin's 1750 development of the electric fluid model. This model 
implies the first quantitative law of electricity~the Law of Conservation of 
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Electric Charge. Once this law was understood, it became easier to manipulate 
electricity, and to study other electrical phenomena in a quantitative fashion. 
The amount of electric fluid is known as electric charge Q; its unit is the coulomb, 
or C. 

The electric fluid model serves as a conceptual guide through Chapter 8, 
which deal with static electricity and electric currents. The mathematical the- 
ory of electricity in electrical conductors, although not strictly analogous to the 
mathematical theory of ordinary fluids, nevertheless describes a type of fluid. 
As for air and water, the amount of the electric fluid is conserved. However, 
compared to air and water, the electric fluid has some special properties. Thus, 
two blobs with an excess (or a deficit) of electric fluid repel each other (a conse- 
quence of Dufay's discovery), whereas two drops of water are indifferent to each 
other. 

Our modern view of ordinary matter is that it has relatively light and mo- 
bile negatively charged electrons, and relatively heavy and immobile positively 
charged nuclei. This view can be made consistent with the electric fluid model 
and can explain Gray's two classes of materials, conductors and insulators. 

R.2 

R~2.1 

Electricity at Home: A Presumed 
Common Experience 

Hot, Neutral, and Ground 

Modern buildings are equipped with three-hole electrical wall outlets (or re- 
ceptacles, or sockets), where the plugs of electrical devices must be inserted to 
obtain electrical power, as in Figure R. 1 (a). The holes of the outlet are called 
hot, neutral, and ground. In normal operation, electric current is carried only by 
the hot and neutral wires. Electric current is measured in amperes (A), or amps. 

If you stood on the ground in bare feet and accidentally touched the neu- 
tral or the ground wire of a properly wired electrical outlet, you would not be 
shocked. However, you would receive a shock if you touched the hot wire: your 

Neutral Hot 

Contact on base 
Ground (to hot) 

(a) (b) 

Lightbulb 

Metallic sides of 
bulb holder 
(to neutral) 

Figure R.1 (a) Grounded three-prong wall outlet. (b) Lightbulb with electrical contacts 
on its base and on sides. 



R.2 Electricity at Home: A Presumed Common Experience 

"Hot" 

"Neutral" 

"Ground" wire 

Motor inside case 

Drill j 

Metal handle 

Internal "short" 
to metal case You 

Feet on ground 

Figure R.2 How grounded wiring protects you when 
there is a snort. 

feet, touching the ground, would provide a path for the current to flow, thus 
completing an electric circuit. 

The size difference in Figure R.1 (a) between the neutral and hot holes~  
the neutral hole is visibly longer than the hot one--is to ensure that only one 
of the two possible types of connection takes place in devices like a lamp. 
Figure R. 1 (b) illustrates the connections for a lightbulb inserted in a lamp with 
a modern, asymmetrical ("polarized") two-prong plug, which in turn is plugged 
into a correctly wired wall-socket. The wall-socket's hot wire is connected to 
the (relatively inaccessible) base of the bulb-holder. For an old-fashioned sym- 
metrical ("unpolarized") two-prong plug, the hot wire could just as likely be 
connected to the more accidentally touched threaded end of the bulb-holder; 
the first cartoon characters, of the prepolarized plug 1930s, regularly received 
shocks in this manner. To help ensure proper wiring, inside the lamp the screws 
for the two electrical connections typically have different colors, one like copper 
(the hot wire) and one that is silver-gray (the neutral wire). 

The round prong, or ground wire, is employed for safety purposes. Figure R.2 
depicts a "short" between the hot wire and the electrically conducting case of 
an electric drill. (A "short" is a connection that shouldn't be there; shorts are 
undesirable.) Without the ground wire, the drill operator would provide the 
only path from the hot wire to ground: hot wire to short to case to person to 
ground. With the ground wire, there is an alternate "path of least resistance" 
through which most of the electric current can pass: hot wire to short to case to 
ground wire to ground. 

Ro2o2 Voltage and Frequency of  Electrical Power in the House 

Voltage bears much the same relationship to electricity as pressure does to water. 
We write V as an abbreviation for the unit of voltage, the volt. The electrical 
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power in a house in the United States is provided at 120 V. The voltage os- 
cillates from minimum to maximum and back again in 1/60 of a second. This 
corresponds to a frequency of 60 cps (cycles per second) or, more technically, 
60 Hz (hertz). The power is provided by an electric company, which uses huge 
electrical generators to convert mechanical energy from turbines to electrical 
energy. The turbines are driven by water or by steam. The mechanical energy of 
the churning waters of the Columbia River (recall the quote at the beginning of 
the chapter) provides a large fraction of the power needs of the Pacific North- 
west. On the other hand, the chemical energy released by burning coal or oil, or 
the nuclear energy released in a nuclear reactor, vaporizes water into steam and 
drives the steam that turns a turbine. 

The electric light had an extraordinary influence on human society. American 
children learn that, in the 1830s, the young president-to-be Abraham Lincoln 
stayed up late reading by candlelight. However, by the 1890s, house lighting 
by electricity was becoming available in large cities. Nevertheless, not until the 
Rural Electrification Project of the 1930s did many parts of the United States 
finally become freed of the fire hazards of oil lamps and candles. In the year 
2000, many people in the United States were still alive who could remember 
not having electrical lighting. 

R~2.3 Watts and Impedance Matching 

When you turn on a light switch, light is produced by bulbs that are rated in units 
of the watt, or W. (The watt is the SI, or SystOme lnternationale, unit of power, 
or energy per second; it is a joule per second, or J/s.) If there is an electrical 
power failure, for illumination you use a flashlight, with power provided by one 
or more voltaic cells; for a car the power is provided by six voltaic cells in series, 
which truly constitutes a battery. 

If you have ever tried to power a house lightbulb with a car battery, you 
noticed that it did not light. This is due to poor impedance matching. A mechanical 
example of poor impedance matching is the use of a regular tennis ball with 
(relatively small) table-tennis rackets. Impedance mismatch of another type occurs 
when a bulb intended for a low voltage application (flashlights, automobiles, 
some external house lighting) is used in a house application; the bulb then gets 
so much power that it burns up. A mechanical example is the use of a table-tennis 
ball with (relatively large) regular tennis rackets. Proper impedance matching is 
a fundamental design principle. 

We now preview a few simple but important equations in order to apply 
them to some real-life situations. 

R.2~4 Current Is the Rate of Charge Flow 

If a constant current I flows for a time t, then it transfers a charge Q given by 

Hence the unit of charge, the coulomb (C), has the same units as the ampere- 
second, so C = A-s. If 0.2 C of charge is transferred in 5 s, by (R. 1) this corre- 
sponds to a current I = 0.2/5 = 0.04 A. 
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R~2o5 

High voltage Resistance R Low voltage 

In ~ Out  
Current ! Current ! 

I_ A V  I 
I . . . . . .  I 

Response ~ i  = .& V ~ Driving force 
R 

Figure R.3 A resistor, a voltage difference, and an 
electric current: Ohm's law. 

Ohm's Law: When Current Is Proportional 
to the Driving Voltage 

Ohm's law is an experimentally determined relation that holds for most mate- 
rials (e.g., sea water or copper wire), but not all materials (e.g., the important 
semiconductors silicon and germanium). When the two ends of a wire are con- 
nected, respectively, to the high- and low-voltage terminals of a voltaic cell or of 
an electrical outlet, there is a voltage difference A V across the wire. Associated 
with A V is the electric current I passing through the wire. See Figure R.3, where 
the wire is represented by a jagged line. 

Ohm's law says that (1) current I flows in the direction from high voltage to 
low voltage; (2) I is proportional to the voltage difference A V across the object: 

iiiiiiiiiii iiiiiiiiiiiE!ii!iiiiiiii! i iiiiii ii iiiiiiiiiiii iiiii    iiiiiiiiiiiiiiii iiiii!i iiiii i!i i iiiiiii i  ii 
iiiiiiil 

In (2), proportional means that R, called the electrical resistance, is inde- 
pendent of the value of A V. Ohm's law holds for copper, but not for silicon. 
Equation (R.2) can be made to apply to silicon if we let R depend on A V. 

Here's how to "read" (R.2). Knowing how to "read" an equation is an impor- 
tant skill. Equation (R.2) implies that if we measure both the "input" A V and 
the "output" l, and then we employ R = A V/I ,  then we can obtain the elec- 
trical resistance R. The unit of electrical resistance, the ohm, or f2 (the Greek 
letter Omega), is the same as a volt/amp = V/A. Thus S2 = V/A. Equation (R.2) 
does not apply to objects that store appreciable amounts of electrical energy 
(capacitors) or magnetic energy (inductors). 

Equation (R.2) also implies that if you increase the "input" A V, then you also 
increase the "output" l; and at fixed A V if you increase the resistance R, then you 
decrease "output" I. See Figure R.3. An equation like (R.2) holds for the water 
current through a pipe with a fluid resistance, driven by the pressure difference 
between one end of the pipe and the other. Of course, the units of voltage and 
pressure are different, as are the units of electric current and water current, and 
as are the units of electrical resistance and fluid resistance. Note that it is pressure 
difference that drives a water current; water will not flow through a pipe whose 
ends are connected to two reservoirs at the same pressure. Similarly, it is voltage 
difference that drives electric current through a wire; electric charge !2 will not 
flow through a wire whose ends are connected to two charge reservoirs at the 
same voltage. For water, we also can drive water current with water pumps. For 
electricity, we also can drive an electric current with voltaic cells, thermoelectric 
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R.2~.6 

R~2~7 

R~2,8 

devices, electromagnetic induction, and by a variety of other means. Any source 
of energy that drives an electric current (even voltage difference) is called an 
electromotive force, or emf. Such a source of energy does work on the electric 
charge, so it also provides a force that causes an electric current to flow. 

Power Is the Product of  Current and Voltage Difference 

The power 72 (in watts, or W) going into a resistor (in the form of heat) is given by 

- I A V. (R.3) 

When (R.2) and (R.3) are combined, they yield another equation, 
. . . . .  . . . . . . . . . . .  . . . . . . . . . . .  . . . . . . . . . . . . .  . . . . .  

first obtained by Joule, and for that reason sometimes called Joule's law. 
From (R.3), the greater the current I at fixed A V, the greater the power 

72; and the greater the voltage difference A V at fixed current I, the greater the 
power ~P: 4 A at 120 V provides 480 W; 8 A at 120 V provides 960 W; and 
8 A at 240 V provides 1920 W. We will now employ equations (R.1-R.4) to 
answer some basic questions about power, voltage, current, electrical resistance, 
and electrical safety. 

Applications: Toasters and Power Cords 

Consider a toaster, one of the simplest of electrical devices. Its working element 
is a heat-resistant wire. Assuming that it produces 7 ~ - 720 W, and using A V = 
120 V, (R.3) yields a current of I - 6  A. Putting this into (R.2) yields a value 
of R - 20 s2 for the electrical resistance of the toaster. Hence, from the current 
rating or power rating of a household appliance, we can deduce its electrical 
resistance. Similarly, a 50-foot-long, 16-gauge extension cord that is rated at 
13 A for 125 V must also be rated at 13. 1 2 5 -  1625 W for 125 V. Excess 
power will start to melt the wire's insulation. 

Overload: Fuses and Circuit Breakers 

Most modern house wiring is rated to carry safely a current of either 15 A or 
20 A. Circuit breakers (found in a fuse or breaker box, often located in some 
obscure part of the house) protect the house wiring from carrying too large an 
electric current; they "trip" if the current exceeds the rated value. Overload can 
occur by using too many appliances on the same outlet; if a 1000 W hairdryer, a 
600 W toaster, and a 1200 W microwave oven were all to use the same outlet, 
the total power consumption would be 2800 W, corresponding to 23.3 A, an 
overload even on a 20 A circuit. 

Extension cords provide a way to exceed a rated value, even for a house that 
is properly wired. In the summer of 1992, a fraternity house in Bryan, Texas, 
burned down; someone had operated an air conditioner using an extension cord 
with too low a current rating. The extension cord, under the overload of current, 
began heating up like toaster wire, ultimately setting on fire the insulation or a 



R.3 Some Uses of Electrical Power 7 

nearby object. For an air conditioner rated at 72 - 2 4 0 0  W, and A V =  120 V, 
(R.3) yields I = 20 A. Circuit breakers can safely carry such a current, but a 
10 A or 12 A extension cord cannot. Note that, by (R.2), the air conditioner, 
when running, has an effective electrical resistance of R = 120/20 = 6 S2. 

Electrical motors, such as those employed in air conditioners, have different 
electrical properties when they are turning than when they have not yet started 
to turn. When turning, electrical motors produce a back emf that opposes the 
driving emf, and this causes the current to be less when it is running than when it 
is starting up. When an electrical motor is prevented from turning, no back emf 
is produced, so a larger current goes to the motor, which can cause it to burn out. 

Fuses are intended to burn out if excessively large currents flow through 
them, thus protecting electrical devices and electrical wiring from too large a 
current flow. Circuit breakers, on the other hand, do not burn out, and can be 
reset, and for that reason they have supplanted fuses in modern buildings. In 
the 1940s and earlier, when fuses were used instead of circuit breakers, many a 
house burned down because, on overloaded circuits, people "cleverly" replaced 
fuses by pennies, which permitted a much higher current flow than the fuses 
they replaced. (Those who knew that pennies would serve to pass current, like 
a fuse, but didn't know that they wouldn't protect the house wiring, unlike a 
fuse, illustrate the maxim that "a little knowledge is a dangerous thing.") Fuses 
(which typically are used in automobiles) must be replaced, once the cause of 
the electrical problem has been fixed. 

R~3 Some Uses of Electrical Power 

Fans, blenders, and many other appliances employ electric motors to convert 
electrical energy to mechanical energy. Electric motors use the magnetism of 
electric currents to provide the torque needed to turn the fan or blender blade. 

Automobiles use the chemical energy of a car battery to provide electrical 
energy to start the starting motor, which in turn provides the mechanical energy 
to start the gasoline engine. (The earliest automobiles employed no starting mo- 
tors and no batteries; cars were started by the driver turning a crank to provide 
the mechanical energy to start the engine. That is the origin of the term crank 
over used to describe how the starting motor gets the gasoline engine turning.) 
The chemical energy in gasoline (released as explosions within the cylinders 
of the engine) is converted to mechanical energy (the pistons move, and this 
causes the crankshaft to turn). Some of this mechanical energy gets converted 
into electrical energy by an electrical generator~also called an alternator. This 
goes into recharging the chemical energy of the battery, which then has enough 
chemical energy to start the car later. Motors and generators are discussed in 
Chapter 13. 

Radios and TVs receive, tune, demodulate (i.e., extract the useful signal), 
filter, and amplify weak and scrambled electromagnetic signals (Chapter 15), 
making them intelligible and clear. Stereo systems do much the same for unin- 
telligible signals embedded in plastic on a record or compact disk. We discuss 
many aspects of the operation of these devices in Chapter 14. 

A "walkman" employed to play compact disks (CDs) or cassette tapes uses 
up the chemical energy in its voltaic cells much more rapidly than one used only 
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to listen to radio stations. This is because it takes much more energy to turn a 
CD and to amplify the signal from the CD than to simply amplify the signal 
from the radio station. In terms of (R.3), the voltage difference A V is the same 
in both cases, but the current l is much greater when the CD, rather than the 
radio, is used. 

When you use a computer, the keyboard may actuate by detecting the effect 
of electric charge rushing back and forth when you exert pressure on a key. Inside 
the computer is a "hard disk" made of a magnetic recording material. This records 
information according to whether the magnetizations of some tiny magnetic par- 
ticles are pointing along or opposite to a given direction in the plane of the disk. 
Most important of all to the computer are its integrated circuits, which contain 
miniaturized versions of circuit devices called resistors (Chapter 7), capacitors 
(Chapter 6), and transistors (Chapter 7). A monitor using a vacuum tube yields 
images from light produced by electrons that have been guided, either by electric 
forces (Chapters 2 and 3) or magnetic forces (Chapters 10 and 11), to the screen, 
on which special materials called phosphors (Chapter 5) have been deposited. 
(Phosphors absorb energy from the electrons and quickly release that energy as 
light.) Many portable computers use monitors with a liquid crystal screen; the 
images on the screen are determined by electric forces acting on the molecules 
of the liquid crystal material. Ink-jet printers are not only powered and con- 
trolled by electricity, but even the ink is guided by electrical forces (Chapters 2 
and 3) as it moves down toward the paper. Electrical forces hold the ink to 
the paper, just as they hold together the atoms and molecules of our own 
bodies. 

Ro4 Electricity f rom Voltaic Cells: DC Power 
in an Automobi le  

Voltaic cells cause electric current in an electric circuit to flow in only one di- 
rection, the direction being determined by how it is wired. This is called direct 
current, or dc, in distinction to the oscillating current provided by the electric 
company, alternating current, or ac. Here are some questions and answers about 
electrical power associated with an automobile's use of voltaic cells. 

1. How much power do car headlights use? The ratings on the packages reveal 
that each low beam uses 35 W and each high beam uses 65 W. Ordinary 
house lightbulbs usually exceed this, but are not as bright; unlike headlights, 
house lightbulbs do not send off their light in a relatively narrow beam. 

2. What is the voltage of a car battery? Typical car batteries are rated at 12 V. 

3. What does "charge" mean for voltaic cells? Here charge has two mean- 
ings. In the chemical sense, charge is the amount of chemicals available for 
electricity-producing chemical reactions. In the electrical sense, charge is 
the actual electricity released by electricity-producing chemical reactions. 
These need not be the same, because the chemical charge can be used up by 
non-electricity-producing reactions. A car battery might have a charge speci- 
fied as 50 A-hr, which by (R. 1) is equivalent to 50 A. 3600 s -  1.8 • 10 ~ C. 
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4. How long does it take to discharge a car battery? A car battery with a charge 
of 50 A-hr will discharge after it has produced either 50 A for one hour, 
or 10 A for 5 hours, and so forth. We now find the time to discharge it if 
we leave the headlights on. Using the 35 W value for one low beam, we 
must use a power of 70 W for both. From (R.3), with 12 V, that means a 
current of 5.83 A. Hence, by (R. 1) it takes 50 A-hr/5.83 A = 8.6 hr to fully 
discharge a 50 A-hr battery. 

5. What maximum current can a car battery provide? Ads for batteries tell 
us that: "600 cold-cranking amps." Some batteries can produce as much as 
1000 A. They are intended for use either at very high temperatures (where 
they very readily discharge due to non-electricity-producing chemical re- 
actions) or at very low temperatures (where all chemical reactions~even 
those producing electricity~are suppressed). 

6. What is the electrical resistance r of a car battery? We can estimate it, using 
the maximum current and the concept of impedance matching (of the bat- 
tery and the starting motor). In (R.2) we use 12 V for the battery, a current of 
600 A, and a total resistance of the impedance-matched battery and starting 
motor of R - r § r = 2r. This leads to r - R / 2  - A V / 2 I  = 0.01 ~. A battery 
may be characterized by its emf, its "charge," and its internal resistance. 

7. Which provides electrical energy more cheaply, the battery company or the 
electric company? The electric company~by about a factor of 1001. This 
is why we don't light our houses with giant flashlights. We use batteries 
primarily because they are portable sources of electrical energy. 

8. Why do voltaic cells run down? They obtain their energy from chemical 
reactions at the terminals (called the electrodes). Material at the electrodes 
and in the interior of the voltaic cell (called the electrolyte) are consumed by 
the chemical reactions. 

9. What is the difference between the way electric charge is carried in a wire 
and in a voltaic cell? In a wire, negatively charged electrons carry the electric 
charge. In a voltaic cell, ions (which are much more massive than electrons 
and can be either positive or negative) carry the electric charge. 

10. If a battery is thought of as a "pump" for electricity, where in the battery 
is the pump located? Each of the two electrode-electrolyte interfaces, at 
the positive and negative terminals, serves as a pump. Small AA cells and 
larger D cells have the same chemistry, and thus the same pump strength 
per unit surface area of their electrodes. But the much larger D cell has a 
much larger charge in its electrolytes and electrodes. D and AA cells have 
about the same internal resistance. 

11. Does a 9 V battery work on a different principle than a 1.5 V AA cell? No. 
Open up a 9 V battery and you will find six 1.5 V cells connected in series 
(the positive terminal of one is connected to the negative terminal of the 
next). Note that not all 1.5 V cells employ the same chemical reactions. 

12. How do jumper cables work? They connect two batteries in parallel (both of 
the positive terminals are connected, and both of the negative terminals are 
connected). Then both batteries can provide electric power to the starting 
motor. 
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R~ Two Practice Exam Questions 

The two questions that follow have consistently produced an enormous variety of 
individually unique incorrect answers, revealing an equally enormous variety of 
individually unique incorrect conceptions about the subject of electricity. After 
posing them, we will answer these questions explicitly, and in the process (we 
hope) establish a common language. 

1. A rock 'n' roll band is playing a concert on an electrically conducting platform 
(e.g., steel) that is electrically insulated (e.g., dry wood) from the rest of the 
concert hall. During the concert, the platform is accidentally connected to a 
high-voltage ac source; perhaps there is a short connecting the platform to 
the "hot" lead of a frayed wire from a guitar amplifier. The band members' 
hair stands on end. Why? (Note: at 120 V, unless the power is direct current, 
the surface of the body is unlikely to charge up enough for hair to stand on 
end; let's assume it happens anyway, for argument's sake.) 

2. At the end of the concert, the band must descend from the platform. Al- 
though it would be safer simply to cut off the power, let us assume this 
cannot be done. Should the band members jump down from or step off the 
platform? 

To answer these questions, which require no quantitative knowledge of elec- 
tricity, we set up the mental picture of the electric fluid model, based on an 
analogy between electricity and water, both of them fluids. Although this anal- 
ogy is not perfect, it was taught with enthusiasm by no less a practitioner of 
the electrical science than J. J. Thomson. Thomson's careful measurement, in 
1897, of the ratio of electrical charge to inertial mass for the emissions from 
diverse cathode materials, convinced scientists that there was a unique common 
component to all "cathode rays"~the electron. In 1936, as an elder statesman of 
physics, Thomson wrote: 

[The service of the electric fluid concept] to the science of electricity, by suggest- 
ing and co-ordinating experiments, can hardly be overestimated. [For, in the 
laboratory,] if we move a piece of brass or decrease the effect we are observing, 
we do not fly to the higher mathematics, but use the simple conception of the 
electric fluid which would tell us as much as we wanted to know in a few 
seconds. 

In order to avoid having to "fly to the higher mathematics" (which even 
mathematically sophisticated scientists sometimes would like to avoid), we too 
will employ the "conception of the electric fluid." The reader will be warned 
when the analogy breaks down, at which time the model will be modified to 
produce a more precise physical picture of the phenomenon of electricity. Science 
constantly develops and refines its most important ideas. 

Ro6 The Electric Fluid Model  

The version of the electric fluid model presented here is an extension of the orig- 
inal version by Franklin. The present one is more accurate since it is based on our 
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Table R.1 Equivalences for the electric fluid model 
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1. Amount (mass) 
2. Pressure 
3. Reservoir 
4. Mass flow (mass current) 
5. Pipes and resistance to mass flow 
6. Pumps 
7. Reservoir breakdown 

Amount (electric charge) 
Electrical potential or voltage 
Capacitor 
Charge flow (electric current) 
Wires and resistance to charge flow 
Batteries or the electric company 
Electrical breakdown (e.g., sparking) 

current knowledge of the microscopic constitution of matter. Under the circum- 
stances, Franklin's conception was remarkably good; moreover, in the scientific 
tradition, he modified his views, as new facts became available. 

Broadly speaking, we can set up the equivalences shown in Table R. 1. 

1. Amount: Mass and Electric Charge Ordinary matter has a number of prop- 
erties, the most important of which for our purposes are mass and electric 
charge. Mass M (measured in kilograms, kg) is a positive quantity, and mass 
density (mass per unit volume, kg/m 3) is also a positive quantity. Water has 
a background mass density that is always positive, and increases only slightly 
when the system is put under pressure. Moreover, the addition of matter can 
only increase the amount of mass. 

On the other hand, electric charge can be either positive or negative. The 
net electric charge Q is the algebraic sum of the positive and negative electric 

Franklin, on the other hand, considered 
ordinary matter to be immobile and un- 
charged, sort of a sponge for the pos- 
itively charged electric fluid. The most 
important aspect of Franklin's concep- 
tion is that there is an electric fluid that 
can be neither created nor destroyed, 
and therefore it is conserved. 

charges. Increases in the net electric charge can 
occur either by increasing the amount of posi- 
tive charge or by decreasing the amount of nega- 
tive charge. The addition of matter can increase, 
decrease, or leave unchanged the amount of elec- 
tric charge. Ordinary atoms have zero net charge: 
they have positive charge in their relatively 
massive nuclei and an equal amount of negative 
charge in the relatively light electrons surround- 
ing the nucleus. The less massive electrons can 
be stripped off or added to an atom or collection 
of atoms (e.g., a solid). 

To Franklin we owe the concept of an excess or deficit of electrical fluid, the idea of 
connecting electrical storage devices in series and in parallel, a deep appreciation of 
the distinction between conductors and insulators, and the lightning rod. He is also 
responsible for bifocals, the rocking chair, the heat-retaining Franklin stove, daylight- 
saving time, and a host of other inventive ideas. It was Franklin's fame as a scientist m 
many of his electrical experiments were performed in the court of the French King Louis 
XVmthat later gave him the credibility in France to plead the case of the American 
Colonies against the British. 
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Recall from (R.2) that the unit of charge, the coulomb (C), is based upon 
the unit of electric current, the ampere (A). If one amp of dc current flows 
for one second, it transfers one coulomb of charge, so C = A-s. Recall that a 
50 A-hr battery has a "charge" Q of It, or (50 A)(3600 s) - 180,000 C. This 
vastly exceeds the amount that can be held by the nonchemical charge stor- 
age devices called capacitors, to be discussed shortly. (Batteries can provide 
currents as large as their emf divided by their internal resistance, and for a 
considerable period of time. Capacitors can provide very large currents, but 
only for very short periods of time.) The charge on the electron is - e ,  where 
e ~ 1.6 x 10 -19 C. This is very small; billions of electrons are transferred to 
your comb when you run it through your hair. (This sounds like a lot of elec- 
trons. However, your hair contains billions of billions of billions of electrons. 
Don' t  worry about rubbing too many electrons out of your hair.) 

2. Pressure and Electrical Potential, or Voltage 
area. This can be rewritten as 

Pressure P is force per unit 

force force-distance energy 
pressure - = = 

area area-distance volume" 

Dividing both the far left-hand and the far right-hand sides of this equation 
by mass per unit volume yields 

pressure energy 

mass per unit volume mass 

This quantity, an energy per unit mass, has the same units as gravitational 
potential and is analogous to electrical potential, which is an energy per unit 
charge. However, because a fluid like water is nearly incompressible, pressure 
and pressure divided by mass per unit volume are nearly proportional to each 
other. Hence pressure and voltage are nearly analogous. 

With an excess of positive or negative charge, we can produce either pos- 
itive or negative voltage. On the other hand, it is not possible to produce 
stable negative pressures, although small negative pressures can be produced 
temporarily (e.g., when a motor blade turns quickly through the water). 
At negative pressures, bubbles spontaneously form--the technical term is 
cavitation. 

Pressure in water depends on the collisions of neutral atoms with a wall or 
with one another. Pressure changes are communicated similarly by collisions 
between water molecules. This leads to the generation of sound, which in 
water travels at a speed of about 1435 m/s. On the other hand, voltage changes 
are communicated by the long-range electrical force, which propagates at the 
velocity of light (about 3 x 10 s m/s). This implies that, along an ordinary 
electric circuit, voltage changes are nearly instantaneously transmitted, and 
that throughout a "charge reservoir" the voltage is nearly uniform. However, 
for a long communications cable, the signal is precisely a nonuniform voltage, 
which travels along the cable in a short but finite time. 

3. Reservoirs and Capacitors Water is often stored in a reservoir or a water 
tower. For our purposes, we will think of a reservoir as being a tank of water 
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Figure R.4 Schematic of how electric charge goes to the 
outside of a conductor. The invisible body associated 
with the ghostly hand is in electrical contact with the 
cage, which itself is both charged up and on an insulating 
platform. 

that is under pressure. Electric charge, too, can be stored in electrical reser- 
voirs, called capacitors. 

Although a water reservoir has all the water uniformly distributed 
throughout its volume, a charge reservoir, such as a metallic plate or bar, has 
any excess charge distributed (not necessarily uniformlyl.) over its surface. A 
person standing within a charged-up metal cage will not be charged up, but 
on passing his hand through the bars, charge will flow from the outside of the 
cage to the person's hand, which now serves as part of the outside surface of 
the cage. See Figure R.4. In Chapter 4, we will study why this occurs. It is 
related to the fact that there are two types of electric charge, that "opposites 
attract and likes repel", and to the specific way in which the electrical force 
between two charges falls off with distance. 

Before electrical reservoirs, experimenters worked directly with the elec- 
tricity produced by an electrical source (such as a silk-rubbed glass rod). The 
first type of electrical reservoir was a bar of metal, called a prime conductor, 
placed upon an insulating surface to keep it from losing its charge. (Because, 
in equilibrium, the net charge on a conductor resides on its surface, a can- 
nonball and a metalized balloon of the same radius are equally effective at 
storing charge.) The second type of storage device was the Leyden jar (see 
Figure R.5). It has two surfaces~the outer tinfoil surrounding the glass 
and the inner water surface touching the glass~that hold equal and oppo- 
site charges + Q  Later the Leyden jar was given the name condenser (this 
usage survives today in the language of automobile ignition systems) because 
it "condensed" the electricity. There is a voltage difference A V across the two 
plates, with + Q at the higher voltage. The modern name for the condenser, 
the capacitor, indicates that these devices have the capacity to store electric 
charge. This is expressed in terms of what is called the capacitance C =  
Q/A V, whose unit is the farad (F), which is the same as a coulomb/volt, 
so F = C/V. 
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Figure R.5 The Leyden jar. The glass prevents 
charges on the inner and outer surfaces from 
making contact. 

Modern capacitors consist of two pieces ("plates") of electrical conductor 
separated by an electrical insulator, in geometries that maximize the area of 
each plate and minimize the plate separation (subject to no plate contact, 
which would cause discharge). In this way, large amounts of electric charge, 
equal in quantity but  opposite in sign, can be collected. Capacitors are crucial 
for the proper operation of nearly all types of electrical equipment.  Just as 
the pressure in a pressurized water reservoir is uniform, so the voltage on a 
single capacitor plate is uniform. The two plates of a capacitor are like two 
distinct reservoirs of water. 

4. Mass and Charge Flow A mass current to a region corresponds to an increase 
in the mass of that region. Mass current, or mass flow, is measured in units 
of kg/sec. Water current is sometimes expressed in terms of volume flow, in 
units of m3/sec. 

To repeat, electric current, or charge flow, is measured in units of the am- 
pere A, or coulomb/sec = C/s, sometimes called the amp. An electric current 
to a region corresponds to an increase in the net charge of that  region. A 
net increase can be due to a flow of positive charge into the region, a flow of 
negative charge out of the region, or a combination of the two. In a voltaic cell, 

Newton's laws do not correctly describe 
the orbital motion of electrons within 
atoms and molecules. However, mod- 
ern physics (properly, what is called 
quantum mechanics) permits electron 
orbits to be described in terms of or- 
bitals. These specify the probability of 
finding an electron at any given position 
in space. 

or in salt water, the charge carriers are both pos- 
itively and negatively charged ions (e.g., in salt 
water, the Na + is a positive ion, and the C1- is 
a negative ion). Ions lead to ionic conduction. In 
a metal, the charge carriers are electrons. How- 
ever, not all electrons in a metal are able to move 
freely; the ones that move freely are called con- 
duction electrons. Using the modern conception 
of the orbital, we would say that the conduction 
electrons are in delocalized orbitals, which can ex- 
tend throughout  the metal. Other  electrons in 
the metal are in localized states and cannot move 

freely. Electrons lead to electronic conduction. In insulators, all the orbitals are 
localized. This explains Gray's observation that  some materials are conductors 
and some are insulators. 
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Electrical insulators, such as air or glass or wood, conduct electricity, but 
much less effectively than good electrical conductors, such as copper. For 
example, glass is about 20 orders of magnitude less effective than copper 
at carrying electricity. This extraordinary variation in material properties is 
why, as a first approximation, we can make a simple distinction between con- 
ductors and insulators. The electrical conductivity and its inverse, the electrical 
resistivity, provide a continuous scale for the conducting abilities of materi- 
als. Semiconductors, like silicon, are intermediate between conductors and 
insulators in their ability to conduct electricity. 

5. Pipes and Wires Just as pipes have a certain resistance to the flow of water, so 
do wires have a certain resistance to the flow of electricity. To make the analogy 
more precise, the water pipes should be filled with fine sand or, better yet, with 
powder. Then the friction on the water occurs throughout the volume of the 
pipe, by collisions of the water against the sand. This is like the friction on 
the electrons that occurs throughout the volume of the wire, by collisions 
of the electrons against the atomic nuclei. The sand also serves to prevent 
turbulent flow of the water. Turbulent flow of electricity takes place only 
in ionized plasma, such as the atmosphere of a star or inside some vacuum 
tubes. 

Here is an important difference between water in pipes and electrons 
in wires: the electrons are always in the wires, ready to produce an electric 
current, whereas sometimes the pipes have to fill with water before they can 
produce a water current. 

A quantity of water, in motion becoming a water current, is driven through 
a pipe from higher pressure to lower pressure. Similarly, a quantity of elec- 
tricity, in motion becoming an electric current, is driven through a wire from 
higher voltage to lower voltage, as described by (R.2). The amount of mass 
current or electric current is proportional to the amount of the pressure 
difference or voltage difference, the amount of current being inversely propor- 
tional to the resistance of the pipe or tube. Monitoring the pressure difference 
(or voltage difference) along the length of a current-carrying pipe (or wire) 
of uniform constitution and cross-section shows that it varies linearly from 
the higher pressure (or voltage) to the lower one. Just as, at a given instant 
of time, different water molecules enter one end of the pipe and exit the 
other end, so different electrons enter one end of a wire and exit the other 
end. 

6. Pumps and Batteries of Voltaic Cells Just as water pumps generate pressure 
differences between the ends of a pipe, so do voltaic cells generate voltage 
differences across the ends of a wire. A water pump can drive water current 
around a water circuit that includes a fountain. For example, the water circuit 
could be: pump-to-pipe#1-to-fountain-to-pipe#2-to-pump-to-pipe#1 . . . .  
Similarly, a voltaic cell can drive electric current around an electric circuit that 
includes, for example, a lightbulb. The electric circuit would be: voltaic cell 
to wire#1-to-lightbulb-to-wire#2-to-voltaic cell-to-wire#1 . . . .  Further, a ca- 
pacitor can drive current through a lightbulb, but such current typically lasts 
only a short time because capacitors usually discharge relatively quickly. 

Just as the water company provides water at high pressure, the electric 
company provides electricity at high voltage. However, whereas the water 
company provides dc power (at a certain pressure, corresponding to the 
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In describing water, we do not say that "a high pressure passed across the pipe"; 
we say that "a high current passed through the pipe, driven by the high pressure 
difference across its ends." However, in describing electricity, the popular press often 
employs incorrect usage, such as "he received a shock when a high voltage passed 
through him." Sometimes surged = passed might be employed. By Ohm's law, (R.2), 
much better usage would be "on touching the wire, there was a high voltage difference 
between his hand and the ground, causing a large electric current to pass through him." 

m 

height of the water tower), the electric company provides an oscillating, or 
ac, power. Recall that dc stands for direct current, and ac stands for alternating 
current. Voltage is standardized throughout each nation (otherwise electrical 
equipment would not operate properly), whereas water pressure can vary 
considerably from town to town. However, ac power varies from nation to 
nation: in Europe, it typically has a frequency of 50 Hz and a voltage of 
220 V. 

The idea of a battery of voltaic cells is due to Volta. Chemical energies 
limit voltaic cells to emfs on the order of a few volts, so to get higher voltages 
with voltaic cells, we follow Volta and put them in series. Before Volta, 
Franklin had employed batteries of Leyden jars, both in series and in parallel. 

Breakdown Phenomena Just as the walls of a reservoir or a pipe normally 
are impermeable to the flow of water, so electrical insulators, such as air 
or glass or wood, normally are impermeable to the flow of electricity. In 
some cases, there is temporary electrical breakdown in an insulator~for 
example, sparking in air--corresponding to the temporary opening of a relief 
valve in a high pressure tank. Sometimes, however, there is catastrophic 
electrical breakdown~such as sparking, or even lightning~corresponding 
to the bursting of a water tank under too high a pressure. Sparking and 
lightning are very variable. A lightning bolt might carry a peak current of 
10,000 A and transfer a net negative charge of a few C from a cloud to the 
earth. (However, lightning sometimes transfers charge the other way; when 
it does the bolts are exceptionally powerful!) Under ordinary conditions, 
negative charge flows upward within the atmosphere from the earth, partly 
due to negative ions flowing upward and partly from positive ions flowing 
downward. Lightning is a complex and still poorly understood phenomenon. 

RoT Answers to the Practice Exam Questions 

With the fluid analogy in mind, let us consider the questions posed earlier. 

1. Why does the hair of the band members stand on end? 

We first answer this question for the artificial situation where the power 
is dc, rather than ac. Ordinarily, the platform and the band members on it 
will be electrically neutral. However, if the platform has become charged up 
with either an excess or deficit of electrons, then the band members, being 
good conductors relative to dry wood--animals are composed mostly of salty 
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From platform To ground 

(a) (b) 

Figure R.6 Depictions of electric current flow. 
(a) Electric shock. (b) Electrical discharge. 

water--also will charge up. Because the band members are conductors, this 
excess charge goes to their surface, which includes their hair. Strands of hair, 
being relatively light, and charged with the same sign, will repel one another 
(they will also be repelled by the charge all over the platform); thus their hair 
stands on end. (Some people think that, somehow, the hair stands up on end 
because it is discharging into the air. Not so. Hair can stand up on end even 
when the voltage is too small to cause noticeable discharge into the air.) 

2. Should the band members jump off or step off? 

Assume that the band members are wearing shoes with soles of leather 
(a much better electrical conductor than rubber). When they step down from 
the platform, they will provide a relatively good path for electricity to flow 
from the platform to ground, and vice versa. The electricity will be supplied 
constantly by the power source, and thus will flow through them as long as 
they are in contact with both platform and ground. The electrical path from 
one foot to the other passes the midriff and will include the region of the 
heart, so the chance of electrocution will be significant. See Figure R.6(a). 

On the other hand, if the band members jump to the ground, they will 
be much safer. At the instant they jump, they have a small excess of elec- 
tric charge, which they retain until they hit the ground and receive a small, 
momentary shock as they discharge. See Figure R.6(b). They then will be at 
the same voltage as ground, and there will be no more current flow, unlike 
what would happen if they were touching the platform with one foot, and 
the ground with the other. In a sense, while in the air they are like a charged 
capacitor, and when they discharge, they are like a discharging capacitor. 

How Long Does It Take to Charge and Discharge ? 

Actually, the power provided by the electric company is ac. Anecdotal evidence 
indicates that the hair-standing-on-end effect does no t  usually occur for ac volt- 
ages: drivers of earth-moving equipment have been known to operate their 
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equipment for hours, with their equipment accidentally shorted ("short" for 
"short wire connection," which means "directly connected") to high voltage (e.g., 
440 V) ac power lines without noticing anything unusual~like their hair stand- 
ing on end. 

The hair-standing-on-end effect certainly occurs for people standing on insu- 
lated platforms who touch a Van de Graaf generator as it charges up to thousands 
of dc volts. Although 440 V dc probably would be sufficient to cause hair to stand 
on end, for the 440 V of an ac power line, the effect probably does not occur 
because the time it takes hair to respond to charge and discharge exceeds 1/60 
of a second. In Chapter 8, we consider the charge and discharge of a capacitor 
of capacitance C through a path, such as a wire, with electrical resistance R. 
(Do not confuse the italic-font capacitance, C, with the Roman-font coulomb, 
C.) Technically, this is called R C charge and discharge, and we will show that 
it takes place in the characteristic time RC. (R has the unit of f2 = V / A ,  and C 
has the unit of F = C/V, so RC has the unit of (V /A) (C/V)=  C / A =  second.) 
Since it takes on the order of a few seconds for someone's hair to stand up when 
connected to a Van de Graaf generator, for this situation, RC may be as large as a 
few seconds. This long charging time is an indication that, although Van de Graaf 
generators can develop a high dc voltage, they cannot provide a large continu- 
ous current. For that reason the spark, however uncomfortable, discharges the 
generator, which then takes a few seconds to recharge. (Batteries produce lower 
voltages, but more sustained currents.) A fluid analogy to R C discharge would 
be the discharge of a water tank (of finite fluid capacity) through a water pipe 
of finite fluid resistance. The larger the tank or the narrower~and thus more 
resistive~the pipe, the longer the time to charge or discharge. 

R.7.2 How Large Is a Dangerously Large Current? 

The previous example touches on the question of electrical safety. How large 
a current can pass through a person without hurting him or her? Current is at 
issue here, not voltage. Although voltage drives the current, the current passing 
through a person is responsible for detrimental effects. 

There is no single answer to this question. At least three factors are important: 
(1) the electrical resistance varies significantly with the moisture on the person's 
skin (lie detectors use the fact that people under emotional stress tend to sweat, 
and sweat conducts electricity much better than dry skin; thus sweat decreases 
the electrical resistance of the skin); (2) the electrical resistance depends on 
where electrical contact is made; and (3) the nature of the damage depends on 
where the current passes. 

Thus, a person who touches two wires at very different voltages will get a 
shock that depends on where the two wires contact the person. If the contact is 
across two fingers on the same hand, the current will flow across the hand. Burns, 
perhaps serious, may result. However, if one hand touches one wire, and the other 
hand touches the other wire, the current will pass across the region of the heart. 
This may disturb the natural electrical self-excitation of the heart, setting off 
the heart into a disorganized twitching of the heart muscles called ventricular 
fibrillation. Here, little blood is actually pumped, because the chambers of the 
heart contract out of sequence. This is much like what happens when the ignition 
of an automobile is far out of tune. A current of only 0.1 A (and sometimes only 
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0.001 A) may be enough to cause this to occur. In such cases, it is often easier to 
stop the heart completely by giving it an even larger shock, and then to restart 
it properly by yet another shock. 

R~ 

R~8,2 

Beyond the Electric Fluid Model 

Electrical Polarization and Electrostatic Induction 

We have yet to discuss some very important electrical phenomena that are not 
included in the electric fluid model. The term electrical polarization describes a 
rearrangement, with no change in the net charge, of the electric charge on any 
kind of material, insulator or conductor, caused by an external source of electric 
charge. One side of the material tends to become more positive and the other side 
tends to become more negative, in proportion to the amount of external source 
charge. For insulators, polarization of individual localized atomic or molecular 
orbitals occurs. For conductors, the term electrostatic induction is used to describe 
polarization. (Electrostatic induction should not be confused with electromag- 
netic induction, which involves the motion of electricity in nonstatic situations.) 

Conductors typically are either electrolytes or metals. In electrolytes, elec- 
trostatic induction occurs by the motion of positive ions one way and negative 
ions the other way. In metals, electrostatic induction occurs by the distortion of 
delocalized orbitals from one side of the conductor to the other. Electrostatic in- 
duction in metals occurs more rapidly than in ionic conductors because electrons, 
having less inertia, can adjust more rapidly than can ions. 

Humidity and Sparking 

It has been known for centuries that humidity inhibits the production and reten- 
tion of static electricity. This is because water molecules (H20) in their natural 
state have an excess of positive charge near the H nuclei, and an excess of negative 
charge near the O nucleus. For that reason, water molecules can be attracted to a 
source of static electricity, where they either gain or lose charge~in the form of 
either an ion or, more likely, the relatively light and negatively charged electron. 
Thus, static electricity experiments do not work well during the summer, or in 
poorly ventilated rooms filled with large numbers of people. On the other hand, 
in winter, when the humidity is usually low, it is not uncommon to receive an 
electrical shock when you walk across a rug in shoes with rubber soles, and then 
touch a good conductor, such as a doorknob. This process is considerably more 
complex than described in many accounts, which normally dismiss it with the 
phrase static electricity. 

Sparking involves four stages. (1) The shoes charge up, with many billions of 
negatively charged electrons transferred by rubber from the rug to the rubber 
soles. (2) Positive ions in the body are attracted to, and negative ions in the body 
(including the hand) are repelled by, the negative charge on the shoes, as in 
Figure R.7(a). (The charge on the rug cancels the charge on the shoes, the net 
charge on the person is zero, and the net charge on the doorknob-doorplate as- 
sembly is zero.) (3) As the negatively charged finger approaches the doorknob, 
charge on the doorknob rearranges by electrostatic induction, giving an excess 
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Figure R.7 An example of spark discharge. (a) Electrostatic induction with charge conservation. 
(b) The sparking process. 

of positive charge near the finger. (4) When the person's hand approaches close 
enough to the doorknob, a spark occurs, and the finger rids itself of excess negative 
charge, as in Figure R. 7 (b). In Figure R. 7 there are too many charges to depict (some 
1023, with nearly equal amounts of positive and negative !), so we draw only uncom- 
pensated charge. The sparking process itself is surprisingly complex; it is initiated 
not by electrons on the finger or the door handle, but rather by electrons in the air. 

R~8o3 Some Inadequacies of  the Electric Fluid Model 

Some deficiencies in the simple electric fluid analogy have already been men- 
tioned. Mass is positive only, whereas electric charge can have either sign. Neg- 
ative pressures exist, but only down to the value at which bubble formation, 
or cavitation, occurs. However, there is no such limit on how negative a volt- 
age can b e t a s  long as electrical breakdown, which can occur for both positive 
and negative voltages, does not occur. Another difference is that charge transfer 
by friction has no fluid analog. Neither does electrostatic induction or electrical 
polarization. Thus, despite the analogy to a fluid under pressure, it is important to 
study electricity on its own terms. Nevertheless, if the electric fluid is extended to 
include these special properties, its usefulness can be increased. 

Here is yet another difference between ordinary fluids and the electric fluid. 
When a pump drives fluid through a pipe, stresses are set up in both the fluid 
and the pipe, and this drives the fluid through the pipe. In terms of energy flow, 
the pump provides energy via the fluid to distant regions of the fluid. On the 
other hand, when a battery is placed in an electric circuit, it causes charge to 
be distributed over the surface of the wires in the circuit. This surface charge 
actually drives electricity through the wire. In terms of energy flow, the battery 
provides energy via the region outside the wire to distant regions of the wire. We 
will say more about this in the next section. 
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Figure R.8 Different interpretations of positive and 
negative charges. An excess of electrons is represented 
by a negative; a deficit, by a positive. (a) For 
conductors, the charges represent the collective effect 
of some 1023 delocalized electron orbitals. (b) For 
insulators, the charges represent the effect of 
individual electrons. 

R,~8o4 

R~8o5 

How to Visualize the Particles of  Electricity 

Figures often represent electricity by pluses and minuses (see Figure R.8). Al- 
though the density of the pluses and minuses represents only the average electric 
charge, we tend to interpret the figures as if a minus corresponds to an individual 
electron, and a plus corresponds either to a positively charged nucleus or the 
absence of an individual electron. For insulators, where the electron orbitals really 
are localized, this interpretation can be accurate. However, such an interpretation 
is misleading when applied to electrical conductors, which contain charge carriers 
that extend throughout the entire conductor. For electronic conductors (such as 
metals), all the conduction electron orbitals, which overlap one another and 
extend over the entire conductor, adjust slightly when a charged rod is brought 
near. There, a minus represents an excess and a plus represents a deficit in the 
average density of the 10 23 or so conduction electrons in a mole of electronic 
conductor. For ionic conductors (such as salt solutions), the ions redistribute 
slightly when a charged rod is brought near. Thus, for conductors the pluses and 
minuses represent a more collective effect. 

Resolving an Apparent Contradiction 

When an electron is added to a conductor--for example, a small blob of solder 
sitting on an insulating surface--the electric fluid model tells us that the excess 
electric charge due to this electron goes to the surface of the blob of solder. If 
the electron itself were to go to the surface, then it would go there to occupy a 
surface orbital (i.e., an orbital localized on the surface). However, unoccupied 
surface orbitals typically are at relatively high energies compared to unoccupied 
bulk orbitals. Therefore the added electron goes into a bulk orbital and roams 
over the entire blob of solder, including the interior. To satisfy the requirement 
that the excess charge go to the surface, all the conduction electrons--including 
the electron that was just added--then adjust their orbitals slightly outward in 
just the right way to place on the surface a net charge equal to that of one 
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electron. Again, by a collective effect involving all the charge carriers, rather 
than any individual charge-carrier, the electric charge gets redistributed over the 
electrical conductor. Electrons in surface orbitals are responsible for the behavior 
of many semiconducting devices. 

R.8,6 How Electricity Moves: Vacuum Tubes, Wires, Lightning 

How electricity moves depends on the situation. Consider the following analogy. 
Imagine that there is a ballroom, with doors at opposite ends. Let us count people 
entering and leaving. 

If the ballroom is completely empty, then for person Z to leave, he must 
have first entered. A similar thing happens in a vacuum tube (such as a TV 
tube), where electrons are emitted at the negatively charged cathode and travel 
without stopping until they hit a screen, where we can count them by the light 
that is emitted. 

If the ballroom is completely full, then for person Z to leave, he must first 
have been pushed out by person Y standing next to him, who was pushed by 
person X, by a process that leads back to person A, who entered at the other 
end. This is somewhat like what happens in a wire filled with electrons, where 
charge from electrons enters one end, and charge from other electrons leaves at 
the other end. (Because the electric force is of long range, the image of pushing 
only on one's neighbors cannot be taken literally.) A similar pushing process also 
happens in electrolytes (like salt water) filled with ions, where an ion enters at 
one end and another ion leaves at the other end. (A more literal pushing process, 
mediated by molecular collisions, is also the means by which sound gets from 
its source to your ear; the source pushes adjacent air, that air pushes air a little 
farther away, and so on, until the air next to your ear gets pushed, and then that 
air pushes against your ear.) 

Now consider that the ballroom is filled with dancers, male and female. As- 
sume that, as long as they are together, they stay together. However, if they come 
apart, although they try to come together again (and sometimes they succeed, 
perhaps with different partners), the males tend to go to the left door and the 
females to the right door. Suddenly a male comes barreling into the room from 
the right door, traveling leftward, crashing into dancing partners and separating 
them. This separation of dancers from their partners gives the possibility that 
many more males will leave to the left than actually entered at the right, and 
many more females will leave to the right than entered at the left. This resem- 
bles what happens in sparking, where a high-energy electron passes through a 
material, kicking electrons off neutral atoms, and causing an electron avalanche. 
(Note that males and females have nearly the same mass, but electrons are much 
less massive than atoms. Hence this analogy would be misleading in describing 
momentum transfer due to collisions.) 

Lightning bears similarities both to an electron avalanche and to a wire. (No 
charges can get from cloud to ground~or vice versa~without collisions, unlike 
the case of the vacuum tube.) Initially, there is only neutral air. Then there 
is something like an electron avalanche, filling the air with electrons and ions. 
Finally, one set of electrons start entering at one end and another set start leaving 
at the other. We will discuss lightning in somewhat more detail in Chapter 6. 
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Figure R.9 Field-line and charge representation of a sequence of charging operations. 
(a) Charging process. (b) Charge separation. (c) Electrostatic induction on conducting 
sphere. (d) Just before discharge of sphere. (e) After discharge of sphere. (f) Isolated, 
charged, spherical conductor. 

R~8~7 Visualizing Electric Charge and Its Effect: 
The Electric Field 

One of the most powerful tools to assist our understanding of electricity was 
developed in the 19th century by Michael Faraday. It is a visual schema, whereby 
what are called electric field lines are considered to leave positive charges and 
enter negative charges. The number of field lines is proportional to the amount 
of charge. In Figure R.9 we illustrate this with a sequence of drawings. 

In Figure R.9(a), an initially neutral teflon rod is rubbed with a piece of 
cloth. When the cloth and the hand holding it are pulled off, as in Figure R.9(b), 
there are eight negative charges on the rod, and an equal number of field lines 
entering the rod. In addition, a number of field lines come from positive charges 
on the cloth and from the hands of the person who did the rubbing, as well 
as a few that are due to charges that are now so far away that we see only 
their field lines. In Figure R.9(c), the rod is brought up to a conducting sphere 
that rests on an insulated stand. The sphere is thereby subject to electrostatic 
induction but, being neutral, it has as many field lines entering (four) as leaving. In 
Figure R.9(d), the left-hand finger approaches the sphere, the finger being subject 
to electrostatic induction as well as the sphere. Note the high concentration of 
equal and opposite charge between the finger and the sphere. (We have not 
drawn two of the positive charges on the finger and two of the negative charges 
on the sphere, nor the arrows of the associated field lines, to avoid cluttering 
the diagram.) Figure R.9(e) depicts the situation after the finger has touched the 
sphere, drawn off some charge, and then been removed. Figure R.9(f) depicts the 
situation when the charged rod is removed, leaving behind the charged sphere. 
Now the positive charge on the sphere rearranges, and subjects the tabletop to 
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electrostatic induction, so the field lines from the sphere lead to the tabletop. 
This discussion implicitly assumes that electric charge does not spontaneously 
appear or disappear~what is called the principle of charge conservation. 

R~8~8 Electricity in Motion Produces a Magnetic Field 

Electricity in motion, or electric current, produces a magnetic field. It can be 
represented in a fashion similar to the way we represent the electric field in 
Figure R.9. (We assume that you have seen patterns of iron filings around a mag- 
net, which provide a representation of its magnetic field. A similar representation 
of the electric field due to electrical charge can be obtained with seeds suspended 
in oil.) Because electric current produces a magnetic field, a compass needle will 
be deflected when electric current flows through a wire. However, no analogous 
deflection of anything like a compass needle occurs when water current flows in 
a pipe. In addition, we will learn that a time-varying magnetic field will induce a 
circulating electric field, and a time-varying electric field will induce a circulating 
magnetic field. For these phenomena, there are no analogies in traditional fluid 
flow. Again, if the electric fluid model is to be used in such situations, it must be 
extended to include these properties. 

R.8.9 How to Visualize the Flow of  Electrical Energy 

The flow of electrical energy provides yet another major difference between the 
flow of water and the flow of electricity. Consider imaginary circular slabs cut 
from a cylindrical pipe and a cylindrical wire. For water flowing along the pipe, 
the energy flow vector exists only within the fluid, and points along the direction 
of the pipe, and the net flow into the slab occurs because the energy flow vector 
is greater on the input side than the output side. See Figure R. 10(a). However, 
for electricity flowing along a wire, the energy flow vector exists throughout 
all of space. It originates at the source of electrical energy (which might be 
a capacitor or a battery), and it flows toward the electrical resistances within 
the circuit. Since the wires of the circuit typically have only a small electrical 
resistance, the energy flow vector (called the Poynting vector) mostly points 
parallel to the wires, until it reaches the resistors, where it points inward. See 
Figure R. 10(b). 

Figure R.IO Distinction between matter flow and 
energy flow. (a) Water flows within a pipe (associated 
with energy flow). (b) Electrons flow within a wire, but 
energy associated with the electric field flows even 
outside the wire (e.g., radio and TV waves). 
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Ro8,10 Conclusion 

Despite the greater sophistication of modern conceptions of the atomic and elec- 
tronic nature of matter, the electric fluid model~suitably modified~continues 
to be a valuable way to represent the electric charge and electric current for an 
electrical conductor. 

In reading the next eight chapters, keep in mind that the electric fluid is char- 
acterized by three important properties: electric charge (which is conserved), 
electric field (a vector that is produced by electric charge), and electric voltage 
(a scalar that also is produced by electric charge). In Chapter 1, we consider 
charge conservation. Next, we consider electric force (Chapter 2), electric field 
(Chapter 3), the relation between charge and field (Chapter 4), and the rela- 
tions between field and voltage and between charge and voltage (Chapter 5). 
With the concept of voltage finally defined precisely, we turn our attention to 
capacitance C in Chapter 6 (where every part of a piece of metal in equilibrium 
has the same voltage), to resistance R in Chapter 7 (where the voltage varies 
along a piece of metal that is not in equilibrium), and both in Chapter 8. At the 
end of Chapter 8, before we begin the study of magnetism, we discuss the lim- 
itations of the lumped circuit approach (R's and C's) to the response of electric 
circuits. 

Ro9 

Ro9oi 

Review of Vectors in Three Dimensions 

In the 1880s, vectors were invented independently by the physicist Gibbs and the 
self-taught electrical engineer Heaviside. Heaviside's motivation was to rewrite, 
in compact form, the equations of electricity and magnetism developed by 
Maxwell. The dashed lines in Figure R.9 represent a vector: the electric field 
vector/~. There is a corresponding magnetic field vector/3. Using his new vector 
language, Heaviside first wrote down what are now called Maxwell's equations. 
Mathematicians later generalized the vector idea, but the generalization loses 
some of the specificity of meaning. In what follows, you will learn why the rules 
for manipulating vectors~and, in particular, the definitions of the scalar product 
and the vector product~have not been chosen arbitrarily. 

W h a t  Is a Vector? 

The first definition you probably had of a vector is that it is a quantity with mag- 
nitude anddirection. A position vector ~ in three dimensions can be represented 
by its components along the ~-, ~-, ~-axes, which gives the triplet of numbers 
(x, y, z) or (x, y, zl. Under rotation, the components of a position vector trans- 
form according to a specific rule. That rule (which we're not going to specify 
because in general it is very complex) must preserve (1) the magnitude of any 
vector and (2) the angle between any two vectors. 

Vectors more general than position vectors can be defined. A vector can be 
a velocity or an acceleration or a force; by taking higher time derivatives of the 
acceleration, we can form an infinite number of vectors. A vector can be an 
electric or magnetic field. Such vectors transform under rotations in the same 
way that position vectors transform. As a consequence, the magnitude of any 



26 Review/Preview J Electricity: Its Uses and Its Visualization 

R~9~2 

Ro9~3 

vector, and the angle between any two vectors~even vectors of different types, 
like position and velocity~do not change under rotations. 

If a triplet of numbers doesn't transform properly under rotations, then it 
isn't a vector. For example, a triplet of numbers that doesn't change at all when 
the coordinate system is rotated is not a vector. Thus the triplet (P1, P2, P3), 
where P1, P2, and P3 are the phone bills for your first three months in college, is 
a triplet of numbers, but it's not a vector under rotations. Neither is the triplet 
(Ixl, ly], Izl); it transforms under rotations, but not in the right way. Our definition 
of a vector in terms of its behavior under rotation is very restrictive. 

Note that each of the entries in a vector ~ = (ax, ay, a~) must have the same 
dimension; we can't have ax a distance and ay a velocity. 

Get in the habit of writing arrows over vectors. Something like F - mF~, with 
a vector on the right-hand side and a scalar on the left-hand side, is mathematical 
nonsense. 

F = m8 ~ GOOD;  F - rn~ --, BAD. 

Note:/~1 is a vector whose name is the subscript 1. Hence/~x is a vector whose 
name is the subscript x, not the x-component of/~. Also, the x-component of/~ 
is written as Fx or (F)x, not as ]Fx]. 

What Is a Scalar? 

By scalar, we mean a number (perhaps one with dimensions, such as a mass) 
that doesn't change under rotations. The single number, or singlet, ~ ' ~  ax is 
not a scalar under rotations, because ax of the vector ~ changes under rotations; 
however, the magnitude ]~] is a scalar under rotations. 

Addit ion and Subtraction of  Vectors 

The rules that follow are clearly true for position vectors. They are also true for 
other types of vectors, such as forces or velocities or accelerations. 

To add and subtract two vectors ~ and 1), they must have the same dimension 
(e.g., both position vectors or velocity vectors, but not ~ a position vector and l) 
a velocity vector). Then 

+ b -  b + 8. (R.5) 

That is, vector addition satisfies a commutative rule. (So does addition of the real 
numbers.) You should verify (R.5) by (1) in the xy-plane, drawing two vectors 
(call them ~ and 1)), their tails both on the origin; and (2) adding them with the 
tail of ~ on the origin and the tail of l) on the tip of ~ (this is ~ + C)), and adding 
them in the reverse order. 

For three vectors with the same dimension, we have the right and left associa- 
tivity rules that 

(e.6) 

That is, the order in which we add vectors, no matter how many of them, doesn't 
matter (similarly, for addition of the real numbers). Suppose we are to sum 100 
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vectors, the second 50 of which are the negatives of the first 50. This rule allows 
us to rearrange them to get zero for each pair of opposites, and then sum to get 
zero, rather than moronically (e.g., like a computer) adding them all up and then 
subtracting them all back down to zero. 

Subtraction of g from ~ is defined as the vector addition of ~ and -~), - ~  has 
the same magnitude as g, but points in the opposite direction. (If we think of 
the real numbers as having a direction with respect to the origin, then for a real 
number d, the real number - d  has the same magnitude Idl but points in the 
opposite direction.) Thus we write 

- ~ -- ~ + (-~)). (R.7) 

Note that 

- b -  - ( g  - a ) .  ( e . 8 )  

That is, vector subtraction satisfies an anticommutative rule (so does subtraction 
of real numbers). 

R+9,4 

R,9~ 

Multiplication of  Vectors by Scalars 

If k is a scalar, and ~ is a vector (e.g., an acceleration or a position), the composite 
quantity k~ is a vector that is along (opposite) ~ if k is positive (negative). If 

has magnitude lal, then k~ has magnitude IZl lal. The commutative law 

x ~ -  ~ (R.9) 

holds, so it doesn't matter which way we multiply vectors by scalars. Note that 
if k has dimensions (e.g., mass), then k~ has different dimensions than ~ (e.g., 
F - m~ of Newton's second law). 

Under multiplication by the scalar ~, vector addition satisfies the right- and 
left-distributive laws" 

Vectors in Cartesian Coordinates: Magnitudes 
and Unit Vectors 

Let the unit vectors i, ), and/~ point along the x-, y-, and z-axes, respectively. 
They are normal (perpendicular) to one another, forming a right-handed triad, 
as determined by the vector product right-hand rule. See Figure R. ] 1 (a), where 
the thumb is along k, the curled fingers are along j, and the uncurled fin- 
gers would be along i. This rule is so important that this chapter illustrates it 
twice. 

With the unit vectors defined, let us now consider two vectors ~ and ~, 
expressed in terms of their cartesian components. That is, 

a -  + +  zk, f) -- bxl + by ~ + bzk. (R.11) 
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(a)  (b)  

Figure R.11 (a) A unit triad and a curled right hand. (lo) Two vectors 
in their common plane, and the angle between them. 

By the  Pythagorean  theorem,  the  magn i tude  lal of ~ can be ob ta ined  f rom 

-* -~ 2 2 2 lal 2 (R.12) 
a . a - -  a x + a ~  + a z - -  . 

Under  mul t ip l ica t ion  of a vector  ~ by a scalar k, each c o m p o n e n t  of ~ is 
mul t ip l ied  by k. This is re levant  to uni t  vectors. We can conver t  any ~ to a uni t  
vector  ci via 

a 
- -  (R.13) 

a - I d l '  

which  corresponds  to mul t ip ly ing  ~ by ;~ - I~1-1 . 

• Magnitude of vector a 

Let ~ - ( 12 ,15 , -  16) in units of cm. Find lal. 

Solution: Equation (R.12) gives 1~1 = v/(12) 2 + (15) 2 + ( -16 )  2 - 25 cm. 

~ Scalar and unit vectors multiplication 

For ~ of the previous example, find ci. 

Solution: Because I~1-1 = 0.04 cm -1, by (R.13) wefind 
ci - (0.04)-(12, 15, - 16 )  = (0.48, 0.6, -0 .64) .  You can verify that Icil = 1. 

• Rotating a vector 

We now put  together the different parts of this section. Let ~ = (3, 4, 0), 
corresponding to a vector that  is 5 units long, at an angle of tan  -1 (4/3)  = 53.1 
degrees counterclockwise to the x-axis. 

(a) Find the vector 8' that  corresponds to a clockwise rotation by 25 
degrees. 

(b) Show that  the magnitudes la'l = lal. 

Solution: At the outset, note that the rotation should yield a vector that is 5 units 
long, at an angle of 53.1 - 25 = 28.1 degrees counterclockwise to the x-axis. 
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(a) Because a vector is the sum of its components, we can consider how the 
x- and y-components transform separately. The x-component of a, or 3, 
transforms into a part 3 cos(25) along x, and a part -3  sin(25) along y. The 
y-component of a, or 4, transforms into a part 4 cos(25) along y, and a part 
4 sin(25) along x. The sum has x-component 3 cos(25) + 4 sin(25) = 4.41, 
and y-component -3  sin(25) + 4 cos(25) = 2.36. Thus a' _= (4.41, 2.36, 0). 
This makes an angle of tan -1 (2.36/4.41) = 28.1 degrees counterclockwise 
to the x-axis, as expected. 

(lo) By (R.12), l a ' l -  ~/4.412 + 2.362 + 02 - 5.00 = lal, as expected. Thus lal 
transforms as a scalar. 

R, IO 

R~ 

Multiplication of Vectors 

Can We Mult iply Two Vectors to Obtain a Third Vector? 

Consider two vectors a and ~, as in (R. 11). Choose a coordinate system with 
a plane containing fi and/~, where the angle between them is called 0 a ~ and is 
less than 180 ~ See Figure R.11 (b). (There is an infinite number of such co- 
ordinate systems because we can rotate them by any angle about their normal.) 

Can we form from a and ~ a new vector? Like the rule for multiplication of 
ordinary numbers, the rule for vector multiplication should give a result that is 
proportional to the magnitudes lal and I~ of each of the vectors. (We call this 
proportionality to both magnitudes bilinearity). Also, it should give a vector that 
transforms under rotations like a vector. We hope it will also have certain desirable 
properties that make it easy to rearrange terms in an algebraic expression~such 
as commutivity (or anticommutivity) and distributivity (right and left). Before 
answering this ques t ion~in  the affirmative (but we're going to have to replace 
commutivity by ant icommut iv i ty)~we raise a red flag. 

Consider the triplet 

g, = [layazl 1/2, lazaxl ~/2, laxayl 1/2 ] (R.14) 

constructed from the true vector gt - (a~, ay, az). For a = (5, 0, 0), (R. 14) gives 
= [0, 0, 0]. Under a rotation about z by tan -1 4/3 ~ 53 ~ a goes from (5, 0, 0) 

to (3, 4, 0). Then, by (R.14) ~ goes from [0, 0, 0] to [0, 0, 12~/2]. This creature 
certainly does not behave like a vector under rotations, for it goes from the 

origin to a point on the z-axis when we rotate about the z-axis, and its magnitude 
has changed! The moral is that we can't just make up an arbitrary triplet and expect 
it to behave like a vector under rotations. 

For that reason, before considering how to construct a third vector from the 
vectors a and ~, let's first consider the simpler problem of how to construct a 
scalar from d and ~. 

Scalar Product and Its Algebraic Properties 

We'll now construct the scalar product, so-called because it is a scalar under 
rotations; we also call it the dot product because of the dot symbol (.) we use to 
represent this operation. 
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The scalar product arises naturally in many physical contexts, such as the 
definition of work W. If a constant force/~ moves an object by the vector distance 
~, the work done is 

W -  I FIl~ll cos Or,,;l, (R.15) 

where 0 F ~ is the angle between /~, and F. This quantity is a scalar under 
rotation because IF I, 171, and ~)p ~ don t change under rotation. 

More generally, to obtain the'scalar product of two vectors ~ and ~, we multi- 
ply the magnitude ]al of the first vector by the projection [l)l cos ~)a ~ of the second 
vector along the first. Thus the scalar product is a measure of th'e projection of 
one vector on another. In equation form, 

~. b - I~11bl cos ~)~,6- (R.16) 

Because lal, ]bl, and ~)a,~ are scalars under rotations, the dot product of (R.16) 
also is a scalar under rotations. Clearly, the scalar product is bilinear in 8 and b. 
In scalar multiplication, 8 and b need not have the same dimensions. 

The corresponding angle 0~, a from b to 8 equals 0a, 6. Thus the dot product 
in the reverse order is 

E,. a - I ~ , l l a l  cos ~)v,,a - I b l l a l  cos 0a, v, = lal lbl cos 0a, v,. (R.17) 

Hence, comparing (R. 16) and (R. 17), we see that the order of the vectors doesn't 
matter: 

~- b - b. ~. (commutative law) (R. 18) 

The dot product is said to be commutative; the projection of ~ on ~ is the same 
as the projection of ~ on b. 

The dot product is also said to be right distributive, meaning that the projection 
of l) + 6 on ~ in ~. (i) + 6) is the sum of the projections of b on ~ and of 6 on ~. 
See Figure R.12(a). We use the n o t a t i o n  Cpar to indicate the component in the 
~b-plane of the vector ~. This takes advantage of the fact that we can choose 
a coordinate system such that ~ is along the x-axis, and [9 is in the xy plane. 
Although 6 must be given all three components, its component along z doesn't 
matter for the purposes of projection along x. Thus 

a. (F)+O-a. F)+a.6. (right distributive law) (R.19) 

The dot product is also left distributive, meaning that the projection of l) + 
on ~ in (~)+ 6). ~ is the sum of the projections of ~) on ~ and of ~ on ~. We 
can also obtain this left distributive law by applying (R. 18) (twice) and (R. 19) 
(once)" 

(a + (a+F))-6. a+6. b - a .  b. (left distributive law) 
(R.20) 
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Figure R.12 (a) The distributive law of 
the scalar product. (b) The vector 
product right-hand rule. 

Scalar Product in Cartesian Components 

Let's now consider how to evaluate ~- ~) in terms of the components of ~ and ~). 
To do this, first we have to work out the scalar product between the unit vectors. 
By (R. 16) the scalar product of two unit vectors yields one or zero, according to 
whether or not a unit vector is dotted with itself (angle zero and cosine unity) 
or with a perpendicular unit vector (angle 90 ~ and cosine zero). That is, 

,:?.++- 1. j - k .  k -  t, i . j - j . l - j .k -k . j -k . l - l .k -o .  
(R.21) 

We can now apply the two commutative laws and (R.21) to d and ~) written 
out in component form. This yields 

a . ~ -  (axl + a~ j + azk) . (bxl + G J + bzk) - axbx + a~b~ + azbz, (R.22) 

where the distributive laws permitted us to rearrange (not shown) the nine dot 
products of unit vectors, and (R.21) permitted us to reduce those nine dot prod- 
ucts to only three non-zero terms. 

Note that, if 0 - ~, then 0a, ~ = 0, and its cosine is one. Thus, by (R. 12) the 
dot product should yield the magnitude squared of the vector ~. Indeed, for this 
case (R.22) reduces to (R. 12). 

Comparing (R. 16) and (R.22) we find that 

~.  i ) -  Idl Ii)l cos 0a, ~ - axbx + ayby + azbz. (R.23) 
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Equation (R.23) permits us to quickly, accurately, and easily compute the magni- 
tude of any vector (set f) -- ~ to get I~i, and the angle between any two vectors). 
Our  scalar product is bilinear, commutative, and distributive. 

~ Scalar product 
Let 

a = (12, 15 , -16) ,  b - (175, -168,  576). (R.24) 

Find I~1, IF)l, a .  F), and 0. 

Solution: By (R. 12), ]~1 - v/(12) 2 + (15) 2 + ( -  16) 2 - 25 and 
]l)] - v/(175) 2 4- ( -  168) 2 + (576) 2 - 625. By (R.22), 
~-b = (12). (175) + (15). (-168) + ( -16) .  (576) - -9636. By (R.24), 
cos0a, ~ = (-9636)/(25.  625) - -0.6167, so 0 = 128 ~ or 0 - 232 ~ -- -128 ~ 

R.10.4 Vector Product and Its Algebraic Properties 

We'll now construct the vector product, so-called because it is a vector under 
rotations; we also call it the cross product because of the cross symbol (x)  we use 
to represent this operation. 

The vector product arises in many physical contexts, such as the definition 
of torque ~ s o m e t i m e s  called I ~. (The Greek letter T is spelled tau uthe Greek 
letter y is spelled gamma, and F is capital y.) Let a constant force F act on an 
object by the vector distance F with respect to some origin P. Then the torque 

about P, due to F, has magnitude 

Ill - I~IIFI sinO~,~l, (R.25) 

where O~ ~ is the ang!e between F and/~. ]s is a scalar under rotation because 
]/~ ], ]F], and O~ ~ don t change under rotation. Because the torque s causes the 
object to spin ~bout an axis given by the vector product right-hand rule (applied 
to F and F), we identify the direction of s with this axis. 

More generally, to obtain the vector product ~ x ~) of two vectors ~ and 1), 
we obtain its magnitude as the area of the parallelogram formed by ~ and ~), so 

I~ x b l -  J~llbll sinOa, bl. (R.26) 

This magnitude is a scalar under rotation because lal, ]bl, and Oa, g don' t  change 
under rotation. The vector product typically has different dimensions than either 
of the original vectors. Clearly, (R.26) is bilinear in lal and Ibl 

In general, to obtain the direction of ~ x ~, we employ tl~e vector product 
right-hand rule that is used to go from the unit vectors ~ and j to the perpen- 
dicular unit vector/e. More generally, for two vectors ~ and b, swing your right 
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hand in the plane of 8 and i) from 8 to ~9 through the angle of less than 180~ 
your thumb will then point along the direction of d x ~. See Figure R.12(b). 
(We assume that d and ~) are not collinear.) 

A "stupidity check" that you're not doing something totally wrong (the sort of 
"zeroth rule" you'd like to have about anything) is (1) identify the plane of 8 and 
~); (2) take 8 x ~ normal to this plane; (3) ifyour application ofthe vector product 
right-hand rule is not normal to that plane, you know you've done something 
wrong, and you should start over. 

With this rule, the effect of the operation x on the unit vectors is 

~• j - k - - j x ~ ,  
~• j• 

j • 2 1 5  j, 

k •  

k •  ] - - ~ "  • k, 

(R.27) 

where 0 - (0, O, O) has all three components set to zero. 
In general, the cross-product rule is not commutative: it gives 

x ~)-  -~) x ~. (R.28) 

Because of the sign change, the cross-product is said to be anticommutative. 
We can prove the right distributive law 

a• f f + 0 - a • 2 1 5  (R.29) 

by a geometrical construction. First, we project ~) and E onto the plane perpen- 
dicular to 8. This is done in Figure R. 13(a), where we take 8 to be normal to 
the page, and we employ the subscript perp to indicate only the parts of ~, E, 
and r) + j that are perpendicular to 8. Clearly, (~)perp n t- Cperp) = ~)perp -Jr- Cperp. Next, 
we consider the cross-products, obtained from the projections on multiplying by 
lal and rotating counterclockwise by 90 ~ This is done in Figure R.13(b), which 
shows that (R.29) indeed is satisfied. 

Using anticommutivity (twice) and right distributivity (once), we have 

(a + g) x e - - e  x (a + g) - - e  x a - e x ~ - a x e + g x 

f (b+c)perp a x b 

.-~ aN 

f 
a•  

Plane perpendicular to a 

(a) Co) 

Figure R.13 (a) The distributive law for the addition 
of the components of two vectors normal to a third. 
(b) The distributive law of the vector product. 
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Thus we have derived the left distributive law 

(a + f)) x ~ -  (a x 0 + (f) x O. (R.30) 

In summary, our vector product is bilinear, anticommutative, and distributive. 
With (R.29) and (R.30), we can now evaluate the vector product in compo- 

nent form. We have 

x F) - (a~  + a~ j + azk) x (bxl + G / +  bzk) 

= (,~bz - m G ) i  + (mbx - axbz)} + (axb~ - a~bx)k, (R.31) 

where the two distributive laws permitted us to rearrange (not shown) the nine 
cross-products of unit vectors, and (R.27) permitted us to reduce those nine 
cross-products to only six non-zero terms. 

The three apparently complex terms in (R.31) are related. Define the vector 
= ~i x [). On making the cyclic permuta t ion  (x, y,  z) ~ (y,  z, x) ,  the dx - 

(aybz - a~by) term multiplying i = ~ becomes the dy - (azbx - axbz) term mul- 
tiplying } = 39; the dy - (azbx -a~bz )^  term multiplying } = 39 becomes the 
d z -  (axby-.aybx) term multiplying k ~ ~; and the d z -  ( axby-  .aybx) term 
multiplying k = ~ becomes the dx - (aybz - azby) term multiplying i ~ ~. 

Equation (R.31) may be rewritten as a determinant; see Problem R-10.15. 

R.10o5 Testing for Vectorness 

Equation (R.31) has x-,  y-,  and z-components, which makes it look like a vector, 
and we have constructed it in such a w a y  as to be a vector, but how can we 
be sure it really is a vector? Does 8 • b of (R.31) transform like a vector under 
rotations? And is its magnitude 18 x [)l given by (R~26)? 

Because of the vector product right-hand rule, ~ • b should be perpendicular 
to the two vectors ~i and [), even under rotations. If that is true, then the scalar 
product of ~ x f~ with 8 and [) should be zero. Let's check it out. 

In (R.23), take 8 from (R. 1 1) and replace [) by ~ x [) of (R.31); this leads to 

~ . (~ • b ) - - a x ( a y b z  - a~by) + ay(azbx - axbz) + a~(axby - ayb~) - 0. (R.32) 

Here ax(aybz) is canceled by a y ( - a x b z ) ,  and there are analogous cancellations 
for the other terms. In a similar way, we can show that i). (~ x 1)) - 0. Thus, as 
expected, 8 • b is perpendicular to both ~ and [), even if ~, [), and ~ x l) are all 
rotated. Therefore the direction of 8 x f) rotates like a vector. 

We still must verify that the magnitude 18 x [)] satisfies (R.26), and thus 
doesn't change under rotations. With (R.31), (R. 12), and (R.23) we obtain (leav- 
ing out some algebra) 

18 x i)l 2 -  (aybz - azby) 2 + (azbx - axbz) 2 + (a~by - aybx) 2 

2 + a2z)(b2x + b 2 + b2z) _ (a~b~ + ayby + azbz) 2 = (a 2 + ay 

= it~12]~)12 _ 1a121~)12 COS 20it,[) _ _  l~12l~)12 sin 2 0a,[,. (R.33) 
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This is in agreement with (R.26). Note that I~ x ~l doesn't change under rota- 
tions, because lal, I~1, and sin Oa, b don't change under rotations. 

~ Vector product 
For 8 and ~) of (R.24), find 8 x ~) and 0. 

Solution: Equation (R.33) applied to 8 and C) of (R.24) gives a x f ) -  
( 5 9 5 2 , - 9 7 1 2 , - 4 6 4 1 ) ,  so 18 x i)l 2 = 1.51288129 x 108 exactly, and 18 x/~l = 
12,299.924 (to ridiculous accuracy). With lSI- 25 and I r ) l -  625, (R.26) yields 
I s i n 0 l -  0.787, corresponding to 0 = +51.924 ~ or 0 = +128 ~ This 0 is consis- 
tent  with Example R.4, which used the scalar product. 

Problems 

R-2.1 Describe how the ground wire serves to pro- 
tect the drill operator in Figure R.2. 

R-2.2 Electric-powered trains obtain their elec- 
tricity from the so-called third rail, which is at a 
high ac voltage. Discuss the possibilities for what 
might happen if we step on the third rail, according 
to the material of our shoes, what we are touching 
with our hands or other foot, and so on. 

R-2.3 A 5 S2 resistor has end A at 5 V (VA = 5 V) 
and end B at 5 V (VB = 5 V). (a) Determine the cur- 
rent, the direction of the current flow, and the rate 
of heating. Repeat for (b) VA = 5 V, VB = - 5  V; (c) 
VA= 5 V, VB = 0  V; (d) VA=0  V, VB = 5 V; and 
(e) VA = - 5  V, VB = 5 V. 

R-2 .4  Determine the electrical resistance and the 
current passing through a lightbulb rated at 60 W 
when it is connected to a 120 V power source. 

R-2.5  Explain why, for purposes of electrical 
safety, if we are working with a circuit or equip- 
ment that could involve dangerously large volt- 
ages, it is prudent to wear insulated shoes, and 
to place one hand behind our back, and limit 
to the other hand our poking around at the 
connections. 

R-2.6 If the average current in a bolt of lightning 
is 120,000 A, and it lasts for 2 x 10 -4 s, how much 
charge does the lightning bolt transfer? 

R-3.1 Give some examples (beyond those men- 
tioned in the text) of the uses of electrical power. 

R-3.2 Six-year-old Charlie is playing in the living 
room with a battery-powered toy that uses six D 
cells. The power in the house goes out, and you 
want to borrow two cells for a flashlight. He com- 
plains that you will use up all the power and there 
won't  be any left for his toy. What do you tell him? 

R-4.1 A voltaic cell is rated at 2 V. A slow dis- 
charge through a resistor involves a nearly constant 
current of 0.1 A, which suddenly stops after 80 min- 
utes. Find: (a) the resistance of the resistor; (b) the 
rate of power dissipation; (c) the total power dissi- 
pated; and (d) the "charge" on the voltaic cell. 

R-4.2 A typical car battery is discharged through 
a resistor equal to its internal resistance. (a) Find 
the rate of heating of the car battery and the resis- 
tor. (b) Find how long it will take to produce 12 J 
in the resistor. (One joule equals a watt-second, or 
J = W-s). 

R-5.1 Frankie, a computer newbie, is using his 
computer at work. Suddenly the lights go out. He 
looks at his monitor, and it has gone dark. He 
calls the computer company's help desk. (a) Is this 
the appropriate response? (b) What would you tell 
him? (There is a story on the World Wide Web that 
something like this actually happened. The agent at 
the help desk was unable to provide assistance, until 
finally told that the lights also had gone out.) 

R-5.2 Give three examples of how electricity is 
used within a computer. 
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R-6.1  Joan stands on an insulating platform and 
touches a disconnected and discharged electrostatic 
generator. The electrostatic generator is then con- 
nected and turned on. Her hair stands on end. 
Explain. 

R -6 .2  Laura stands on ground and touches a 
connected and charged electrostatic generator. 
(a) Explain what happens next. (b) What  difference 
might it make if she were standing on an insulating 
platform? 

R-6 .3  Discuss the following statement: a more ac- 
curate terminology than ac and dc would be dv and 
av (direct voltage and alternating voltage). 

R - 6 . 4  When two identical faucets are wide open, 
the maximum flow of water is double that for one 
faucet. Give an electrical analog. 

R -6 .5  Sometimes we receive an electric shock 
when leaving a car, especially in dry weather. 
This can be avoided by getting up from one's 
seat while touching the outside surface of the car. 
Explain why. 

R-6.6 When two identical hoses are connected to 
one another, the maximum flow of water is less than 
for one hose. Explain why, and give an electrical 
analog. 

R-8.1 Consider three people (A,B,C) of equal 
mass, centered at x = 1, 2, 3, which we repre- 
sent as (1,2,3). Their center of mass is at x = 2. 
Find the center of mass for the following three 
cases: (a) Shift them all to the right by one, giv- 
ing (2,3,4). (b) Shift only A, to x = 4, giving 
(4,2,3). (c) Shift only B, to x = 5, giving (1,5,3). 
[Answer: All should be at x = 3.] (d) Here's the 
physics of this problem: describe the shifts as due 
either to a collective effect or to an individual 
effect. 

R - 8 . 2  Explain the difference between charge 
transfer as it occurs when there is sparking in air 
and when there is an electric current in a wire. 

R -8 .3  For both conductors and insulators, we 
employ + and - signs to represent charge. Never- 
theless, there is a difference in interpretation at a 
microscopic level. Explain. 

R - 8 . 4  Describe the flow of electric current in 
terms of the behavior of the charge carriers: 
(a) in a salt solution, and (b) in a piece of copper 
wire. 

R-8.5 Describe the response of the other charge 
carriers to the insertion of a single charge carrier 
within (a) a glass beaker containing a salt solution, 
and (b) a piece of copper wire sitting on an insulat- 
ing surface. 

R -8 .6  Describe where you think tl~e charges come 
from in each part of Figure R.9. 

R -8 .7  For pure water, the individual water 
molecules undergo rapid random motion, due to 
thermal effects. (a) Is there random motion of the 
Na + and C1- ions (and the water molecules) in a 
solution of salt water? For a metal wire, the in- 
dividual electrons are in large overlapping orbitals 
that permit  electron motion more rapid than due to 
thermal effects. (b) For pure water, salt water, and 
a metal wire, discuss how a net fluid flow or net 
electric current (as appropriate) can come about by 
superimposing an average velocity on the random 
motions. 

R -8 .8  In a low-humidity room, we rub a comb 
through a piece of fur, and then separate them. 
Assume that, during the rubbing, the comb gains 
electrons and the fur loses electrons. Compare 
the rate at which the comb and the fur seem 
to lose charge if first we introduce water vapor 
near the comb, and then if we introduce water 
vapor near the fur. Think in terms of charge trans- 
fer of electrons, and the time it takes for water 
molecules to get from one place to another. 

R-9.1 Professor X believes in giving no partial 
credit because that way he gives students an incen- 
tive to get ideas completely correct. What  credit (full 
or none) would Professor X give if, on an exam, he 
asked students to write down Newton's  second law 
of motion, and he saw the equation: (a) F = ma? 
(b) Fx = ma? (c) Fx = max? (d) The set of equa- 
tions Fx = max, Fy = may, Fz = maz? (e) If a stu- 
dent didn't  define F or a, but  simply wrote F = ma, 
would Professor X give credit? (f) If a student ex- 
plicitly defines F = I FI and a = lal, would Professor 
X give credit for F = ma? Hint: What  about direc- 
tional information? 

R-9 .2  If right distributivity holds for an imaginary 
operation | and if a | l) = cl) | ~, where c is a 
number, find the possible values of c that make left 
distributivity hold. 

R -9 .3  Show that (R.9) implies that the two equa- 
tions in (R. 10) are equal so that if right distributivity 
is true, then left distributivity is true, and vice versa. 
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R-9.4 Give a specific example of a vector 8 -  
(ax, ay, az), and a specific rotation, to show that 
~ '  --- a~ is not a scalar under rotation. 

R-9.5 Give a specific example of a vector 8 -  
(ax, ay, az), and a specific rotation, to show that 
~* - ( lax] ,  [ay[, [a~l) is not a vector under rotation. 

R-9.6 (a) Prove or disprove the statement 
la(b + c)l - labl + lacl for all real numbers. To dis- 
prove this statement, you need to find only a single 
counterexample; a million examples won' t  prove 
it. (b) Is it true for positive numbers only? 

R-10.1 Define the | operator to produce a vec: 
tor a | ~) whose direction is given by the right- 
hand rule, and whose magnitude is given by 
If | f)l = lallf)ll sin 20a, bl. (a) Show that its direc- 
tion transforms under rotation like a vector. (b) 
Give an example showing that it is not distributive. 

1t-10.2 The z-component of ~i x i) is axby - aybx. 
This mathematical combination is antisymmetric. 
In 3d, the number of true vector components is 
3 and the number of such antisymmetric combi- 
nations is 3. This equality was necessary to con- 
struct the vector product. (a) How many anti- 
symmetric combinations are there in 2d? (b) In 
4d? (c) Is it possible to use these antisymmetric 
combinations to produce a vector product in 2d? 
(d) In 4d? [Answers: (a) One. (b) Six. (c) No. 
(d) No.] 

R-10 .3  Mr.(9-man wants to sell us a scalar prod- 
uct that he claims is bilinear, commutative, and 
distributive. He tells us that the rule is ~ (9 ~)-  
]~11~)1 cos(20a, b). (a) Show that it is bilinear and 
commutative, and a scalar under rotations. How- 
ever, it is not clear that this rule satisfies the 
right or left distributive law. (b) Using the set 
of vectors ~ = ~, ~) = ~+ ], and ~ = - ~ +  ], test 
whether or not ~ (9 (~ + Q -- ~ (9 ~) + 8 (9 ~. [An- 
swer: ~ (9 (~) + ~_) = -2 ,  8 (9 ~ = 0, and 8 (9 ~ = 0. 
Clearly, 8 (9 (b + ~) r (~ (9 ~)) + (d (9 ~). Sorry, 
Mr.(9-man, your scalar product is not distribu- 
tive! We're buying our scalar product from 
Mr.dot-man.] 

R-10.4 (a) From the scalar product in two di- 
mensions, and with the unit vectors &,2 making 
angles 01,2 to the x-axis, show that cos(02 -01 )  = 
cos 02 cos 01 + sin 02 sin 01. (b) Derive the cosine ad- 
dition law by letting 01 -+ -01. (c) Derive the sine 
addition law by letting 01 ~ (~ r /2 -  01) and using 
cos(rr/2 - 0) = sin 0. 

R-10.5 (a) From the vector product applied to 
the unit vectors al,? at angles 01,2 to the x-axis, 
show that sin(02 - 01) = sin 02 cos 01 - cos 02 sin 01. 
(b) Derive the sine addition law by letting 01 
-01. (c) Derive the cosine addition law by let- 
ting 01 -~ 0r /2  - 01) and using sin(zr/2 - 0) = 
cos0. 

R-10.6 Derive the sine addition law by drawing 
two right triangles of angles c~ and g, with ~ mea- 
sured counterclockwise from the x-axis and 15 added 
counterclockwise to ~. See Figure R.14, where OP, 
of unit length, defines the spacial scale. Hint: First 
show that the vertical projections (AB and BC) are 
sin ~ cos g and cos c~ sin ft. 

P . . . . . . .  . ~ C  

'A 

Figure R.14 Line OP has unit 
length (Problem R-10.6). 

R -10 .7  Derive the cosine addition law from the 
diagram in the previous problem. See Figure R.14. 
Hint: First show that the horizontal projections 
(OA and PC) are cos ~ cos fi and sin ~ sin ft. 

R - 1 0 . 8  Let d - (3, -4 ,  2) and ~) - (2, 6, -1 ) .  (a) 
Find lal, I~)l, ~" ~), ~ x ~). (b) Find the unit vector 
along a, l), and 8 x i). (c) Find the angle between 
and ~) from the scalar product and from the vector 
product. 

R-10.9 Rotate the vectors in the previous exam- 
ple about the z-axis so that 8 ~ 8' = (5, 0, 2). (a) 
Find the angle of rotation. (Note: Using 8.  a' gives 
the angle of rotation about the direction of 8 x a', 
not the angle of rotation about z.) (b) Find the new 
vector ~)' by applying this angle of rotation to ~). 
(c) Find the new vector (~ x ~))' by applying this 
angle of rotation to ~ ~_x'~)" (d) Find a' x ~)'. (e) Com- 
pare (8 x ~))' and 8' x (f) Find la'l, If)'l, ta' x ~'1. 
(g) Find the angle between a' and i)'. (h) Do the 



38 Review/Preview ~ Electricity: Its Uses and Its Visualization 

vector lengths and angles transform as you expect 
them to? 

R-10.10 Five versions of the vector product 
appear in this text. Here is one. The torque 
on an electric dipole ~ in an electric field /~ is 
given by f = } x E. If ~ - - ( 0 ,  3, 0) C-m, and 
E -= ( 2 , - 4 ,  1) N/C, find F. 

1 t -10.11 The torque f on a magnetic dipole/~ in 
a magnetic field B is given by ~ - / ~  x B. If/~ - 
( -1 ,  2, 0) A-m 2, and B - (2, - 1 ,  5) N/A-m, find ~. 

R - 1 0 . 1 2  The force F on a charge q moving at 
veloci~ ~ in a magnetic field B is given by F - 
q~ x B. If q = 4.5 x 10 -17 C, v = (6, 3, 1) m/s, 
and B _= ( 2 , - 1 ,  5) N/A-m, find F. 

R - 1 0 . 1 3  The force on a length ds of a current- 
carrying wire in a magnetic field B is given by 
d F = l d~ x/3, where I is the current and the 
directed length d~ points along I. If I = 2.4 A, 
d~ -= (0, O, 0.002) m, and /3 -- ( 2 , -  1, 5) N / a - m ,  
find d F. 

R-10.14 The magnetic field dB produced by a 
length ds (at source position F') of a current- 
carrying wire at the observer position ~ is given 
by dB = k~ Ida" x / ~ / R  2 = k~ Id~ x R~ R 3, where 
km = 1.0 x I O-7N/A 2, I is the current, the directed 
length d~" points along I, and R - ~" - ~' points from 
the source Ida" at ~' to the observer at 7. If I = 2.4 A, 
d~ --- (0, 0, 0.002) m, ~ - ( 0 . 5 , -  1.2, 1.4) m, and 
~ ' -  ( -0 .6 ,  0 . 8 , - 1 . 3 )  m, find dB. 

R-10.15 Show that (R.31) is obtained by finding 
the determinant of a "matrix" where the first row is 
the set of unit vectors ~, ], and/~; the second row 
is the components a~, ay, and a~; and the third row 
is the components bx, by, and bz. 

R-10.16 Show, by explicit computation using 
(R.31), that if ~ and ~) are parallel, then each com- 
ponent of their cross-product is zero. 

R-10.17 A plane is a set of points ~ normal to 
some direction h and passing through a specific 
point F0. Show that (F - F0) �9 h = 0. 

R-10.18 Find the distance s from a point 
~' - (x', y', z') to the plane of points ~ satisfying 
(r - r0)" h = 0, where ro - (xo, yo, zo) is a spe- 
cific point in the plane, and h -  (nx, ny, nz) is a 
unit vector normal to the plane. Hint: ~ - ~o has a 
component along h whose value is s. 

R - 1 0 . 1 9  Given the plane ax + by + cz + d = O, 
find an F0 (it is not unique) and a direction 
h (unique up to a sign) that makes points 
in this plane satisfy ( r - r 0 ) "  fi = 0 .  Hint: Set 
x0 = y0 = O, and show that h is proportional to 
(a, b, c). 

R-10.20 Let ~ - ( 3 , - 2 ,  4) and ~' - 
(3.2, -2 .1 ,  3.8). (a) Determine d~ =- ~ ' -  F. (b) 
With d-i - ids,  where ds = IdOl, determine ds and 
$. (c) At ~, let the voltage be V = 4.2 volts, and 
let the electric field be E - ( 3 4 , - 1 5 ,  56) volt/m. 
If d V = - E . . d - i  gives the voltage change on 
moving by d~ to ~', estimate dV.  (d) Estimate 
V a t ~ ' .  

R-10.21 For a surface element centered at 
- ( - 5 , - 2 ,  6) m, with normal fi and area d A 

the "electric flux" d~E passing through it is 
given by d~E = ( d ~ E / d A ) d A  where d ~ / d A -  
E �9 h. Let /~ -- (13, 27, - 18) volt/m. Let h point 
along ( 2 , - 3 ,  7), and d A =  0.52 mm 2. (a) De- 
termine h. (b) Evaluate d ~ e / d A  (c) Evaluate 
d~E. 



"It is of great advantage to the student of any subject to read the original memoirs on that 
subject, for science is always most completely assimilated when it is in the nascent state." 

--James Clerk Maxwell, 
Preface to A Treatise on Electricity and Magnetism, 1873 

"A penny saved is a penny earned." 
--Benjamin Franklin, 

stating a conservation law in Poor Richard's Almanac 

ChaDter 1 

A History of Electricity and 
Magnetism, to Conservation 
of Charge 

Chapter Overview 

Section 1.1 provides a brief introduction. Section 1.2 presents some of the early his- 
tory of electricity and magnetism and an explanation of the amber effect, by which 
electricity was discovered. Sections 1.3 and 1.4 present the history of electricity up 
to the point where scientists became aware of the concept of charge conservation. 
Section 1.5 discusses charge conservation itself. Section 1.6 returns to a discussion of 
history, in the context of the discovery and understanding of electrostatic induction. 
Section 1.7 discusses modern views of electric charge, and in Section 1.8 we discuss 
charge quantization, whereby electric charge seems to come only in integral units of 
the proton charge e. Section 1.9 discusses how to employ integral calculus to evaluate 
the charge on an object when the charge is distributed over a line, over an area, or 
throughout a volume. It provides a review of some important geometrical facts, and 
it concludes with a brief discussion of the dimensionality of length, area, and volume. 
Section 1.10 contains some optional home experiments based on the ideas of this 
chapter. It considers only phenomena that can be studied relatively easily, with equip- 
ment no more sophisticated than comb, paper, tape, aluminum foil, plastic wrap, soft 
drink can, and a few other commonly available objects. Section 1.11 contains some 
electrical extras: how electricity produces light, and some historical tidbits. 

Introduction 

Students have many of the same conceptual difficulties as the pioneers in any area 
of science. By presenting some of the history of electricity and magnetism, we 
hope to aid the student in eliminating misconceptions. Rather than the original 
memoirs, we will present summaries since the primary purpose of this work is 
to teach physics, rather than history. 

39 
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This chapter presents the history of electricity and magnetism before any 
laws were established quantitatively. You will (1) learn of the phenomena that 
puzzled scientists of the time, (2) identify the conceptual hurdles that had to be 
surmounted, and (3) learn how we interpret these phenomena now. 

1.2 Early History 
Both loadstone and amber puzzled the ancients. 

Lodestone Magnetism was known to the ancient Greeks in the form of perma- 
nently magnetized pieces of iron oxide (the lustrous black mineral magnetite, or 
Fe304) called lodestone. Both attraction and repulsion between two lodestones 
was known. The Chinese knew of the direction-finding properties of lodestones 
some 3000 years ago, and there are reports of Chinese mariners navigating the 
Indian Ocean with magnetic compasses some 1800 years ago. 

The first recorded discussion of magnetism in the West was written by Petrus 
Peregrinus (also known as Pierre de Maricourt) in 1269. Using a magnetized 
needle, he plotted lines representing the needle's orientation on the two- 
dimensional surface of a spherical lodestone, finding a convergence of the lines 
at two opposing ends of the sphere. By analogy to the earth, he called these two 
ends poles. He also showed how to make a floating and a pivoted compass. (By 
this time, magnetic compass needles were being used for navigation in many 
parts of the world.) He recognized that opposite poles attract, and considered that 
to be the fundamental statement about the behavior of magnets. 

Amber Electricity ultimately derives its name from "electron," or rl')~Krpov: 
Greek for amber. Amber is a fossilized resin with over 200 different vari- 
eties. It has been used in jewelry since antiquity; the "amber routes" from the 
Baltic to the Adriatic and the Mediterranean were among the earliest trade 
routes in human history. One can imagine ancient people shining up their 
amber, and then finding that it attracted bits of chaff~the amber effect. The 
opaque golden yellow variety of amber is perhaps the origin of its Greek name: 
"electron" derives from the ancient Greek word for the sun, "elios" or "elector." 
More commonly found is the transparent dark-honey-colored variety usually 
employed as a gemstone, and often containing fossilized insects. 

~ T h e  Amber Effect 

As Gilbert showed (see Section 1.3), amber is not alone in producing the 
amber effect. Rub a comb through your hair and try to attract small pieces 
of paper, aluminum foil, styrofoam, and the like. Try to attract water from a 
slowly flowing (or dripping) faucet. If you don't have a comb, try rubbing a 
styrofoam cup against your clothing, and so on. Use your imagination. 

1o2oi H o w  the Amber  Effect Works 

Consider a neutral piece of paper and a comb charged up by passing it through 
your hair. See Figure 1.1. (We now know that such a comb possesses an excess 
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. l  �9 i .  
Neutral paper with 
polarized molecules 

Excess electrons 

Figure 1.1 The amber effect, with a comb for 
amber and paper for chaff. The excess of electrons 
on the comb polarizes the neutral paper. Because 
the electrical force falls off with distance, the force 
on the comb due to the nearer positive charge of 
polarization exceeds the repulsive force due to the 
somewhat further negative charge of polarization. 

of negatively charged electrons; the electrons have been transferred to the comb 
from your hair.) To explain the amber effect requires three steps of reasoning. 

1. The negative charge on the comb polarizes the paper, with a net positive 
charge drawn nearer to the comb, and an equal amount of negative charge 
repelled by the comb. Thus the paper remains neutral when polarized. 

2. The paper's positive charge is attracted to the comb, and its more distant 
negative charge is repelled by the comb. 

3. Because the electrical force falls off with distance, the attractive force due to 
the closer charge dominates the repulsive force due to the further charge. This 
leads to a net attraction. How the net force falls off with distance depends on 
the details of how the electrical force falls off with distance. 

Food for Thought. Repeat this argument with negative charge on the comb 
replaced by positive charge. You should conclude that the force is attractive. 

Ifthe paper is replaced by an electrical conductor (such as a piece of aluminum 
foil), the same qualitative argument applies. As discussed in the previous chapter, 
for conductors the process of polarization is called electrostatic induction. 

1.3 

I .?,.I 

Seventeenth.Century Electricity and Magnet ism 

Gilbert's Systematic Study of the Amber Effect 

In 1600, the Englishman William Gilbert, physician to Queen Elizabeth, pub- 
lished De Magnete. This work, written in Latin, was widely read, and was even 
referred to by Shakespeare. Primarily devoted to magnetism, it pointed out that 
the earth appears to act like a huge magnet. Gilbert personally confirmed or de- 
nied a vast number of claims and reports by others, and showed how to repeat his 
experiments, encouraging others not to take him at his word. Unlike Peregrinus, 
who used only spherical magnets, Gilbert also used long thin magnets, and thus 
was aware that like magnetic poles repel. 
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The longest chapter in his six short "books" (Chapter II of Book II) systemat- 
ically studies the amber effect. Gilbert clearly distinguished amber from lodestone. 

1.3.2 The Versorium: The First Instrument 
for Detecting Electricity 

Gilbert employed a device that he called a versorium. This small, pivoted needle 
made of wood or metal is similar to the magnetic compass needle in that it 
can detect the presence of electricity, just as a compass needle can detect the 
presence of magnetism. However, unlike the ends of a compass, which have a 
permanent magnetic polarity, the ends of the versorium possess no permanent 
electric polarity. 

The material of the versorium polarizes only when an electric charge is 
brought near it, and this polarization disappears when the charge is withdrawn. 
Either end will be attracted to the amber. See Figure 1.2(a) and (b). Iron 
filings, which magnetize only when a magnet is brought near them, and lose their 
magnetization when the magnet is withdrawn, are analogous to the versorium. 

Figure 1.2 The versorium, which has no permanent 
polarization, so either end can be attracted (by the 
amber effect) to either positive or negative charge. 
(a) Head near charged-up amber. (b) Tail near 
charged-up amber. Must the versorium be made with 
asymmetric ends? 
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Gilbert found that many other substances can be substituted for amber, in- 
cluding diamond, sapphire, glass, rock crystal, artificial gems, sulfur, sealing wax, 
and hard resin; and that many others can be substituted for chaff, including "all 
metals, wood, leaves, stones, earths, even water and oil." To categorize the class 
of materials that display the amber effect, Gilbert modified the Greek word for 
amber, thus coining the noun electric for those substances that, like amber, would 
attract chaff when rubbed. He used the phrases electric attraction, electrified state, 
and charged body. (The words electrical and electricity were first used in 1618 
and 1646, respectively.) Gilbert was aware that surface or atmospheric moisture 
inhibits the attractive strength of amber but does not affect that of lodestone. 
Materials like the metals, and so on could not be electrified by Gilbert; he thus 
classified them as nonelectrics. 

By the early 18th century, better generators of electricity (rubbed glass) and 
better detectors of electricity (cloth threads and leaf brass) had been discovered. 

A compass needle made of lodestone or magnetized iron--both electrical 
conductors~can serve as a detector of electricity. This is because all electrical 
conductors~magnetic or not~are susceptible to electrostatic induction. The 
versorium was a major advance both for its sensitivity and because it would 
respond only to electricity. 

Atmospheric ion 

Polarized molecule of electret 

Figure 1.3 An electret, which has a 
permanent polarization. Also shown are 
some atmospheric ions that have been 
attracted to the electret. 

Electrets--also known as ferro- 
electrics~such as tourmaline or car- 
nuba wax possess permanent elec- 
tric poles, and thus are the electric 
analogs of permanent magnets. Elec- 
trets can appear to lose their charge 
because their poles attract atmo- 
spheric ions of the opposite sign, 
thereby canceling some of the effect 
of each pole. See Figure 1.3. 

o4 

1~4~1 

Eighteenth-Century Electricity 

Gray: Conductors versus Insulators 

Using a rubbed glass tube about 0.5 m long, an innovation dating to 1708, in 
1729 the Englishman Gray noticed that feathers were attracted both to the tube 
itself and to the cork at its end. See Figure 1.4. He extended the "length" of the 
tube by sticking into the cork a wooden pole with an ivory ball at its other end. 
With the glass tube charged, leaf brass was attracted to the distant ivory ball. 
He next made an even longer object by sticldng a long string into the cork, the 
other end of the string attached to a kettle. With the glass tube charged, and a 
52-foot vertical drop of string, the kettle still attracted leaf brass! (Electrostatic 
induction, due to the charge on the tube acting on successively longer conductors, 
is responsible for this extended electrical effect.) 

In trying to extend the effect even further, Gray next made a major discovery. 
He could not attract leaf brass to the end of a long horizontal string when it was 
suspended by other strings nailed into wooden ceiling beams. His friend Wheeler, 
in whose barn these experiments were performed, proposed suspending the 
string by silk threads, whose fineness might prevent the loss of the "electrical 
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Figure 1.4 Polarization of a piece of 
cork by a positively charged glass 
tube, and attraction to the cork of an 
uncharged feather. 

i .4~2 

1,4,3 

virtue." This worked, but another material of the same fineness~brass w i re~  
chosen for its greater strength, did not. Thus was made the distinction between 
electrical "receivers" (i.e., conductors, like brass) and "isolators" (i.e., insulators, 
like silk thread). 

To Retain Electrification, Use an Insulating Stand: Dufay 

In 1730, the French scientist Dufay systematized the study of phosphorescent 
materials (publication of his recipes caused a dramatic fall in their prices). 
In 1732, he began a systematic study of electrical materials. He first con- 
firmed Gray's experiments on the communication of electricity by thread, 
observing that moistening the thread promoted communication of the elec- 
trical virtue. He next showed that (1) despite random observations by previ- 
ous scientists, the color of an object is unrelated to its electrical properties; 
(2) although a rubbed tube can produce electrical effects that penetrate dry 
silk curtains, no such penetration occurs for wet curtains; (3) when properly 
dried, warmed, and placed on an insulating stand, all rubbable objects but met- 
als can be electrified by friction; and (4) all substances, even metals and fluids 
(but not flame) can be electrified by contact when placed on an insulating stand. 
Only in the late 1770s were metals electrified (charged) by friction; previous 
to that they were charged either by contact or by sparking. Following Dufay, 
it became customary to perform electrical experiments on an insulating stand. 
Dufay would remove the charged tube, his source of electricity, before studying 
a given material, so that electrostatic induction was not a factor in his further 
experiments. 

Two Classes of Electricity, and "Opposites Attract, Likes 
Repel": Dufay 

In 1733, Dufay made the important discovery that two gold leaves, each elec- 
trified by falling on an electrified glass tube and then repelled by the tube, also 
repelled each other. (The glass and the gold leaves were all positively charged.) 
Unlike others who occasionally had observed this repulsion effect, Dufay char- 
acteristically subjected it to systematic study. Bringing up a piece of amber 
(negatively charged), he was surprised to find that the amber attracted the 
gold leaf. Further investigation revealed that there are two classes of materials, 
resinous (amberlike, corresponding to negative charge) and vitreous (glasslike, 
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corresponding to positive charge), which repel within each class, but attract be- 
tween the classes. Dufay found that, for the repulsion to occur, both objects had 
to be sufficiently electrified; otherwise, there would be a weak attraction (due 
to the amber effect). Some substances could take on either kind of electricity, 
depending on how they were rubbed or touched. 

1 ~176 Storage of Electricity: The Leyden 
J a r -  Condensor- Capacitor 

In Germany in the late 1730s, Bose reproduced the experiments of both 
Hauksbee and Dufay, including one where a person, suspended by silk threads, 
was charged up. Bose replaced the suspended person by an insulated tin-plated 
telescope tube, 6 m long and 10 cm in diameter. It was placed about 4 mm 
from a glove-rubbed rotating glass globe, which served as an electrical genera- 
tor. Powerful sparks rapidly crossed between the tube and globe. Addition of a 
bundle of threads to the end of the metal tube, to soften the jostling of the tube 
against the globe, increased the flow of electricity to the tube. This so-called 
prime conductor was the first clearly defined charge storage device, and made 
electrical experiments more powerful, reliable, and convenient. With the avail- 
ability of relatively inexpensive apparatus, amateurs could get into the act; we 
now describe the important discovery made independently by two of them. 

In early 1746, Musschenbroek in Leyden tried to "draw fire" (i.e., a spark) 
from a beaker of water held in his hand while he stood on an insulated stand. 
A magistrate, Cunaeus, visited Musschenbroek's laboratory and tried it himself. 
Not knowing to stand on an insulator, he stood on the ground with the beaker of 
water in his hand. On touching the electrified bar with his other hand, he then 
received a powerful shock. (Cunaeus, standing on the ground, was subject to the 

full voltage difference between the 
charge source and ground; Muss- 
chenbroek, standing on the insulator, 
was subject to only a small fraction 
of this voltage difference.) Repeated 
by others, the shock was formidable 
enough to cause nosebleed, convul- 
sions, and temporary paralysis. A 
cleric in Pomerania, Kleist, made the 
same discovery as Cunaeus. The Ley- 
den jar, as it became known, was 
the first two-plate condenser (as it 
was called some 35 years later by 
Volta, because it appears to con- 
dense, or concentrate, the electric- 
ity). It would today be called a ca- 

Figure 1.5 Leyden jar. pacitor (because it has the capacity 
to store charge). See Figure 1.5. 

From France to Japan, chains of sometimes over 100 people hand in hand 
would discharge Leyden jars. Everyone in the chain was shocked when, with the 
person at one end holding the tail wire, the person at the other end touched 
the head wire. (See Figure 1.5.) In 1746, when Benjamin Franklin entered the 
picture, the Leyden jar defied explanation. 
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1 o4~5 Franklin and the Electric Fluid Model 

Born in 1706, by 174 5 Franklin had enough income from his publishing activities 
to permit him the leisure for purely intellectual pursuits. That year, a glass tube 
and a copy of the Gentleman's Magazine arrived from England at the Library 
Company, founded by Franklin in his adopted city of Philadelphia. The magazine 
contained an article on electricity that described work up to Bose. The article 
indicated that lightning and electricity were related, and that the electric spark 
was closely related to fire. The Leyden jar was not mentioned. 

Franklin and his friends immediately began performing their own electrical 
experiments. In a series of letters, Franklin summarized and interpreted their 
experiments. One letter discussed their discovery of the "power of points" to 
draw off and and emit "the electrical fire," and described various demonstrations 
of electrification and sparking. It also described a simple new electrical generator 
using a rotating glass globe. Perhaps most important, it also described an experi- 
ment that led Franklin to his first version of the electric fluid model. Franklin called 
his experimenters A, B, and C; here is our version. 

Leonardo and Michaelangelo are standing upon wax, an insulator. They charge 
up when Leonardo rubs the glass tube himself (thus getting charged by friction). 
Michaelangelo then touches the other end of the tube. See Figure 1.6. Both Leonardo 
and Michaelangelo appear to be "electrised" (i.e., charged) to Raphael, on the ground, 
as determined by the spark between him and Leonardo, and between him and 
Michaelangelo. On recharging, the spark between Leonardo and Michaelangelo is much 
stronger than between Raphael and either Leonardo or Michaelangelo. Moreover, after 
Leonardo and Michaelangelo touch, "neither of them discover any electricity." Franklin 
considered that Leonardo is "electrised negatively" or "minus," Michaelangelo is "elec- 
trised positively" or "plus," and that initially Raphael was not "electrised." Positive 
charge on the tube subjects Michaelangelo to electrostatic induction, and on contact 
draws mobile negative charge from him, leaving Michaelangelo with a net positive 
charge. 

This one-fluid model of electricity, with the idea of an excess (plus) and 
a deficit (minus) of electricity, and implicitly containing the idea of charge 
conservation, can be made consistent with Dufay's two types of electricities, of 
which Franklin initially was unaware. In his initial version of the model, Franklin 
used the ideas that, when rubbed, the glass acted like a pump for the electric 
fluid, and that the ground was a source of electricity. Thus, a person on the 
ground rubbing the glass would draw off more charge than if he were on an 
insulating stand, a fact that had previously been unexplained. Franklin also 
used the idea that glass is completely impermeable to the actual movement of 
electricity. 

1,4.6 Franklin and the Leyden Jar: How It Works and Where 
the Charge Resides 

Franklin soon learned of the Leyden jar and used these ideas to explain its opera- 
tion. He argued that, when the Leyden jar was grounded, the excess of electrical 
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Figure 1.6 Franklin's crucial experiment. Leonardo and 
Michaelangelo become charged oppositely, while 
Raphael remains uncharged. The spark between 
Leonardo and Michaelangelo exceeds that between 
Raphael and either Leonardo or Michaelangelo. 

fire on the inner surface created an "atmosphere" that drove an equal amount 
of electrical fire from the outer surface to ground. This left a net of zero elec- 
trical fire (the sum of the electric charge on the inner and outer surfaces) that 
was the same after electrification as before. Support for this conclusion of over- 
all neutrality came from an additional experiment. He attached a cork "spider" 
to an insulating string suspended between metal extensions of the "head" (con- 
nected to the jar interior; compare Figure 1.5) and the "tail" (connected to jar 
exterior). The spider repeatedly swung from head to tail and back again. When 
the cork stopped, the jar was discharged. This was perhaps the first electrical 
motor. 

Franklin next performed a series of experiments to determine where the 
electrical fire resides. He first charged a Leyden jar and removed its connections 
to the inside (the head) and to the outside (the tail). While holding the outside 
of the jar with one hand, on touching his other hand to the water he received 
a strong shock. Thinking the charge to reside in the water, he reassembled the 
jar, charged it, and again removed its head and tail wires and their connections. 
Pouring what he thought was charged water into a second Leyden jar, he was 
surprised to find that the second jar was uncharged. However, on pouring fresh 
water into the original jar and reinstalling its wiring, he found that the original 
jar once again was charged. This indicated that the charge resided on the glass 
inner surface of the original jar. Further tests directly established this result, and 
also established that an opposite charge also resided on the glass outer surface. 
European scientists could not fail to be impressed both by his clear and direct 
experimental method and by his cogent theoretical reasoning. 

At this point, we cut off our history of electricity, before it takes us too 
far from our goal of actually studying the laws of electricity. We have reached, 
however, a fundamental quantitative law of electricity~conservation of electric 
charge. Let us now consider its consequences for a number of situations con- 
fronted by experimenters at the time, and for experiments we ourselves can 
perform. 
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1.5 Electric Charge Is Conserved: Transfer, but 
No Creation or Destruction 

Franklin's electrical fluid could be transferred but, like other fluids, it could not 
be created or destroyed. Thus, it satisfied the conservation law 

amount of electric fluid before = amount of electric fluid after (1.]) 

In modern terms, we write this as 

1o5~1 

Like the conservation laws of mechanics (energy, momentum, and angular 
momentum), it is both simple and profound. It may not predict the details of 
a process, but it does make an overall statement relating before and after. We 
now show what it has to say about a number of methods by which electric 
charge can be transferred. In almost all cases, when two objects are rubbed, 
negatively charged electrons are transferred from the least well-bound orbitals 
of the materials involved. Electrons are much lighter and more mobile than the 
much heavier, positively charged nuclei. 

Charging by Friction 

Let two initally uncharged insulators A and B be rubbed against each other. 
Charge is transferred, so by charge conservation they develop equal and op- 

posite amounts of electricity: since 
0 -~- Qbefore - -  ~.,after = Q A  "~- QB, we have 
Q~ =-QA. See Figure 1.7. This situa- 
tion also can be produced when a piece 
of sticky tape is placed on a tabletop and 
then quickly removed, the tape getting 
charge QA and the tabletop -QA. The 
tape is an insulator, so the charge on it re- 
mains in place. The table typically will be 

Figure 1.7 Charge separation by a conductor, so the charge on it quickly 
friction. Note the overall neutrality, rushes off to ground. 

~ Cat's fur and glass rod 

Cat's fur is rubbed against a glass rod to produce a charge on the fur of 
QA = 10 -9 C. Find the charge Q~ on the rod. 

Solution: QB = - QA = - 10 -9 C. 

1 ~5.2 Charging by Contact 

Let conductor A with charge QA be brought near a neutral conductor B. 
Both are mounted on insulated stands. See Figure 1.8(a), where the positives 
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A A 

(a) (b) 

A B 

j 
(c) 

Figure 1.8 Charging by contact between conductors. The 
conducting balls are supported by insulating rods: initially 
(a), just before contact (b), and after contact (c). 

(negatives) represent a deficit (excess) of electrons, and B is polarized, because 
of electrostatic induction. In Figure 1.8(b), B is more polarized because A is 
closer to it, and in response the positives on A are closer to B. On contact, 
charge is transferred, as in Figure 1.8(c). If the objects are spheres of the same 
radius, by symmetry they will share the charge equally. 

E ~ ~ ~  Contact between identical conducting spheres 

A and B are two identical conducting spheres. Initially, A has charge Q A -  
2 x 10 -8 C, and B is uncharged. The spheres are brought into contact with 
each other. Find the final charges on the spheres. 

Solution: Qtotal = Qi~4itiat + Qi~itial_ 2 x 10 -8 C. The spheres are identical, so 
Qfinal Fl final A = ~ B  - Q t o t a l / 2 - 2 x l O - 8 / 2 - 1 0  -8C. 

If the objects are not spheres of the same radius, the charge typically will 
not be shared equally. If QA > 0, then the final charge Q'A > 0 but Q'A < QA. 
Thus, for QA = 2 x 10 -8 C, the value Q'A = 1.5 x 10 -8 C is allowed (and Q'B = 
0.5 x 10 -8 C, by charge conservation). However, neither Q'A = 9 x 10 -8 C (since 
it exceeds the original charge) nor Q'A = - 2  x 10 -8 C (since it is of opposite sign 
to the original charge) is allowed. 

If A is a conductor, then any part of A can be charged so that  B can easily 
take up charge. If A is an insulator, only parts of it might be charged (e.g., 
in places where it was rubbed). Thus B (insulator or conductor) may pick up 
charge only when it makes contact near the parts of A that  are charged. See 
Figure 1.9. 

Insulating ha ( ~ B \ J  
Conductor ) 

Insulating rod 

Figure 1.9 Charging of a conductor by contacting 
a charged insulator. 
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• Connecting and 
reconnecting two Leyden 
jars 

Consider two Leyden jars, A and B, with 
A larger than B. Initially, they have charges 
QA = 40 #C and QB = 10/zC on their in- 
ner surfaces (with opposite amounts on their 
outer surfaces). See Figure 1.10(a). When 
connected, they always share charge in the 
same ratio. Assume that, in a previous mea- 
surement when they were connected inner 
to inner and outer to outer, the larger one 
held 60% of the total charge. With insulat- 
ing gloves, connect them inner to inner, and 
outer to outer, as in Figure 1.10(b). What is 
the final charge on the jars? 

Solution: Since the total charge available is 
40 + 10 = 50 #C, after connection the larger 
jar (A) will get 30 ttC (i.e., 60% of the total 
charge) and the smaller jar (B) will get 20 
#C. See Figure 1.10(b). 

Further reconnection 
of two Leyden jars 

Figure 1.10 Connecting and reconnecting 
two Leyden jars: the effect of charge- 
storing capacity. (a) Initial configuration. 
(b) After connection of the internal wires 
to each other, and of the exteriors to each 
other, via ground. (c) After connection of 
the interior of one to the exterior of the 
other, and vice versa. Numbers indicate 
charge, in units of #C. 

Next, using insulating gloves, disconnect 
the jars of Example 1.3, and reconnect 
them with the inner surface of the larger 
jar connected to the outer surface of 
the smaller jar, and vice versa, as in 
Figure 1.10(c). Find the final charge on 
each jar. 

Solution: Now the total charge available 
to the inner surface of the larger jar and 
the outer surface of the smaller jar is 
30 + ( - 2 0 ) =  10 #C. When the jars come to 

equilibrium, the inner surface of the larger jar will hold 60% of 10, or 6 #C, and 
the outer surface of the smaller jar will hold 4 #C. 

1.6 Electrostatic Induction 

Canton's Tin Cylinder 

With the excess electrical fire on the inside driving off electrical fire from the 
outer surface, despite the impermeable glass, Franklin's model distinguished be- 
tween conduction of the "electrical virtue" itself and its effect on matter, such as 
polarization or electrostatic induction. In 1753, Canton, in London, performed 
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(a) (b) 

B 
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Figure 1.11 Canton's can and electrostatic induction. (a) Charged rod polarizing can, 
by electrostatic induction. (b) Can, after sparking between the rod and the can has 
charged the can. (c) Rod brought up to detecting cork, by induction charging them 
oppositely to how they had previously been charged. 

an experiment with a positively charged glass rod and a suspended, insulated, tin 
cylinder, with two corks hanging at one end as a detector of electricity. Franklin 
simplified and clarified this work, and wrote an addendum to Canton's paper, 
modifying his atmospheres hypothesis because it could not explain the repulsion 
of two negative charges for each other. (An indication of Franklin's willingness 
to change his views when faced with contradictory evidence is the remark he 
made about his theory of the origin of storms: "If my hypothesis is not the truth, 
it is at least as naked. For I have not, with some of our learned moderns, dis- 
guised my nonsense in Greek, cloyed it in algebra, or adorned it in fluxions [the 
calculus] .") 

A positively charged glass rod A is used as a source of positive electricity (take 
QA = 8 x 10 -8 C), and a tin cylinder is suspended on insulating silk threads 
(not shown). Cork balls in electrical contact with the cylinder via conducting 
string at end C were used as detectors. When the glass rod approaches end B, as 
in Figure 1.11 (a), it induces a negative charge (take QB - - 4  x 10 -8 C) in the 
vicinity of end B and a positive charge Q c  - - QB in the vicinity of end C. Some 
of Q c  travels along the strings to the cork balls, causing them to repel one another. 
When the positively charged rod is brought close enough to the cylinder, a spark 
occurs, transferring positive charge (take it to equal half the original charge QA) 
to the cylinder. Thus the glass rod now has Q'A - 4 x 10 -8 C. When the charged 
glass rod is withdrawn, so that electrostatic induction no longer occurs, this 
positive charge distributes itself over the can, as in Figure 1.11 (b). The cork 
balls still repel one another, but by slightly less than in Figure 1.11 (a). When the 
positively charged rod is brought back and placed near the cork balls on end C, 
it induces in the cork balls a negative charge in addition to the positive charge 
already on them. Hence the magnitude of the charge on the cork balls decreases, 
and they repel less strongly. Eventually, the rod is close enough that the cork 
balls do not repel at all. Bringing the rod even closer causes the cork balls to 
have a net charge that is negative, and once again they repel. See Figure 1.11 (c). 
In Figure 1.11 (a) the induction on the can at B, due to rod A, is similar to the 
induction on the cork balls in Figure 1.11 (c) at C, due to rod A. 
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C B 
A 

I 
Charged glass rod 

C B 

i 
Charged glass rod 

(a) (b) 

Figure 1.12 Charging by electrostatic induction on conducting spheres. 
(a) Induction with contact. (b) Induction with contact and separation. 

1,6~2 Charging by Electrostatic Induction and Separation 

Consider the insulating glass rod A with a charge QA = 10 -9 C, and two initially 
uncharged conductors, B and C, on insulating pedestals. B and C are brought in 
contact with one another while B is closer to A than to C. See Figure 1.12(a). 
The combination of B and C is subject to electrostatic induction, with QB < 0. 
By charge conservation, Qc = - QB > 0. Clearly, when Ais very far away, ]QB ] 
is very small, and as A approaches, ]QB] increases. At any time we can slightly 
separate C from B, thus charging by induction. See Figure 1.12(b). The largest 
possible value for ]QB] occurs when A is both very small compared with B, and 

very close to (or enclosed by) B. In this case 
B 

+- A 

Figure 1.13 Close-up of interior of 
a conducting sphere with a hole 
through which a charged rod can 
pass. 

I Q B I -  Q A -  10-9 C. If B and C are very 
mismatched in size, I QBI and I Qcl may be 
very small because nearly all the electro- 
static induction takes place on the larger of 
them. 

In Review/Preview we mentioned 
Faraday's concept of electric field lines, or 
lines of force, which originate on positive 
charges and terminate on negative ones. If 
A is enclosed by B, then all the electric field 
lines that originate on A terminate on the 
inner surface of B, so that QB = -  QA = 

- 1 0  -9 C. For a close-up of Figure 1.12(b) when B has a hole by which A can 
enter, see Figure 1.13. The arrows are the field lines. 

t ~6~3 Charging by Electrostatic Induction and Contact 
(or Sparking) 

Again let a glass rod A with QA = 10 -9 C be brought near neutral conductor 
B, subjecting the latter to more electrostatic induction than the more distant 
C. See Figure 1.14(a). The charge separation in this case cannot exceed QA. If 
B is then touched briefly to conductor C, as much charge is transferred (4 units 
of negative charge from C to B) as if they originally had been in contact (as in 
the previous example). See Figure 1.14(b). (If B were brought close enough for 
sparking without touching, again charge would be transferred, but perhaps not 
as much as with contact.) As in the previous examples, Qc = - Q ~  from charge 
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Figure 1.14 Charging by electrostatic induction and contact 
(or sparking): before contact (a), after contact (b), and after 
removal of glass rod (c). 

conservation, and Q c  < QA because the amount of induction is limited. Thus 
Q c =  2 x 10 -9 C is not a possible charge transfer. Figure 1.14(c) depicts the 
situation when the charged rod A is removed. 

I ~6o4 Volta and the Electrophorous 

Volta is now known primarily for his development of the voltaic cell (to be dis- 
cussed in Chapter 7), but he performed a number of other valuable electrical 
investigations. These included his studies of condensors (capacitors), and his in- 
vention of the electrofore perpetuo, or electrophorus (1775). By using electrostatic 
induction on external conductors, this charged, insulating device could be used 
repeatedly to charge other objects, without itself losing any charge. The elec- 
trophorus could be used in place of the combination of a frictional electricity 
device (for charge generation) and the Leyden jar (for charge storage). 

The electrophorus consists of an insulating resinous "cake" that is charged up 
by rubbing (we assume, negatively, as with resin). See Figure 1.15 for a mod- 
ern version that employs a styrofoam "cake." A metal plate with an insulating 

Figure 1.15 A simple electrophorous. The charged 
styrofoam, an insulator, touches the aluminum pie 
plate at only a relatively few points. 
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handle (here, a styrofoam cup) is placed on top of the cake. Because of elec- 
trostatic induction, the bottom surface of the metal plate (touching the nega- 
tively charged styrofoam cake) becomes positively charged and its rim becomes 
negatively charged. (A small amount of charge can be transferred from the in- 
sulating cake to the metal plate at the places where they make contact.) The 
rim is now touched by the experimenter (assumed to be connected to ground), 
thus drawing off negative charge, leaving the plate positively charged. The plate 
is then lifted off by its insulating styrofoam cup handle, and used as a source of 
positive charge. In the process, the electrophorus does not lose its charge. Hence 
the process can be repeated with other metal plates or with the same metal plate 
after it has been discharged. 

1~6~5 Electrostatic Induction and the "Depolarization Spark" 

We close this section by mentioning a curious and often puzzling effect associ- 
ated with a conductor near a powerful source of charge (such as an electrostatic 
generator or a stormcloud), so the conductor is subject to electrostatic induction. 
If the source of charge suddenly discharges, the conductor is no longer subject 
to electrostatic induction, and thus it depolarizes. This has the same effect as an 
electric shock. In this way stormclouds cause static on phone lines, sometimes 
great enough to "blow" poorly protected and sensitive electrical equipment con- 
nected to phone lines. Probably numerous people who claim to have been hit 
by lightning have "only" been suddenly depolarized when a nearby stormcloud 
discharged elsewhere. (You can also be shocked if you an in the path of current 
flowing along the ground, away from a lightning hit.) 

1o7 Modern Views of Charge Conservation 

Since Thomson's 1897 identification of cathode rays as a "corpuscle," or 
particle~the electron~our knowledge of the nature of matter has increased 
significantly. We now know that neither Franklin's one-fluid model, nor even a 
competing two-fluid model (one positive, one negative), is appropriate. If we 
were to talk in terms of types of electric fluids, there would now be hundreds of 
them, one for each of the charged elementary particles that have been discovered 
in the 20th century. 

Although chemical reactions change the nature of molecules and atoms by 
rearranging electric charge, nevertheless they do not violate the fundamental 
principle that charge is conserved. The same can be said of nuclear reactions. 
For example, alpha decay involves the emission from certain atomic nuclei of 
an alpha particle (a helium nucleus, consisting of two protons and two neu- 
trons). This leaves behind the originally neutral atom with an excess of two 
electrons. 

Another example is beta decay of the neutron n (either when it is within a 
nucleus or outside one). Here a neutron decays into a proton p, an electron e-, 
and what is called an antineutrino ~: 

n-+ p + e - + f 2 .  

The neutron in free space is unstable, with a half-life of about 10.4 minutes. 
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Conservation of individual particle number has been given up, but electric charge 
continues to be conserved. 

Charge is conserved locally. A neutron in Houston, Texas, cannot decay into a 
proton in Los Angeles, California, and an electron and an antineutrino in Tokyo, 
Japan. 

1o8 Charge Quantization 

Electric charge is quantized in units of 

e - 1.60217733(+49) x 10 - 1 9  C. (1.3) 

For our purposes, e = 1.60 x 10 -19 C will be good enough. It is not yet clear 
why such quantization occurs; it is still a mysterious fact of nature. 

When you rub a comb through your hair, a charge perhaps as large as 10 .9 C 
might be transferred. (In the next chapter, we will study an example that yields 
about this much charge.) This corresponds to on the order of 10 l~ electrons! 
The fact that bulk matter is ordinarily neutral has enabled us to argue that posi- 
tive charges (protons) and negative charges (electrons) have equal and opposite 
amounts of electricity. By letting nominally neutral compressed H2 gas escape 
from a closed, conducting tank, and measuring the change in charge of the tank, 
it has been established that the magnitudes of the proton and electron charges 
are the same to about one part in 102~ Semiconductor devices are now made 
that depend for their proper operation on the fact that charge is quantized. 

At the subatomic level, the nucleons can be thought of as composites of 
objects called quarks, which come in six varieties having quantized charges of 
+(1/3)e and +(2/3)e. Quarks have not been, and are not expected to be, observ- 
able in isolation. However, they provide a useful framework for understanding 
the behavior of subnuclear objects. 

Electric charge does not depend on temperature, pressure, gravitational po- 
tential, or any of a host of other variables. It is a truly fundamental quantity. 
Later we will study magnets, which appear to have magnetic charge at their 
poles. There, the pole strength is temperature dependent, an indication (but not 
a prooP.) that there is no true magnetic charge on magnets; true magnetic charge 
should be independent of temperature. 

Io9 Adding Up Charge 
Our discussion of the early history of electricity showed that early scientists had a 
difficult time distinguishing the "stuff" of electricity from its effects. We conclude 
this chapter with a quantitative discussion of this stuff--electric charge. 

So far we have discussed only discrete amounts of charge, as if charge were 
localized at points, or distributed as a whole over an object. We now consider 
the problem of adding up the charge on an object with a charge distribution. We 
will integrate over charge, which--like mass--is a scalar quantity. If you have 
previously done integrations over mass distributions, this will look very familiar. 

When we add charge to ordinary materials, how it distributes depends on the 
type of material. If the material is an insulator, the charge tends to remain where 



56 Chapter l i A History of Electricity and Magnetism 

it is added. If the material is a conductor, the charge almost always rearranges. In 
what follows, we will consider mostly hypothetical examples, which we may 
consider to involve insulators with fixed charge distributions. The charge distri- 
butions for conductors are usually very difficult to obtain, and typically are quite 
nonuniform. We will consider one case involving a charged conductor. 

There are three types of charge distributions: linear (as for a string), areal (as 
for a piece of paper), and volume (as for a lump of clay). In each case, we will 
be interested in a small amount of charge dq in a region. We will work out some 
examples of each. 

1.9.1 Quick Summary of Integral Calculus 

The symbol for integration, f ,  was deliberatedly crafted by Leibniz (who co- 
invented calculus, independently of Newton) to look like the letter S, for sum- 
mation. Summation is the basic idea underlying integration. A numerical inte- 
gration is called a quadrature. Integrals evaluated in equation form are said to be 
evaluated analytically. 

Consider a smooth function of the 
variable x, which we will call g(x). Let 
us find the area A under the curve 
defined by y - g ( x )  between the val- 
ues x -  a and x -  b. We break up the 
interval (a, b) into infinitely many tiny 
lengths dx. (Each dx is said to be 
infinitesimally small.) The area A is 
the sum of an infinite number of tiny 
areas d A -  ydx - g(x)dx, where the 
corresponding infinite number ofdx's go 

Figure 1.16 Area dA = g(x)dx under from x = a to x = b. See Figure 1.16. 
the curve g(x), between x and x + dx. Thus A -  f~ g(x)dx. The question is 

"How can we evaluate A analytically?" 
The fundamental theorem of the calculus says that if g(x) is the derivative 

of some function f(x), or g -  df/dx, then A -  f ( b ) -  f(a). f is called the 
antiderivative of g, and A is the definite integral of g(x) from a to b. Putting it all 
together, we have 

~ b df 
f (b) - f (a) - -~x dx. (1.4) 

Sometimes it is useful to write df - (df/dx)dx, in which case (1.4) becomes 

f ( b ) -  f(a) - ~b ~ x d X -  ffi~i)df. (1.s) 

Since dx is an infinitesimal, and df/dx (the slope of f versus x) is assumed to 
be finite, df also is an infinitesimal. 

Usually it is not simple to find the antiderivative of a function. However, 
consider that we know a function (e.g., f ( x ) -  2x) and its derivative (e.g., 
df/dx - 2). The function itself is the antiderivative of the derivative of the func- 
tion. Actually, this is not quite correct: the antiderivative f (x) of any function 
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g(x) = df/dx is uniquely defined only up to a constant. Thus Molly might say 
that 2x is the antiderivative of 2, and Moe might say that 2x + 1 is the antideriva- 
tive of 2~and  both of them would be right ~. One way around this nonuniqueness 
of the antiderivative is to write 

f (x) / g(x)dx + constant. (1.6) 

However, if f (x) is known at a single point--such as x = a, where the integration 
begins~then the constant in (1.6) can be determined. 

Here is one function and its derivative that surely you know: 

d f  1 (1 7) f (x) - X n, d x  = nxn-  " 

Hence, by the fundamental theorem of the calculus, 

f nx n-ldx -- x n + constant. (1.s) 

This is true only for n ~ 0; as you know, the integral for n = 0 gives ln(x). Letting 
n --, n + 1 in (1.8) gives 

f (n + 1)xndx - -  X n+l -Jr- constant. (1.9) 

Then, dividing both sides of (1.9) by n + 1, and renaming the constant, we have 

f x ndx - 1 x n + l  + constant'. (1.10) 
n + l  

In the next section, we will repeatedly employ (1.10) to perform various integrals. 
Even for the one case where the integral can't be done directly by using (1.10), 
by a change of variables (1.10) will still do the job ~. For more on calculus, see 
Appendix A. 

1. Linear charge distribution ~: dq = Ads gives dq distributed over the 
length d s .  

See Figure 1.17(a). Here we write 

dq ds dq q- f dq- f - f xds, ~ - d s '  
(1.11) 

where ds > 0 is the small length over which dq is distributed, and )~ = dq/ds 
is the charge per unit length. We must take ds so small that x really is constant 
over ds; in practice, we must take ds to be infinitesimal. However, ;~ can vary 
over the length of the line. We can think of this as input and output. The 
charge density )~ and the region of integration (defined by all the ds's) are the 
input, and the charge q is the output. 

(a) Uniformly charged string. Consider a line of arbitrary shape (perhaps 
a loose piece of string) with a uniform charge distribution (here, charge 
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Figure 1.17 Examples of line elements. (a) Arbitrary line and line element 
ds. (b) Straight line on x-axis. (c) Arc of a circle. 

per unit length) ~ and total length l. See Figure 1.17 (a). By "uniform" we 
mean that X is constant over the line. 

By total length l, we mean that by adding up the lengths ds we get 
l" l - f d s .  (We sometimes write s for l.) This can be thought  of as 
a quadrature, where we literally add up the lengths. For example, by 
mentally breaking up the string into 100 small pieces, we can measure 
each ds, and add them all up. Or we can enter each ds into a col- 
umn of a spreadshee t~more  on spreadsheets in Appendix C ~ a n d  have 
the spreadsheet add them up. Alternatively, by stretching out the string 
against a ruler with the ends at specific coordinates, we can do the integral 
(i.e., obtain the length) by subtracting the end readings, via (1.4). 

By (1.11), the string has a total charge 

q-f@-fxas-xfas-xl. (1.12) 

The average charge per unit length )~ is 

- q ~ l  
, ~ -  = - -  = x ,  (1.1:3) 

l l 

as expected for a uniformly charged object. 

(b) Straight line, nonuniformly charged. Consider a string of length l that 
lies on the x-axis from the origin to x = l, and has a charge distribution 
~. = cx, where c is some constant with units of charge per length squared. 
See Figure 1.17(13). If we integrate from x = 0 to x = l, so dx  > O, the 
(positive) length element is ds = dx.  The length is f ds - f~ dx  - x[ 1 = 
l - 0 = l, as expected. The total charge q is given by 

q 
_1 j, 

(cx)dx -~CX 2 -- l c l2 .  
0 

(].14) 

From ( l . l  4), we find that c = 2 q / l  2, which has the expected units. The 
average charge per unit length Z is 

_ q cl 
)~ - l = 2- ( ] . 1 5 )  
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N B  =_ note b e n e -  note well: The answer shouldn ' t  mat te r  which way you 
integrate (i.e., add up) the charge. If you accidentally (or perversely) 
chose to integrate the "wrong w a y " ~ f r o m  x - l to x - 0, for which d x  < 
0 ~ y o u  would  still find the same charge q. Here 's  how. The (positive) 
length e lement  would  now be ds - - d x  > 0, so fl ~ )~ds - fl ~ ) ~ ( - d x )  - 

f l  o ( c x ) d x  - q, as before. 

(r Arc of a circle of radius a and angle ~.  See Figure 1.17(c). Here  ds - 
adO, where  angles are measured  in radians. The total arc length I - f ds  - 
f o  ado  = aa .  As expected,  if a - 2Jr (a full circle), then  l - 2rra. Let us 
take )~ - cO 2, where  c is now a constant  that  mus t  have units of charge 
per unit  length. Then  

f /  fo 1 q -  dq  = )~ds - (c02)adO - ca-3 0 o - 3 ca~ 3 . (1.16) 

From (1.16) we find that  c -  ( 3 q / a ~ 3 ) ,  which has the expected units. 
The average charge per unit  length ~ is 

- q ( 1 / 3 ) c a a  3 1 
)~ = l = aa  = ~c~ 2. (1.17) 

2. Areal charge distribution er: d q  = ar d A  gives dq distributed over the 
area dA. 

See Figure 1.18(a). Here  we write 

q-fdq-f dA-f dA, dq 
cr =_ d A '  (1.18) 

where  d A  > 0 is the small area over which dq is distributed, and ~ - d q / d A  
is the charge per unit  area. We must  take d A  so small tha t  ~ really is 
constant  over dA;  in practice, we mus t  take d A  to be infinitesimal. (Some- 
times area integrals are wri t ten as f f  d A ,  to remind us tha t  areas involve two 
coordinates.) 

(a) Uniformly charged area. Consider an area of arbitrary shape (perhaps 
a cut  up piece of paper)  with a uniform charge distribution (here, charge 

Figure 1.18 Examples of areal elements on a plane. 
(a) Arbitrary area element dA_ (b) Area element in 
two-dimensional radial coordinates. (c) Area 
element for an annulus. 
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per unit area) ~ and total area A. See Figure 1.18(a). We can obtain this 
area by quadrature: we break up the figure into many small areas dA, 
and add them up, obtaining a value that we call A (In practice, adding 
them up would give some number, but  we want to work with symbols 
here.) Alternatively, if the shape had been cut from a sheet of paper of 
known dimensions~so that we could obtain the a r ea~and  if we could 
weigh both the full sheet and the shape, then we could deduce the area 
of the shape. The shape has a total charge 

q-fdq-f dA- f d A - o - A .  (1.19) 

The average charge per unit area 8- is 

q erA 
-- = = or, (1.20) 

A A 

as expected for a uniformly charged object. 

{b} Conduct ing disk of radius a. This is the only conductor we will con- 
sider. The charge per unit area on each side of the disk depends 

The area of a circle of radius r (zrr2), the 
area around a right-circular cylinder of 
radius r and length / (2rrr/), and the sur- 
face area of a sphere of radius r (4zrr2). 

on the local radius r and is given by cr = 
c~(a 2 - r2) -1/2, where c~ now is a constant with 
units of charge per unit length. Note how 
grows as r increases, approaching infinity as r ap- 
proaches the edge, at r = a. (The difficult prob- 
lem of how charge is distributed over an isolated 
conducting disk was first solved by the 26-year- 
old William Thomson~ la t e r  to be known as Lord 
Kelvin.) 

Although the area element for a circular geometry is d A =  
(rdO)dr (see Figure 1.18b), we can integrate over 0 from 0 to 
2rr, to obtain the partially integrated form d A =  2rrrdr (see Figure 
1.18c). This area is the well-known product of the perimeter 2zrr of 
a circle and the thickness dr. As expected, the total area is A = f dA  = 
fo  2rrrdr - rra 2. Including both sides, the charge on the disk is 

/ /0 a q - 2 ~ d A -  2 fo a rdr ~(a 2 - r2)-l/2(2rrr dr) - 4zrc~ (a 2 _ r2)1/2. 

(1.21) 

This can be integrated by (1) making the substitution u 2 = a 2 -  r 2, so 
that  udu = - rdr ;  and (2) changing the limits of integration from those 
appropriate to r (0 to a) to those appropriate to u (a to 0). (Note that 
r = 0 corresponds to u = a, and r = a corresponds to u = 0.) Then, on 
switching the limits of integration, (1.21) becomes 

q = 4rra L ~ (-udU)u L 
a 

- 4rr~ d u -  4Jrc~a. (1.22) 
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Figure 1.19 Examples of areal elements on a cylinder. 
(a) Area element defined by angular extent and 
extension along axis. (b) Area element of a ring. 

From (1.22), we find that  ~ - q/(4Jra), which is indeed a charge per unit 
length. The average charge per unit area for each side ~ is 

q q 2~ 
~ =  = = . (1.23) 

2A 2zra 2 a 

Even though the charge per unit area approaches infinity as r ~ a, the 
total amount  of charge is finite. Isn't mathematics amazing? 

(r Cylindrical surface of radius a and length l. Let us take cr = ~z so 
that  the charge density varies only along the z-axis. The constant c~ must  
have units of charge per unit volume. In this case, although the area 
element for this geometry is dA = (adO)dz [see Figure 1.19(a)], we can 
integrate over 0 from 0 to 2zr, to obtain the partially integrated form 
dA = 2rcadz [see Figure 1.19(b)]. This area is the well-known product  
of the perimeter 2Jra of a circle and the thickness dz. The total area 
is A -  f d A -  f~ 2rcadz - 2zeal. The total charge is 

f0 ~ q- f adA-  fo (c~z)(2rcadz)-2rca~ zdz-rcc~al 2. (1.24) 

From (1.22), we find that  a -  q/(rcal2), which is indeed a charge per 
unit volume. The average charge per unit area ~ is 

q q al  
-~ - A - 2rr al 2 (1.25) 

3. Volume charge distribution p: dq = p dV  gives dq distributed over the 
volume dV. 

See Figure 1.20(a). Here we write 

dq d 
q -  f d q = / ~  v -  f pdv, 

dq 
P = dV' (1.26) 

where dV > 0 is the small volume over which dq is distributed, and p = 
dq/dV is the charge per unit volume. We must  take dV so small that  p 
really is constant over dV; in practice, we must  take dV to be infinitesimal. 
(Sometimes volume integrals are written as f f  dV to remind us that  areas 
involve three coordinates.) 
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Figure 1.20 Examples of volume elements. (a) arbitrary volume element. (b) volume 
element in three-dimensional cyclindrical coordinates. (c) volume element of a 
thin-walled cylinder. 

The volume of a right-circular cylinder 
of radius r and length / (~rr 2/), and the 
volume of a sphere of radius r(4~r3/3). 

(a) Uniformly charged volume. Consider a volume of arbitrary shape (per- 
haps a lump of clay) with a uniform charge distribution (here, charge per 

unit volume) p and total volume V. See Figure 
1.20(a). We can obtain this volume by quadra- 
ture: we break up the shape into many small vol- 
umes dV,  and add them up, obtaining a value 
that we call V. (As with the area example, we 
want to work with symbols.) Alternatively, if the 
shape had been sculpted out of a block of wood 
of known dimensions~so that we could obtain 
the volume of the block--and if we could weigh 

both the complete block and the sculpted shape, then we could deduce the 
volume of the shape. The shape has a total charge 

q-faq-fpav=pfav-pv. (]  .27) 

The average charge per unit volume fi is 

q p V  
= = = p, (1.28) 

V V 

as expected for a uniformly charged object. In the next few examples, 
we'll use the same symbol, ~, to refer to totally different quantities. 

(b} Cylinder of radius a and length I, p = a r  3. Here the volume element 
starts out as d V  = (rdO)drdz (see Figure 1.20b). However, because p 
has no dependence on 0 or z, we can integrate over these to obtain the 
partially integrated form d V  = 2rcrldr (see Figure 1.20c). This volume 
is the well-known product of the surface area 2rcrl of a cylinder and 
the thickness dr. The total volume is V = f d V  = fo 2zclrdr = 7ca2l. The 
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total charge is 

f f0 a f0 a q - p d V -  (c~r3)(2rrlrdr) - (2zr~/) r4dr = 
2zr c~la s 

(1.29) 

From (1.29), we find that ~ - (5q/2rra 5l), which has units of charge di- 
vided by distance to the sixth power. The average charge per unit volume 

thus is 

q 2rrc~la5/5 2a3~ 
= = = . ( 1 . 3 0 )  

V rra2l 5 

{r Cylinder of radius a and length/ ,  p = ctz 4. As in the previous example, 
the volume element starts out as d V -  (rdO)drdz. However, because p 
has no dependence on 0 or r, we can integrate over these to obtain the 
partially integrated form d V = Jr a 2dz. This corresponds to the volume of 
a pancake of radius a and thickness c/z, that is, to the well-known product 
of the area zra 2 of a circle and the thickness dz. The total volume is, as 
in the previous example, V = rca21. The total charge is 

/ /o' 
zr ~a2 l 5 

q = p d V -  (~z4)(ztaPdz) - (7r~a 2) z 4 d z -  
5 

( ] . 3 ] )  

From (1.31), we find that ~ - (5q/2Jra215), which has units of charge 
divided by distance to the seventh power. The average charge per unit 
volume ~ is 

q rrc~a21S/5 oil 4 
-- = = . ( ]  32) 

V rra2l 5 

(d) Sphere of radius a, p = c t (aZ-r2) .  Here, the volume element starts 
out as d V  = (dA)dr  = (r sin Od~)(rdO)dr, where Figure 1.21 (a) de- 
picts the area dA. Because p has no ~b-dependence, the integral on ~b 
from 0 to 2Jr can be performed, yielding the partially integrated form 
d V  = (dA)dr  = 2zrr 2 sin OdOdr, where Figure 1.21(b) depicts the new 

Figure 1.21 Area elements on a sphere. (a) Area element in spherical cdordinates. 
(b) Area of ring. For corresponding volumes, multiply by dr. 
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1 . 9 . 2  

1.10 
~)ntionat 

area d A  Next, since p has no 0-dependence, the integral on 0 can be per- 
formed, yielding the partially integrated form clV = 4rcr2dr. This volume 
is the well-known product of the surface area of a sphere 4zrr 2 with its 
thickness dr. The total volume is V -  f d V  - f o  4zrr2dr - 4zra3/3- The 
total charge is 

f f0 a f0 a q -- p d V -  ~(a 2 - r2)(4rrr2dr)  - 4zrc~ (a2r 2 - r4)dr 

- 4zrc~ a 2 (1.33) 
5 g - i g  

From (1.33), we find that c~ -  (15q/8zraS) ,  which has units of charge 
divided by distance to the fifth power. The average charge per unit volume 

is 

q 8zr~aS/15 2a2c~ 
F - = = . (1 .34)  

V 4 z r a 3 / 3  5 

On Dimensions 

Don' t  forget that perimeters have dimension of length, areas have dimension of 
(length) z, and volumes have dimension of (length) 3. Consider a television an- 
nouncer who tells you that from the characteristic lengths a, b, and c, and the 
equation w = abc, you can find the width w of his foot. He would be ill-informed 
about matters of dimension. What  about w -  (abc)l/3? w = a 2 +  b 2 +  c2? 
w = ab/c? w = a2bc? w = ab /c  + a 2 + b 2 + c2? Which of these can be areas? 
volumes? Which make no sense either as a length, area, or volume? [Areas 
are w = a z + b 2 + c 2 and w = ab/c;  volume is w = abc; length is w = ab/c  and 
w = (abc)l/3; nonsense is w = ab /c  + a 2 -t- b 2 -t- c2; and w = aZbc has the di- 
mension of length to the fourth power. ] 

Home Exper iments  

~ A  simple version of Gilbert's versorium 

W-shaped twister 

Figure 1.22 Home-made 
versorium. Twister and 
small, smooth-topped 
bottle. 

Get a twister (such as those used to keep fruit 
and vegetables in plastic bags--you can also use a 
paper clip, but it is harder to bend) and bend it 
into a W-shape with long arms (see Figure 1.22). 
Place it on top of a small bottle so that it is well 
balanced. (This may require minor adjustments of 
the twister. If the bottle top is not smooth, place 
a piece of tape on it.) Bring a rubbed comb to 
one end of the versorium and observe its response. 
Repeat for the other end. Try rubbing a piece of 
styrofoam against your clothing and bringing it up 
to your versorium. Take a piece of tape and stick 
an edge to a tabletop. Then quickly pull it off the 
tabletop. Determine the response of both ends of 
the versorium to the tape. 



1.10 Home Experiments 65 

~ Compass needle and comb 

This experiment requires a compass needle on a simple pivot. [Note: There 
should be no metallic case surrounding the compass needle--the metallic 
case will cause electrical "screening" (due to electrostatic induction), thus 
weakening the response of the compass needle to the comb.] Charge up a 
comb and bring it near both ends of the compass needle. Both ends of the 
needle should be attracted to the comb. 

~ Electrical "screening" 

Place a piece of writing paper between the versorium and a distant 
charged comb. Bring the comb nearer. Observe how the versorium responds. 

See Figure 1.23. Re- 
move the paper and ob- 
serve how the verso- 
rium responds. Repeat 
using a paper napkin 
or toilet paper instead 
of writing paper. Re- 
peat with a double 
thickness. Repeat with 
wet paper. Repeat with 
a piece of aluminum 
foil, and with a plas- 
tic bag. At least one of 
these materials should 

Figure 1.23 Electrical "screening." The electric field not screen. In fact, use 
of the charge on the rod is screened out by charge of the term screening is 
induced on the screening material, a conductor or a misleading. In response 
highly polarizable nonconductor, to the charge on the 

comb, a redistribution 
of charge occurs on the screening material (for a conductor, by electrostatic 
induction; for an insulator, by polarization). This tends to cancel the effect of 
the charge on the comb. 

• Suspension demonstration of mutuality of the 
electrical force 

Rub your comb, and then wrap a string around a few of its tines (i.e., its 
teeth), and tape them together. (Or just use comb and tape.) Suspend the 
string from a doorway, so the comb can move horizontally. Determine the 
response of the comb when you bring your finger up to it. See Figure 1.24. 

• Electrifying a metal by friction 

Cut a 2-inch piece of tape, touching it as little as possible (to minimize charg- 
ing). Ensure that it is uncharged by waiting a few minutes, or by moistening 
it and then gently blowing on it to speed up the drying process. Test it for no 
charge with the versorium. Then stick the tape to one side of a small coin (the 
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Figure 1.24 Suspension demonstration of the 
mutuality of the electrical force. This is the 
amber effect again, now with the amber moving 
to the polarized material. 

smaller the coin the better, to have the tape cover its edges). Rest the tape 
side of the tape-coin combination on an insulating surface. With one hand, 
hold the edges of the tape in place (don't touch the coin). With your other 
hand, rub the coin with a piece of styrofoam or plastic or bubble pack. Lift up 
the tape-coin combination, and test the coin for charge with the versorium. 
If you touch the coin, you draw off its charge, and the effect is not seen. 

• Sticky demonstration of two of tape types 
electricity 

Cut two 6-inch-long tapes (label them T1 and B 1), and place the sticky side 
of T1 on top of the nonsticky side of B1. Pull them apart. Do they attract 
or repel? Is each attracted to your finger? (This is explained by electrostatic 
induction on your finger, if each tape is charged.) Stick the tape ends to the 
edge of a table. Prepare another set, labeled T2 and B2. Record how the six 
combinations of pairs of tapes interact (attraction or repulsion). Stick the ends 
of the tapes to the edge of a table, a few inches apart. Rub a comb through 
your hair, and determine how the comb interacts with each tape. Rub the side 
of a styrofoam cup (or a styrofoam packaging "peanut") against your clothes 
and determine how it interacts with each tape. Determine the sign of T1, 
and so on under the assumption that the comb is resinous (negative). 

~ An electrical "motor" 

Figure 1.25 shows an electrical "motor" similar to that of Franklin. 

Figure 1.25 An electrical 
"motor." The string charges 
by contact with the pie 
plate, and then is attracted 
to the finger (as in the 
previous figure), causing the 
string to discharge. The 
string then returns to the 
pie plate, and the process 
repeats. 
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Figure 1.26 A homemade electroscope. Separation 
of the pieces of aluminum foil serves to indicate 
the presence of charge. 

~ Electrostatic induction studied with an 
electrophorus and an electroscope 

A styrofoam plate can be used as an electrophorus, when rubbed with a cloth 
or, more effectively, with a plastic oven bag. An aluminum pie plate with 
a taped-on styrofoam cup as handle can be used as the metal plate. To help 
prevent charge from coming off the styrofoam, a sheet of plastic transparency 
or plastic wrap may be placed upon it. Next construct a simple electroscope: 
place a metal soft-drink can horizontally upon an insulating base made of a 
styrofoam cup. Cut a thin strip of aluminum and bend it to hang over the tab 
of the can. See Figure 1.26. Then, repeatedly use the electrophorus and the 
pie plate to charge up the soda can; the "threads" of aluminum foil should get 
farther apart as the can becomes more charged. 

1oll Electrical Extras 

Here are a few electrical extras that you may find of interest. 

1,1!~1 Light and Electricity 

Light can be emitted by a large number of processes that involve electri- 
cally charged particles, including but not exclusive to (1) an electron com- 
bining with an atomic or molecular ion; (2) an electron combining with an 
atom or molecule in an excited state; (3) a positively charged ion combin- 
ing with a negatively charged ion. The nature of the light observed depends 
upon the ions, atoms, and molecules involved. Typically, when light is observed, 
it originates in the air, but it can  also originate at the surface of a charged 
material. 

The air contains a small but significant fraction of charged particles, caused 
by collisions of high-energy particles (mostly protons) from outer space, called 
cosmic rays. These collide with and ionize atoms and molecules in the air, 
producing positive ions and free electrons. Most of the electrons rapidly attach 
to uncharged molecules (the larger the molecule, the easier this attachment) to 



68 Chapter 1 :~ A History of Electricity and Magnetism 

produce negative ions, but a small fraction of electrons remain free. The average 
distance traveled by a particle between collisions is called its mean free path. 

Let us consider how light can be produced when an object is charged up. 
The following electrode properties are significant: (1) the amount of the charge; 
(2) the sign of the charge; (3) the material of the surface; (4) the shape of the 
surface. Typically, the farther from the surface, the less significant its properties 
in influencing electrical discharge and any associated light. 

If the surface charge density is negligible, the only processes that can produce 
light are those that involve recombination in the air. As we know, it is dark within 
a windowless room with no light source. From this we infer that the intensity 
from recombination of background electrons and ions (cosmic rays freely pass 
through walls) is too low to be detected by the naked eye. 

As the surface charge density grows, recombination processes at the surface 
become possible. (1) For negatively charged surfaces, positive ions are attracted 
to the surface, where they can pick up an electron and perhaps radiate light. 
(2) For positively charged surfaces, negatively charged electrons and negatively 
charged ions are attracted to the surface, where an electron can be captured and 
perhaps radiate light. Nevertheless, for small surface charge densities the rate at 
which such processes occur is too low to be observed by the naked eye. 

For yet higher surface charge densities, electrons within a few mean free paths 
of the surface can gain enough energy, on colliding with an atom or molecule 
in the air, or on the surface, to kick off a second (or secondary) electron. (1) For 
negatively charged surfaces, the electrons tend to move away from the surface, 
into regions where the electric force due to the surface charge, is weaker. (2) For 
positively charged surfaces, the electrons tend to move toward the surface, into 
regions where the electric force due to the surface charge, is stronger. In both 
cases, the electron and ion densities near the surface increase well above the 
background level due to cosmic rays, and the resultant increase in the number 
of recombination processes yields enough light to be visible. Nevertheless, there 
are differences between the two cases, especially if the electrode is a sharp point, 
where the influence of the tip falls off rapidly with distance from the tip. 

For large enough charge densities near the electrode, the electrode, effectively, 
grows in size. Positive ion densities are large near the positive electrode, and 
electron densities are large near the negative electrode. This is called space charge. 

In what follows, we will mention some of the visual effects of electricity 
that were observed under less than precise conditions and with less than ideal 
descriptions of how they were observed. Therefore do not be upset if explana- 
tions of the phenomena do not leap forward. 

1~ 11 ,~2 Some Historical Tidbits 

In Lyon, around 1550, a book was published by Fracastoro (better known for 
his works on medicine, especially epidemiology--he gave the venereal disease 
syphilus its name). Among many topics, he described some measurements made 
using a plumbline (perpendiculo) of the sort contained in a navigator's box (nav- 
igatori ~ pyxide). No details are given of this device, but presumably it was 
a filament suspension (i.e., a string), a simple example of which is given in 
Figure 1.27. Measurements could then be made: "and we then saw clearly how 
a magnet attracted a magnet, iron attracted iron, then a magnet attracted iron, and 
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iron a magnet . . ,  moreover, amber snatched up little crumbs of amber, silver attracted 
silver and, what most amazed us, we saw a magnet attract silver." Later, Gilbert 

argued that the "silver" that Fracastoro 
had seen attracted by lodestone must 
have been debased by the addition of 
iron. 

Also published in Lyon, around 
1550, was a book by Cardano (more 
well known for his work in solving cu- 
bic and quartic equations). It noted 
some differences between rubbed am- 
ber and lodestone, not all of which 
were true. He made the following 

Figure 1.27 A plumbline, whose statements: (1) Rubbed amber attracts 
deviation from vertical gives a measure many types of objects; whereas lode- 
of the interaction between two objects, stone attracts only iron. (2) Rubbed 

amber attracts only rather light ob- 
jects, without itself being attracted; whereas lodestone is pulled as it attracts iron. 
(3) Rubbed amber cannot attract beyond "screens" of metal or certain fabrics; 
whereas lodestone can attract beyond these screens. (4) Rubbed amber seems to 
attract from all parts; whereas lodestone attracts iron only to its poles. (5) Amber 
attracts more effectively after moderate warming; whereas moderate warming 
does not affect lodestone. 

Around 1660, the French Jesuit Honor6 Fabri (an accomplished mathemati- 
cian and discoverer of the Andromeda nebula), using amber on a pivot, demon- 
strated mutuality; just as "electrics" attract all sorts of objects, so too are electrics 
attracted toward them. The Accademia del Cimento (1657-1667), of which 
Fabri was a member, in their Saggi published another demonstration of the mu- 
tuality of the amber effect using suspension, rather than a pivot. See Figure 1.24. 

Robert Boyle, better known for his discovery of Boyle's gas law around 1660, 
read the Saggi. Finding that one piece of amber attracted another (presumably 
one was charged and the other was neutral), he suspended a piece of amber from 
a silk string and found that, on rubbing it with a pin cushion, the amber moved 
toward the pin cushion. Boyle interpreted his result as if only the amber were 
electrified. Boyle further noticed that rubbed diamonds emit a faint glow. Boyle 
also produced a good vacuum (a pressure of 1/300 of an atmosphere) and found 
that in vacuum a feather or other light object would be attracted by an electrified 
body just as well as in air. 

In 1660, Guericke, known also for his invention of the vacuum pump, devel- 
oped a new source of electricity. Molten sulfur and other minerals were poured 
into a glass globe, and the globe was broken after the sulfur had solidified; the 
glass globe alone would have served. A handle then was pushed through the 
sulfur globe, and the globe was placed in a frame from which it was rubbed 
by turning the handle. See Figure 1.28. Larger and more readily charged than 
previous electrical devices, Guericke used it to make many interesting observa- 
tions, which he considered to be special properties of the material of the globe. 
(1) He could levitate a feather above the charged globe, and he could then walk 
around, globe in hand, and make the feather move with him. (2) The feather, 
when brought near objects, would tend to go to the sharpest edges. (3) A linen 
thread attached at one end to the globe would attract chaff at its other end. 
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(4) The globe would sometimes crackle and, when placed in a dark room, would 
glow like pounded sugar (or mint-flavored Lifesaver candies). 

In 1706, Francis Hauksbee, instru- 
ment maker for the British Royal So- 
ciety, studied the glow observed in the 
vacuum above the mercury of a shaken 
barometer. He found this glow~called 
the "mercurial phosphorus"~to be as- 
sociated with mercury droplets crashing 
against the glass. (This sparking is caused 
by friction, just as flint can produce a 
spark when rubbed against a hard object. 
Such sparking is electrical in nature.) He 
next studied the light emitted when a 
small spinning glass globe rubbed against 
wool, both within an evacuated larger 
globe. The evacuated larger globe alone, 
when rubbed while rotated on a wheel, 
gave off a glow bright enough to read 
by. More important for posterity, Hauks- 

Figure 1.28 Guericke's globe was bee found both a more portable source of 
charged by rotating it by an attached static electricity~a glass tube about 30 
handle, while rubbing it. inches long and 1 inch in diameter~and 
more sensitive detectors of electricity than straw and paper~leaf brass and 
lampblack. 

In 1708, Stephen Gray noticed a conical glow extending from his finger as 
it approached a charged globe, and he rediscovered Guericke's repulsion-of- 
the-feather effect. In the late 1720s, Gray and Wheeler identified a number 
of other substances that would serve either as supports or as good "receivers" 
of electricity. Gray found that boys suspended by silk threads and touched by 
a charged glass tube could attract chaff and brass leaf. See Figure 1.29. The 

I[ 

Figure 1.29 A "Gray boy" suspended by silk strings 
and electrically charged would himself become an 
electrical storage device. 
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boys were, unknowingly, serving as electrical storage devices. By mounting metal 
objects on insulators, Gray electrified metals by contact. 

In Paris, around 1732, while suspended on silk threads and charged up, ~ la 
Gray, Charles Dufay touched another person whose feet were on the ground, and 
suddenly felt a shock, accompanied by a spark and a snapping sound. Similar ef- 
fects occurred on touching a grounded metallic object, but sparking did not occur 
on touching a grounded "electric," such as amber. The sparking was much more 
spectacular than Gray's earlier observation of continuous conical glow discharge. 

Gray then extended Dufay's observations about sparking by noting that the 
same snap and spark occurred if a person were replaced by a blunt metal ob- 
ject, but that a continuous conical glow occurred if a sharp metal object were 
employed. Both Gray and Dufay emphasized that sparking transfers electri- 
city. Gray further noted that if a charged person suspended on silk threads sparks 
a second person standing on a wax cake, the first one loses electricity and the 
second one gains electricity. Nevertheless, the transfer of an amount of electricity 
(as in a spark) was still not clearly distinguished from the effect of electricity (as 
in the forces that rotate a versorium). 

Franklin's study of the "power of points" to discharge an object led him to 
study the "electric wind" (Problem 1-11.4) that blows a candle flame from a 
positive point toward a negative point, and to make the daring suggestion that it 
is possible to capture lightning: build a sentry box with an insulating stand and 
a 25-foot iron rod to capture the lightning, which the sentry could draw off in 
sparks (he later proposed that the rod be grounded). Most importantly, his study 
of the power of points led him to conceive an important practical invention~ 

the lightning rod~to prevent the catas- 
trophic effects associated with lightning 
strikes to tall buildings. Ringers of church 
bells during storms had a particularly high 
mortality rate. 

Franklin's letters were published in Eng- 
land in 1751 and quickly were trans- 
lated into French. His experiments were 
shortly demonstrated before the French 
king, Louis XV, who directed that a let- 
ter of thanks be written to Franklin for his 
suggestion of the lightning rod. As light- 
ning rods began to appear in the English 
Colonies and all over Europe, it was no- 
ticed that blunt rods worked about as well 
as pointed rods. In a related development, 

Figure 1.30 Induction of charge in the bases of long rods were found to col- 
a vertical rod (e.g., iron or fresh-cut lect electric charge, even in the absence of 
wood). Negative charge at the cloud lightning. See Figure 1.30. Thus began the 
base attracts positive charge to the study of atmospheric electricity. 
top of the rod. In Paris, around 1753, Le Roy observed 

an asymmetry in the discharge involving 
conductors with points. Brushes (or cones) came from positive points (where the 
space charge is due to positive ions), and stars (or spheres) came from negative 
points (where the space charge is due to electrons). 

In 1753, in St. Petersburg, Richmann, known for developing accurate elec- 
trometers, was killed by a lightning bolt that traveled down his chimney to 
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where  he was adjusting his apparatus to study atmospheric  electricity. The eye- 
witness account, retold in Priestley's 1755 History of Electricity, makes it ap- 
pear tha t  the lightning bolt  traveled down the chimney to the apparatus and 
there produced what  is now called ball lightning. A glowing blue ball emerged 
from a rod connected to the apparatus and immediate ly  traveled the foot 
or so to Richmann's  head, where  it discharged and killed him. Franklin was 
aware of such potential  perils. In his famous discussion of flying a kite dur- 
ing a thunders torm,  he specified both  that  the kite mus t  be held in the hand 
by silk, not  by the twine that  conducts  the electricity from the kite to the ground, 
and that  the exper imenter  should be under  a window or door frame. Franklin's 

Figure 1.31 Franklin's kite experiment. 

key was at tached to the twine at 
the same junct ion as the silk. See 
Figure 1.31. 

In 1759, Aepinus provided a 
mathemat ica l  demonstra t ion that  
Franklin's ordinary mat te r  (i.e., the 
part  that  was not  electric fluid) had 
to be self-repulsive in order tha t  
two unelectrified objects not  attract 
each other. Problem 1-11.19 gives an 
explicit example of this idea. (Aepi- 
nus also provided a semiquanti tat ive 
mathemat ica l  analysis of the amber 
e f f ec t~a  mathematical ly  adorned 
version of the explanation given near 
the beginning of the chapter.) 

Problems 

1-2.1 Explain how a positively charged glass rod 
can attract a neutral object, and vice versa. You must 
use the idea that all objects are to some extent po- 
larizable, so that a neutral object can have zero net 
charge, but there can be more positive charge in one 
region and more negative charge in another region. 
You must also use the fact that the force between 
electric charges falls off with distance. 

1-2.2 In the 1730s, Schilling showed that a hollow 
glass ball would move about in water in response to 
an electrified glass tube. Why might this occur? 

1-2.3 Discuss how two sticky tapes, both posi- 
tively charged, may attract each other for one rela- 
tive orientation, but repel for another orientation. 

1-2.4 Discuss how the attraction of charged am- 
ber for a neutral piece of paper should vary if the 
charge on the amber is doubled. Consider both 
the amber and the polarization it induces in the 
paper. 

1-3.1 How would the response of the versorium 
of Figure 1.2 change if the negatively charged 
amber were replaced by positively charged glass? 

1-3.2 A compass needle turns when an object is 
brought toward it. Does this indicate that the object 
is magnetic? 

1-3.3 An object is attracted to both ends of a com- 
pass needle. Suggest how this might come about. 

1-4.1 Under the conditions of the experiments 
done before Gray, metals and water were consid- 
ered to be nonelectrics. (a) What does this suggest 
about how the experiments were done? (b) How 
would you get metal or water to retain an electric 
charge? 

1-4.2 With the discovery of the distinction be- 
tween insulators and conductors began a more 
systematic study of the phenomena of electric- 
ity. In . 1738, Desaguliers introduced the modern 
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terminology of conductor and insulator, in the qual- 
itative sense of materials used to communicate or 
prevent the communication of electricity. Using 
metals and water as examples, explain why this 
choice of terminology is an improvement on the 
terminology electric and nonelectric. 

1-4.3 Classify as either conductors or insulators 
your body, dry clothing, plastic, your comb, a styro- 
foam cup, and a penny. 

1-4 .4  Identify Gray's string, silk thread, and brass 
wire as conductor or insulator, and state why you 
come to these conclusions. 

1-4.5 Explain why, in the Leyden jar experiments 
of Musschenbroek-Cunaeus and of Kleist, it was 
necessary for them to stand on ground. 

1-4.6  In Franklin's experiment (Figure 1.6), ex- 
plain why the spark between the two who held the 
tube when it was rubbed is greater than between 
either of them and the person on the ground. 

1-4.7 In another version ofthe electric fluid model 
(by Watson, a contemporary of Franklin), when ap- 
plied to the Leyden jar, the charge Qout is not driven 
from the outer conductor. Hence the outer con- 
ductor would not develop charge -Qout. Now con- 
sider a jar that is charged in two different ways: (1) 
the person holding the jar stands on ground during 
charging; (2) the person holding the jar is standing 
on wax during charging. Compare the shocks that 
would be predicted by Watson and by Franklin. 

1-4 .8  (a) Explain why everyone in the human 
chain was shocked when the Leyden jar was dis- 
charged. Hint: Draw a schematic diagram of what 
happens when a Leyden jar discharges. (lo) Given 
that people are better conductors than the earth, 
would any charge go into the ground? 

1-4.9 Objects A and B, sitting on wax, are both 
known to be charged, because a neutral string is at- 
tracted to them. If you touch your finger to object 
A, it gives a big spark once, after which the string is 
no longer attracted to A. If you touch your finger to 
object B, it gives a small spark, after which the string 
is attracted to B, but not quite as strongly as before. 
Characterize A and B as conductors or insulators. 

1-5.1 (a) In economic transactions, money is 
exchanged, but neither created nor destroyed. Dis- 
cuss Franklin's maxim '~  penny saved is a penny 
earned," as an example of a conservation law. 
(b) Consider the effect of thermal insulation on the 

power consumption of a building in the context of 
this maxim. 

1-5.2 A positively charged plastic rod is touched 
to an electrically isolated conductor, and then is re- 
moved. If the conductor was initially neutral, what 
is its new state of charge? 

1-5.3 Leyden jars A and B of Figure 1.10 are each 
charged up, 6 units of charge on A, and 2 units on 
B. They are now connected, head to head and tail to 
tail. They are then reconnected with the head wire 
of A connected to the tail wire of B, and vice versa. 
How is the charge distributed in these cases? 

1-5 .4  Let the outside of a Leyden jar be placed 
in contact with ground. Let the inside be placed 
in contact with a source of charge (or prime con- 
ductor), of charge Qec = 10 -6 C, and then discon- 
nected. See Figure 1.5. Let a charge Qin ~ 10 -7 C 
be transferred from the prime conductor to the 
inside of the Leyden jar. (a) How much charge 
Qec now resides on the prime conductor? In ad- 
dition, charge is driven from the outside of the jar 
to ground, leaving behind a charge Qout. If the glass 
of the jar is very thin, then Qin ,~ - -  Qout" (b) How 
much charge is on the outside of the Leyden jar? 
(c) How much charge has been driven to ground? 
Now place the jar on an insulating stand, and re- 
move the contact with the prime conductor. Some- 
one placing one hand on the inner conductor and 
the other on the outer conductor will receive a 
shock, as charge transfers between the inner and 
outer conductors, in order to neutralize. (d) How 
much charge will transfer? 

1-5.5  Explain each of the following properties of 
the Leyden jar: (a) when insulated (i.e., removed 
from the electrified bar) it retained its "charge" for 
hours or even days; (b) when the bottom wire (con- 
nected to its outside) was grounded, it retained its 
power so long as the top wire (connected to the 
inside) was not touched; (c) when the bottom (out- 
side) wire was insulated, only a weak spark could 
be obtained from the top (inside) wire; (d) after 
performing (c) and then connecting the inside to 
ground, the jar would regain its strength. 

1-6.1 In his experiments, Dufay would remove 
the charged tube before studying a given mate- 
rial. Comparing Dufay with an experimenter who 
kept the charged tube in place, whose experiments 
would be more reproducible, and why? 

1-6.2 During the early 1750s in France, De- 
lot and Dalibard studied atmospheric electricity 
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using a long vertical conducting rod with an 
electrometer at its base. (a) Using the concept 
of electrostatic induction, explain how this might 
work. The atmospheric charge more often was 
found to be negative than positive contrary to 
Franklin's expectations. (b) Ifthe earth and its atmo- 
sphere together are neutral, what does this say about 
the charge on the earth? (c) Blunt rods seemed to 
work as well as pointed ones. Using the idea that 
both blunt and pointed rods are small and far away 
from clouds, try to explain why they were equally 
effective. 

1-6.3 A person near a charged object that sud- 
denly discharges (such as a Van de Graaff genera- 
tor) might feel a shock. Why? In principle, you can 
be electrocuted without contacting a high-voltage 
source. 

1-6.4 We can simulate Volta's "cake" by using a 
piece of styrofoam that has been rubbed. In this 
case, let a total charge QA = - 1 0  -8 C be on the 
styrofoam, distributed over the surface. A metal 
sheet is placed upon the cake and then is touched 
by the experimenter. (a) About how much charge 
Q~ is now on the metal sheet, and how much 
charge Q c was drawn off by the experimenter? 
(Eventually, the charge .Q.c goes to ground.) 
(b) How is the cake affected by the charging process? 

1-6.5 An electroscope is a detector of elec- 
tricity. Consider an electroscope that uses hang- 
ing gold leaves connected to one another and 
to a conducting support. When either a posi- 
tively or negatively charged object is brought near, 
the leaves repel, similarly to what happens in 
Figure 1.11. Explain. 

1-6.6  Boyle learned from a "Fair Lady" that, when 
combed, "false locks of hair" often stuck to the 
cheeks of their wearer. He concluded that this 
was related to the amber effect. However, he was 
puzzled that the most powerful electric--amberm 
could barely attract the (uncharged) hair, whereas 
when combed, the (electrified) hair could be at- 
tracted to the seemingly unelectrified cheek. Use 
the ideas of polarization and electrostatic induction 
to explain (a) the strong attraction of newly combed 
"false locks of hair" to a "Fair Lady's cheek" and 
(b) the weaker attraction of the good "electric" 
amber for uncombed hair. 

1-6.7 At birthday parties, children often rub bal- 
loons and then bring them to a wall, where ini- 
tially they stick, but later they fall off. (a) Explain 
these phenomena. (In the 1750s, it was a novelty to 
stick charged stockings to walls.) (b) Does it make a 

difference if the wall is a conductor or an insulator? 
(c) Does it make a difference if the room is humid 
or dry? 

1-6.8  A source charge is brought up to (but 
does not touch) a conducting sphere resting on 
an insulator. It is represented by 10 minuses. If 
electrostatic induction is represented by plus and 
minus charges on the sphere, which of the follow- 
ing are possible (and if not possible, why not)? 
(1) 8 minuses near the source charge and 8 pluses 
on the opposite side; (2) 8 pluses near the source 
charge and 2 minuses on the opposite side; (3) 5 
pluses near the source charge and 5 minuses on the 
opposite side; (4) 13 minuses near the source charge 
and 13 pluses on the opposite side. 

1-6.9  A negatively charged plastic rod is brought 
near (but does not touch) a grounded metal sphere. 
Next, the ground connection is removed. Finally, 
the negative rod is removed. Discuss the charge 
transfer and electrostatic induction at each step. 

1 -6 .10  The relative amount of charge shared by 
two conductors in contact depends upon how they 
are brought together: a sphere with a tip gains less 
charge when touched by a perfect sphere on the side 
opposite the tip than when touched at the tip be- 
cause charge tends to go to the tip. See Figure 1.32. 
Discuss. 

Figure 1.32 Problem 1-6.10. 

1-7.1 Alpha particles are nucleii of helium atoms. 
They can be obtained by ejecting two electrons from 
a neutral helium atom. What is the charge of an 
alpha particle? 

1-7.2 If a particle decays, and two protons are 
ejected (in addition to other, uncharged, particles), 
what can you say about the charge state of the initial 
particle? 
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1-7.3 For a particle denoted by X there is an an- 
tiparticle denoted by X with the same mass but op- 
posite charge. However, for historical reasons, we 
write e- for the electron and e + for its antiparticle, 
called the positron. (Some, but not all, uncharged 
particles can be their own antiparticles.) Which of 
the following reactions are allowed by conservation 
of charge? 

(a) e - + e  + --+ p + ~  

(b) e -  + e  + --+ p +  p q -  2n 

(C) e -  q-- n --+ ~ + 2n 

1-7.4 What are the charge carriers when ordi- 
nary salt NaC1 is dissolved in water? In a dilute 
solution of H2SO47 In a concentrated solution of 
H2SO47 

1-7.5 Rubbing a plastic rod with a certain cloth 
gives the rod a net negative charge. Discuss this in 
terms of the transfer of either electrons or protons 
or both. 

1-7.6 In a dry room, an oven bag is rubbed against 
styrofoam, giving the styrofoam a negative charge. 
Each is quickly placed in its own dry enclosure, 
the enclosures connected by a long tube of insu- 
lating material. An atomizer sprays water in the 
styrofoam enclosure. Assume that water molecules 
pick up an electron from the styrofoam much more 
easily than they give up one. (a) Compare the 
rate at which the styrofoam and the oven bag dis- 
charge. (b) If the charges on the styrofoam and the 
oven bag initially sum to zero, will this be true 
at all times? (c) What would happen if the atom- 
izer sprays water in the oven bag enclosure? See 
Figure 1.33. 

Styrofoam Oven bag 

Figure 1.33 Prob l em 1-7 .6 .  

1-7.7 Repeat Problem 1-7.6 if we assume the 
water molecules give up an electron to the styro- 
foam much more easily than they pick up one. 

1-7.8 Po Heller has found that, unless they are 
heated before they are charged, certain porous ma- 
terials lose their charge relatively rapidly. (a) If 
water can get in the pores, how might you ex- 
plain this phenomenon? (b) Would positive and 
negative charge necessarily be lost at the same 
rate? 

1-8.1 (a) How does the statement "I feel half- 
dead" violate a rule about people quantization? (13) 
How do birth and death violate a rule about people 
conservation? 

1 -8 ,2  A glass rod has a charge of (3.2 + 0 .1 )x  
10 -]~ C. (a) To an excess or deficit of how many 
electrons does this correspond? (13) Estimate the un- 
certainty in the number of electrons. 

1 -8 .3  A lightning flash may transfer charge ei- 
ther from the ground to the clouds or vice versa, 
but it usually goes from cloud to ground. In a 
characteristic lightning flash, about 10 C are trans- 
ferred. To how many electrons does this cor- 
respond? 

1 - 8 , 4  Two undergraduates perform Millikan's fa- 
mous experiment to determine the charge on oil 
drops. One finds a cluster of points around the value 
-0 .25  x 10 -19 C, with an estimated error of +25%. 
Another finds a cluster of points around the value 
3.5 x 10 -19 (7, with an estimated error of 4-25%. 
Which of these results is more likely to be correct, 
and why? 

1 -8 .5  A plastic rod has a charge o f - 5  x 10 -]~ C. 
How many more electrons than protons does it 
possess? 

1 -8 .6  It is believed that protons and neutrons 
each consist of three objects that have been named 
quarks. Quarks have either charge - e / 3  or charge 
2e/3. How many quarks of each charge state reside 
within protons and neutrons? 

1-9.1 A rod has charge per unit length ~ = Ax 2, 
and extends from x = a to x = 3a. What units 
must A have? (a) Show that the charge on the 
rod from x = a to x = 2a is (7/3)Aa 3, and that 
from 2a to 3a the charge is (19/3)Aa 3. (b) Show 
that the total charge is (26/3)Aa 3, and that the 
average charge per unit length for the rod is 
(13/3)Aa 2. 
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1-9 .2  An arc on a circle of radius R goes from 
0 - 0 to 0 - c~. If the total charge is Q,  show that 
the average charge per unit length is ~ = ( Q / ~  R). 

1 -9 .3  Two rods, of lengths ll and 12, have charges 
ql and q2. (a) Find the charges per unit length for 
each rod, individually. (b) Find the charge per unit 
length, averaged over both rods. (c) Check your re- 
sult for ll ~ 0. (d) Check your result for ll = 12. 

1 - 9 . 4  A disk of radius a has a charge per unit 
area ~ -  Br 2. (a) What  units must B have? 
(b) Find the charge d Q in an annulus of radius r 
and thickness dr. (c) Find the total charge Q on the 
disk as a whole. (d) Find the average charge per unit 
area ~. 

1 -9 .5  A sphere of radius b has a charge per unit 
volume fi = C + Br. (a) What units must C and B 
have? (b) Find the charge dq in a spherical shell of 
radius r and thickness dr. (c) Find the total charge 
Q on the sphere as a whole. (d) Find the average 
charge per unit volume ~. 

1 -9 .6  A cylinder of radius a and length l has a 
charge per unit volume fi = C + Br 2. (a) What units 
must C and B have? (b) Find the charge dq in a cyl- 
indrical shell of radius r and thickness dr. (c) Find 
the total charge Q on the cylinder as a whole. 
(d) Find the average charge per unit volume ~. 

1 -9 .7  A cylinder of radius a and length l (from 
z = 0 to z = l) has a charge per unit volume p = 
C +  Bz 2. (a) What units must C and B have? 
(b) Find the charge dq for a circular slice of height 
z and thickness dz. (c) Find the total charge Q on 
the cylinder as a whole. (d) Find the average charge 
per unit volume ~. 

1 - 9 . 8  A cylinder surface of radius a and length 
l (from z = 0 to z = l) has a charge per unit area 
fi = C-4- B z  2. (a) What units must C and B have? 
(b) Find the charge dq for a circular slice of height 
z and thickness dz. (c) Find the total charge Q on 
the cylinder as a whole. (d) Find the average charge 
per unit volume ~. 

1 -9 .9  (a) Let y = a t a n 0 ,  where a is a con- 
stant. Show that dy=asec2OdO.  (b) Let y 2 =  
a sec0, where a is a constant. Show that 2 y d y -  
a sec 0 tan OdO. (c) Let r 2 - a 2 + x 2, where a is a 
constant. Show that 2rdr = 2xdx. 

1-10 .1  In the experiment where the tapes are 
pulled apart, explain how each could be attracted 
to your finger. 

1 - 1 0 . 2  Consider the following information. 
When A and B are rubbed together, A becomes 
negatively charged. When A and C are rubbed to- 
gether, A becomes negatively charged. (a) Do you 
have enough information to tell whether B will be- 
come positively charged when rubbed against C? 
(b) What does this say about your ability to predict 
the sign of the charge that one material will have 
after rubbing against any other material? 

1 - 1 0 . 3  In one of the experiments you were told 
to slowly peel a piece of tape off the table. It is ex- 
pected that this way it should get less charge than if 
it were pulled off quickly. How could you test this 
hypothesis? 

1 - 1 0 . 4  (a) Define electrostatic "screening." 
(b) Use this idea to explain why Dufay found that, 
although a rubbed tube could produce effects that 
penetrated dry silk curtains, no such penetration 
occurred for wet silk curtains. 

1 - 1 0 . 5  Let charges +10 units and - 1 0  units be 
held 1 cm above and 1 cm below a table. The 
force between them is one unit. Now let a thin 
20-cm-by-20-cm sheet of aluminum be placed on 
the table. (a) Sketch the charge distribution on the 
aluminum sheet. (b) Is the total force on the + 10 
units of charge larger, smaller, or the same as before 
the sheet was added? (c) Is the force between the 
+ 10 and - 10 units of charge larger, smaller, or the 
same as before the sheet was added? 

1 - 1 0 . 6  (a) Does the fact that a compass nee- 
dle can be attracted to a charged comb indicate 
that the comb is magnetic? (b) Cite a fact about 
this effect to indicate that the needle's response to 
the comb differs from its response to a permanent 
magnet. 

1 -11 .1  Huygens performed an experiment in 
which moist wool--but  not dry wool--was driven 
away after contacting a charged sphere. Propose an 
explanation. 

1 - 1 1 . 2  Around 1758, in England, Symmer found 
that when he placed two stockings on one leg, 
and he removed them both, they displayed lit- 
tle electricity. However, on pulling them apart, 
each attracted small objects from a distance of 
5 or 6 feet, and they attracted each other strongly. 
Once together, they had only a weakened electri- 
cal effect, that would extend only a few inches. Ex- 
plain, and compare with the appropriate sticky tape 
experiment of Section 1.10. 
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1-11.3 In 1739, Wheeler presented--but did 
not publish--a paper based on experiments per- 
formed in 1732, in which he showed that a silk 
thread will (1) be attracted and then repelled by 
amber if the silk is unelectrified and insulated, 
(2) be repelled only if the silk is electrified and insu- 
lated, or (3) be attracted only if the silk is grounded. 
Explain Wheeler's observations; you must first de- 
termine whether the silk was acting as a con- 
ductor or as an insulator. (Wheeler also com- 
mented that electricity attracts objects that them- 
selves do not attract, and repels other objects that 
do attract, apparently unaware of Dufay's work 
showing that there are two classes of electrical 
charge.) 

1-11.4 In the "electric wind," a flame bends away 
from a positively charged point and toward a neg- 
atively charged point. The heat of a flame ionizes 
many of the atoms, kicking off their electrons, so 
the flame is a plasma of heavy positive ions and 
light negative electrons. Consider two effectsmthe 
electrical force directly acting on the positive ions 
and on the (negative) electrons, and the collisions 
of positive ions and of electrons with neutral atoms. 
Use them to explain the direction of the electric 
wind. Hint: The positive ions are of about the same 
mass as the neutral molecules, but the electrons 
are much less massive. The poorer the matching 
of mass, the less momentum is transferred in col- 
lisions. This is an example of impedance matching 
(Section R.2). 

1 -11 .5  Around 1770, Cavendish argued that a 
conducting disk has a total charge distribution that 
is approximately the sum of a uniform part and 
a part associated with its perimeter. (a) Explain 
how this would make electric effects greater at the 
perimeter. (b) For a charged needle, to what might 
the total charge distribution be due? (c) How might 
this explain the "power of points?" 

1 -11 .6  Gray found that two oak cubes, one solid 
and the other hollow, of the same exterior dimen- 
sions, received electricity in equal amounts when 
connected by a pack thread (a conductor) in con- 
tact with an electrified tube. What does this suggest 
about where the charge resides on an electrical con- 
ductor? (Assume that the oak was not thoroughly 
dry, and therefore was a conductor.) 

1 -11 .7  Franklin observed that an insulated cork 
lowered into a charged metal cup is not attracted to 
its sides, and does not gain electricity upon touch- 
ing the charged cup from within. What does this 

suggest about where the charge resides on an elec- 
trical conductor? 

1-11.8 In 1675, Newton observed that when the 
top of a lens was rubbed (reproducibility required 
vigorous brushing with hog bristles), bits of paper 
just below the lens would be attracted to the lens. 
Is electrical screening occuring here? Interpret in 
terms of action at a distance. 

1-11.9 Consider Fracastoro's experiments. Give 
possible explanations for (a) how amber could at- 
tract little crumbs of amber; (b) how silver could 
attract silver (give two mechanisms, one electric 
and one magnetic); (c) how a magnet could attract 
silver (give two mechanisms, one electric and one 
magnetic). 

1-11.10 To the best of your knowledge, discuss 
the correctness of all five of Cardano's statements. 

1-11.11 In Fabri's experiments, relate the idea of 
mutuality to what you know about Newton's laws 
of motion. 

1-11.12 (a) Give an alternative explanation 
of Boyle's amber and pin cushion experiment. 
~ )  Discuss Boyle's observation that rubbed dia- 
monds emit a faint glow. (c) What does Boyle's 
vacuum experiment say about air-flow-dependent 
mechanisms to explain electrical forces? 

1 -11 .13  Suggest explanations for each ofthe four 
points discussed in the text relating to Guericke. 

1 - 1 1 . 1 4  (a) In Gray and Wheeler's experiments, 
explain the role of the supporting string (besides 
supporting the boys)? (b) Explain how, by mount- 
ing metal objects on insulators, Gray could electrify 
metals by contact. 

1 -11 .15  Explain why sparking occurred in the 
experiments of Dufay on suspended, electrified 
people. 

1 - 1 1 . 1 6  (a) Suggest why church bell ringers 
had a high mortality rate during lightning storms. 
(b) Explain how lighming rods protect tall build- 
ings. 

1 -11 .17  On the basis of Le Roy's observations, 
suggest how Gray's 1708 conical discharge may 
have been obtained. 

1-11.18 (a) Explain why Franklin specified silk, 
n o t  twin< to be held by the experimenter. 
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(b) Explain why he specified under a window or 
door frame. (c) What is the purpose of the key in 
Franklin's experiment? 

1-11.19 Aepinus knew that the electric fluid is 
self-repulsive (charge spreads out on a conduc- 
tor), and that the electric fluid is attracted to or- 
dinary matter. Now consider two unelectrified ob- 
jects, AB and A'B', where A and A' are electric 
fluid, and B and B' are ordinary matter. Assume 
that the repulsion between A and A' (to be specific, 
take it to be 1 N) equals the attraction between 
A and B', taken to be the same as the attraction 
between A' and B. (a) If B and B' have no inter- 
action, show that objects AB and A'B' attract each 
other with a net force of 1 N. (b) If B and B' re- 
pel as strongly as do A and A', show that AB and 
A'B' do not attract each other (e.g., with zero net 
force). 

1-G.1 Why do static electricity experiments typ- 
ically work better in the winter than in the 
summer? 

1-G.2 A metal sphere of unknown charge hangs 
vertically from an insulating string. A negatively 
charged plastic rod attracts the sphere. (a) Can the 
metal sphere be positively charged? (b) Neutral? 
(c) Weakly charged negatively? (d) Strongly charged 
negatively? 

1-G.3 You are given a metallic sphere of charge 
Q, which is enclosed in a thin glass case. You are 
also given three identical conducting spheres on in- 
sulating stands that can be moved about and that 
can be touched (e.g., grounded). With q < Q, how 
would you give the three identical spheres charges 
q, -q /2 ,  and-q /27  

1-G.4 A lit match placed below a charged object 
can cause the object to discharge. (a) Suggest why. 
(b) Discuss whether or not there should be any dif- 
ference in discharge rate, according to the sign of 
the charge. 

1-G.5 (a) Owners of personal computers (PCs) 
who wish to add memory (random access memory, 
or RAM for short) or to replace a hard drive (HD) 
are warned to turn off the power before opening the 
case. Explain this warning. (b) Owners of PCs also 
are warned, that after opening the computer case, 
they should touch the metal frame of the power 
supply before making their installation. Explain this 
warning. 

1-G.6 Unless two hands are used, it is often dif- 
ficult to place with precision a piece of trans- 
parent tape, freshly pulled off the roll. Explain 
why. 

1-G.7 You are given two identical metal spheres 
on insulating stands. (a) Using a negatively charged 
rod, how would you give them equal and opposite 
charges? (b) What would happen if you followed 
the procedure of part (a), but the spheres were of 
different radii? 

1-G.8 You are given two identical metal spheres 
on insulating stands. (a) Using a negatively charged 
rod, how would you give them equal charges? 
(b) What would happen if you followed the pro- 
cedure of part (a), but the spheres were of different 
radii? 

1-G.9 Explain why, when you remove a T-shirt 
or a sock in a darkened room, you sometimes see or 
hear sparks. Note: Polyester is usually more effective 
than cotton at producing this effect. 

1 -G.10 A person on an insulated stand touches 
a Van de Graaff generator. She has no apparent ill 
effects (e.g., she is not shocked) although her hair 
stands on end. Would the same be true of a person 
standing on the ground who then touches the Van 
de Graaff? 

1-G,11 Object A attracts objects B and C, but B 
and C repel. B and C are repelled by a negatively 
charged rod. What sign of charge can A have? 

1-G.12 Some materials, such as graphite- 
impregnated paper, appear to be conductors on 
long time scales, but insulators on short time scales. 
Consider a piece of graphite-impregnated paper 
resting on a metal desk. If a positively charged ob- 
ject is touched briefly to the paper, discuss the state 
of charge of the paper both for short times and long 
times. 

1-G. 13 Objects A, B, and C are each held by insu- 
lating handles and are each uncharged. A is rubbed 
against B. A, a conductor, is then discharged. Next, 
A is rubbed against C. (a) If B and C now repel, 
classify as best you can the charge on A, B, and C. 
(b) If B and C now attract, classify as best you can 
the charge on A, B, and C. 

1-G.14  When the uncharged insulators A and 
B are rubbed against each other, A develops a 
negative charge. If a negatively charged object 
C is placed nearer A than B while the rubbing 
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takes place, indicate how this can affect the sign of 
the charge on A. 

1-G.15 Imagine a universe with two classes of ob- 
jects, A and B, where unlikes attract by lowering 
their energy by S, and likes repel by increasing their 
energy by S. Find the energies of the "molecules" 
AA, AB, and B B, and discuss their relative stability. 

1-G.16 Imagine a universe with three classes of 
objects, A, B, and C, where unlikes attract by low- 
ering their energy by 2S, and likes repel by in- 
creasing their energy by S. Find the energies of 
the "molecules" AB, ABC, AAB, AABB, AAAB, 
AAAAB, AAAAAB, AAAAAAB. Discuss their rel- 
ative stability. 



"The repulsive force between two small spheres charged with the same sort of electricity is 
in the inverse ratio of the squares of the distances between the centers of the two spheres." 

~Augustin Coulomb, 
Memoir for 1785 of the French Academy of Sciences 

Chapter 2 

Coulomb's Law for Static 
Electricity, Principle 
of Superposition 

Chapter Overview 

Section 2.2 discusses the discovery of the inverse square law, and Section 2.3 presents 
the law explicitly, in Section 2.4, we estimate the characteristic force on an electron in 
an atom. Since the electrical force holds atoms, molecules, cells, and tissues together, 
from the size of this atomic force we can estimate the strength of materials. Section 2.5 
introduces and applies the principle of superposition, which holds for the addition of 
forces of any origin, both electrical and nonelectrical. Section 2.6 shows two ways 
in which symmetry considerations can be used to simplify calculations. Section 2.7 
considers the force on a point charge due to a charged rod, both using numerical 
integration (quadrature) and the analytical methods of integral calculus. Section 2.8 
discusses problem solving and study strategy. 

I 

Introduction 

The previous chapter summarized what was known, both qualitatively and quan- 
titatively, up to about 1760. It included the law of conservation of charge. The 
present chapter presents another quantitative law: Coulomb's law for the force 
on one point charge due to another, which varies as the inverse second power 
of their separation~a so-called inverse square law. Chapters 1 through 6 all deal 
with what is called static electricity, as produced, for example, by rubbing a comb 
through your hair. 

2.2 

80 

Discovering the Laws of Static Electricity 

Before the spacial dependence of the electrical force had been established, the 
following results were already known: 

1. There are two classes of electric charge; those in the same class repel, and 
those in different classes attract. This is summarized by the statement that 
"opposites attract and likes repel" (Dufay). 
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2. The electrical force lies along the line of centers between the two charges. 

3. The force is proportional to the amount of charge on each of the objects. This 
proportionality seems to have been known by Aepinus, who, in 1759, knew 
everything about the force law except its specific dependence on distance. 

There were also a number of observations that pointed, either directly or 
indirectly, to the electrical force satisfying an inverse square law. 

Gray. Around 1731, Gray had found that two oak cubes, one solid and the other 
hollow, of the same exterior dimensions, received electricity in equal amounts 
when connected by a slightly conducting "pack thread" that was touched in the 
middle by an electrified tube. (If oak is not dry enough, it serves as an electrical 
conductor.) This fact implies that for both solid and hollow cubes, the charge 
resides on the outer surfaces. At the time no one realized that such surface 
charging implies an inverse square law for the electrical force. 

Franklin and Priestley. Around 1755, Franklin noticed that an uncharged, in- 
sulated cork lowered into a charged metal cup is neither attracted to the cup's 
interior surface nor gains electricity on contacting that surface. He encouraged 
his friend Priestley to investigate this phenomenon further. The latter concluded, 
in 1767, by an analogy to gravity, that this implied the force law was an inverse 
square. Newton previously had showed that there is no gravitational force on a 
mass within a shell of uniform mass per unit area. 

Robison. Robison performed electrical measurements using a balance that coun- 
tered the torque due to electrical repulsion by the torque due to gravitation, 
finding in favor of an inverse square law. See Figure 2.1, where the plane of 
the holder assembly (including the charged spheres) is normal to the axis of the 
handle. Robison did not publish his results of 1769 until 1801, in a supplement 
to the Encyclopedia Brittanica. 

Figure 2.1 Robison's gravity 
balance. Spheres are given charges 
of the same sign, and they repel 
until the electrical repulsion 
balances the pull of the earth's 
gravity on the upper sphere. For a 
given orientation angle, the 
separation is measured. 
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Cavendish. Cavendish~wealthy, eccentric, and reclusive~performed many 
important scientific studies, including torsion balance studies of the gravitational 
force between two spheres, and what are probably the first measurements of 
the relative electrical conductivities of different materials, obtained by compar- 
ing the shocks he received on discharging a Leyden jar through different wires. 
Probably inspired by Priestley's work, and thus thinking in terms of an inverse 
square law, in 1770 Cavendish measured the charge on the inner of two con- 
centric metallic shells connected by a fine wire. He found it to be zero, within 
experimental accuracy. This indirect method established that, if the electrical 
interaction satisfies a power law, then within a few percent it is an inverse square 
law. Not until Maxwell read Cavendish's notebooks, nearly 1 O0 years later, was 
it appreciated how much Cavendish had done and understood. 

Coulomb. Coulomb, a military engineer, performed numerous first-rate studies 
in physics, including friction and the elasticity of thin wires. The latter work led 
him to invent the torsion balance (independently of Cavendish), which he used 

to study static electricity and per- 
manent magnets. See Figure 2.2. 
For springs, Hooke (around 
1650) found that the force F 
opposing a length change by x 
is proportional to x: F = - K x ,  
where K is a measureable spring 
constant. Coulomb found a 
similar relation for torsion fibers: 
the torque r opposing an angular 
twist by ~b (in radians) is propor- 
tional to 0: r = -K0, where K is a 
measureable torsion constant. The 

Figure 2.2 Coulomb's torsion balance. Spheres torque could thus be determined 
are given charges of either sign, and they rotate 
until the torque from the electrical force from the angular displacement. 
balances the torque from the torsion fiber. For Since the moment arm l was 
a given orientation angle, the separation is known, the force magnitude 
measured. I FI could then be deduced, via 

IFI = Ir//I = IK4)/ll. 
Coulomb charged up two spheres equally (see Figure 1.8) and found that 

the force decreased with time. This he attributed to a loss of electric charge. He 

Even in dry weather such loss of charge 
occurs due to stray positive and nega- 
tive ions in the air; the sphere attracts 
ions of charge opposite to its own. Only 
around 1910 was it discovered that such 
ions are produced by high-energy par- 
ticles from outer space, called cosmic 
rays. Most cosmic rays are protons. 

eliminated some of this decrease by improving 
the insulation in the supports. However, there 
was additional loss, due to the atmosphere, which 
was more extreme in humid weather. Account- 
ing for the rate at which the charge decreased 
from his spheres improved the accuracy of his 
measurements. By using electrostatic induction, 
he produced oppositely charged spheres (see 
Figure 1.12). (However, in analyzing his results, 
he did not include the effects of electrostatic in- 
duction: for each sphere he considered the charge 
to be located at its center.) Coulomb published 
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his w o r k ,  w h i c h  was  we l l  k n o w n  in his  na t i ve  France,  b u t  20  years  p a s s e d  b e f o r e  
it  was  to  be  a p p r e c i a t e d  e l s ewhe re .  

2.3 The Inverse Square Law of Electricity: 
Coulomb's Law 

R o b i s o n ,  C a v e n d i s h ,  a n d  C o u l o m b  all c o n c l u d e d  t h a t  t h e  e lec t r i c  fo rce  b e t w e e n  
t w o  d i s t i nc t  p o i n t  ob j ec t s  w i t h  cha rges  q a n d  Q var ies  as t h e  inve r se  s q u a r e  o f  
t h e  s epa ra t i on .  T h u s  
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w h e r e  t h e  c o n s t a n t  k d e p e n d s  u p o n  t h e  un i t s  for  force,  d i s tance ,  a n d  charge .  
W h e n  c h a r g e  is m e a s u r e d  in SI un i t s  o f  t h e  c o u l o m b ,  d i s t a n c e  is m e a s u r e d  in 

t e r m s  o f  me t e r s ,  a n d  fo rce  in t e r m s  o f  n e w t o n s ,  t h e  c o n s t a n t  k can  be  d e t e r m i n e d .  
It  t akes  on  t h e  va lue  

k - 8 . 9 8 7 5 5 1 3  x 1 0 9 N - m 2  C2 , (2.2) 

w h i c h  u sua l l y  wi l l  be  t a k e n  to  be  k = 9 .0  x 109 N - m 2 / C  2. In l a te r  chap te r s ,  i t  
also wil l  be  u se fu l  to  use  t h e  q u a n t i t y  ~0, ca l led  t h e  permittivity constant, or  t h e  
permittivity of free space, g iven  by  

l l C 2 
, ~0 - = 8 . 8 5 4 1 8 7 8 1 7 6 2  x 10 - 1 2 ~  (2 3) 

k --- 4zr ~0 42r k N - m  2" " 

SI un i t s  w e r e  n o t  ava i lab le  to  C o u l o m b ,  b u t  t h a t  was  n o t  n e c e s s a r y  in o r d e r  
to  e s t ab l i sh  t h e  inve r se  s q u a r e  law. Reca l l  t h a t  t h e  c o u l o m b  is d e f i n e d  in t e r m s  
o f  t h e  u n i t  o f  e lec t r ic  c u r r e n t ,  w h i c h  is t h e  a m p e r e .  T h u s  a c o u l o m b  is t h e  
a m o u n t  o f  c h a r g e  t h a t  passes  w h e n  an a m p e r e  o f  c u r r e n t  f lows for  one  s econd ,  or  
C =  A-s. 

T h e  resu l t s  ( 1 - 3 )  in S e c t i o n  2.2,  a n d  (2 .1) ,  can  t o g e t h e r  be  e x p r e s s e d  as a 
s ingle  v e c t o r  e q u a t i o n  for  t h e  fo rce  F on  a c h a r g e  q d u e  to  a cha rge  ~ .  When 
specifying a vector, we will employ an arrow or-- i f  it is a unit vectorma hat above it. 
U s i n g  t h e  n o t a t i o n  t h a t  t h e  u n i t  v e c t o r  f p o i n t s  t o w a r d  t h e  o b s e r v a t i o n  c h a r g e  
q, f r o m  t h e  s o u r c e  c h a r g e  ~ ,  w e  h a v e  
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T h e  b a r e  g e o m e t r y  in t h e  p r o b l e m  s t a t e m e n t  (i.e., w h a t  t h e  p r o b l e m  p r o -  
v ides)  is g iven  in F igu re  2 .3 (a ) .  N o  m a t t e r  w h a t  t h e  cha rges  q a n d  ~ in f ind ing  
t h e  fo rce  on  q, f p o i n t s  to  q f r o m  ~ .  

If  q a n d  Q are l ike charges ,  t h e  fo rce  on  q also p o i n t s  to  q f r o m  ~ .  T h e  co r re -  
s p o n d i n g  g e o m e t r y  so lv ing  t h e  p r o b l e m  (i.e., w h a t  t h e  s t u d e n t  m u s t  p r o v i d e )  is 
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Figure 2.3 Geometry of interacting charges of the same 
sign. (a) The charges alone. (lo) The geometry associated 
with the force F acting on q, with unit vector ~ pointing 
to q. 

given in Figure 2.3(b). The tail of the force on q is placed on q. In this chapter, 
we will sometimes give both the bare geometry and the solution geometry that 
students must learn to provide; in later chapters, we will give only the latter. 

To obtain the force on Q due to q, we use the unit vector to Q from q, 
which is opposite the unit vector to q from Q. Hence the force on Q due to q 
is opposite the force on q due to Q, and action and reaction is satisfied. A figure 
of the force on Q would place the tail of the force on Q 

~ Simple Applications of Coulomb's Law 

As mentioned repeatedly, the electrical force, or C force, holds together atoms, 
molecules, and solids, and indeed holds together our very bodies. For that  reason, 
it is important to get a feeling for how large a force it provides, both within 
atoms and within nuclei. We will not pursue these questions in great detail 
because classical mechanics (i.e., Newton's laws) cannot be applied literally at 
such small distances. In that case, quantum mechanics, an advanced topic, provides 
an accurate description. 

2,4~1 Coulomb's Law, Atoms, and the Strength of Materials 

A good rule of thumb is that atoms have a characteristic dimension of about 
10 - l~ m, a unit that has been named the angstrom, or A. Some atoms are 
larger, and some are smaller, but  that is a good starting point. (Remember, 
it is more important to get the exponent correctly than to get the prefac- 
tor, although both are needed for precision work.) Therefore, consider the 
force on an electron in a hydrogen atom, using a separation of r -  10 - l~ m. 
(Actually, for the hydrogen atom, the appropriate distance is about half that.) 
Coulomb's law, with both the electron and proton having the same magnitude 
]q] = ]Q] = e = 1.6 • 10 -19 C for the charge, yields for the electrical force be- 
tween the electron and proton F~l~ = ke2/r 2 --- 2.3 • 10 -8 N. This appears to 
be small, but  not in comparison with the force on an atom due to the earth's 
gravity. Take mp -- 1.67 • 10 - 2 7  kg for the atomic mass (essentially, the mass of 
the proton since the electron is so much less massive). Then, with g = 9.8 m/s 2, 
~g~v _ -- 1.64 x, 10 -26 "p, earth - -  mg N. Thus, comparison of the electrical force within 
the atom to the earth s gravitational force on the atom shows that the latter is 
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negligibly small. This has profound structural significance for individual atoms 
and even for large molecules: their structure is indifferent to the local gravita- 
tional environment. Only on the scale of larger objects, such as trees and people, 
does gravity affect structure. 

Electron-proton gravity within the atom is negligible ~pplication 2.' 

The gravitational force of attraction between the electron and the proton 
is extraordinarily small. With G - 6 . 6 7  x 10 -11 N-m2/kg 2 and m e -  9.1 x 

l ~ g r a v  10 -31 kg, we obtain * e , p  - -  ~ e m p / r  2 -- 1.01 x 10 -47 N, aforce about 1039 
times smaller than the electric force between them. 

~ Material strength is atomic force per atomic area 

Let us take an interatomic force of 10 -8 N to correspond to the force between 
nearby atoms in a bulk material. Taking atoms to be typically about 3 x 
10 -l~ m apart, so with a cross-section of an atomic separation squared, or 
(3 x 10 -1~ m )  2 - -  9 x 10 -2o m 2 ~ 10 -19 m 2, this gives a force per unit area 
of on the order of 1011 N/m 2. A commonly measured property of materials 
is the force per unit area needed to produce a given fractional change in the 
atomic separation. This is known as the elastic constant. For real materials, the 
elastic constants are also on the order of 1011 N/m 2. This agreement indicates 
(but does not prove) that electrical interactions are responsible for the elastic 
properties of materials. Assuming that breakage occurs when the fractional 
change in atomic separation is on the order of 0.1 gives a tensile stress on the 
order of 10 l~ N/m 2, much higher than for real materials: the tensile stress of 
iron is on the order of 109 N/m 2, and for string it is on the order of 107 N/m 2. 
This indicates that something else determines when a material breaks. In the 
1930s, it was discovered that details of atomic positioning, and slippage at the 
atomic level via what are called dislocations, are responsible for the relatively 
low tensile stress of most materials. 

Estimate of adhesive strength. Let us take a modest interatomic force of 
10 - l~  N to correspond to what might occur for an adhesive. Let us also take 
there to be one such interatomic force per 10 -7 m in each direction along the 
surface. (This corresponds to about 1 every 1000 atoms.) For a 1 cm 2 - 10 -4 m 2 
area, there are 10 -4 m2/10 -14 m 2 - 10 l~ such interatomic forces, leading to a net 
force of 1 N, an appreciable value. Clearly, the Coulomb force is strong enough 
to explain the behavior of adhesives~and the adhesion between living cells. 

2.4.2 Nuclei and the Need for  an At t ract ive  Nuclear Force 

The Coulomb force also acts within atomic nucleii, whose characteristic dimen- 
sion is 10 -is  m, which is called a fermi. There are two protons in a He nucleus, 
which repel each other because of the Coulomb force. We could compute this 
force from (2.1), but  it is easiest to obtain it by noting that in this case the 
charges have the same magnitude as for the electron and proton of the previous 
section, but  the distances are smaller by a factor of about 105. Since the Coulomb 
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force goes as the inverse square, the force of repulsion between two protons in 
a helium nucleus is larger by about 10 l~ relative to the electron-proton force in 
an atom Thus Fel _ _  101~ Fel ~ 2.3 • 102 N, which would support a mass ex- 

�9 p,p e , p  

ceeding 20 kg under the earth's gravity. This is enormous for such a small object. 
What keeps the nucleus from blowing apart is an attractive nuclear force between 
the nucleons (protons and neutrons). This force has a very short characteristic 
range, on the order of a fermi, but it is very strong so that within its range it can 
dominate the Coulomb repulsion. 

Consider the possible types of He nuclei. Because of the Coulomb repulsion, too many 
protons relative to neutrons is bad for nuclear stability. That is why there is no such 
thing as a stable 2He nucleus: only one pair of attractive nuclear interactions (between 
the two protons)is insufficient to overcome the Coulomb repulsion. On the other hand, 
3He has two protons and one neutron, with three pairs of attractive nuclear interac- 
tions (proton-proton, and two proton-neutron) that overcome the Coulomb repulsion 
(proton-proton). The isotope 4He, with two protons and two neutrons, has six pairs 
of attractive nuclear interactions, and is yet more stable than 3He. Additional neutrons 
must reside in nuclear orbitals that are far from the center of mass of the nucleus, and 
thus do not participate fully in the attractive interaction of the other nucleons. The iso- 
topes SHe and 6He, although observed experimentally, are unstable, and helium nuclei 
with larger numbers of neutrons have not been observed at all. Neutron stars exist only 
because they are so massive that the gravitational attraction is large enough to keep 
them together. 

2.4~3 A Simple Charge Electrometer: Measuring the Charge 
Produced by Static Electricity 

Charge electroscopes (such as gold-leaf electroscopes, or the aluminum-foil elec- 
troscope of Figure 1.25) and charge electrometers are devices for measuring 
the charge on an object, the electrometer being more quantitative. They use 
the repulsive force between like charges. Figure 2.4 depicts an experiment to 

determine how much electricity can be pro- 
duced by rubbing. Hanging from a common 
point are two threads of length l and two 
identical small conducting spheres of mass 
m, which have been given the same charge 
q by the charge-sharing process described in 
Section 1.5.2. Let us find the relationship be- 
tween the angle 0 and the charge q; clearly, 
the larger the charge, the larger the angle of 

Figure 2.4 A simple electrometer, separation. 
The two spheres are of equal This is a problem in statics, where each 
mass m and equal charge q. By ball has three forces (each with a differ- 
measuring the separation s or the ent origin) acting on it: gravity (downward), 
angle 0 (which are related), the electricity (horizontally, away from the other 
electric force and the charge can ball), and the string tension T (along the 
be determined, string, from the ball to the point where the 
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string is taped to the stick). Neither the electrical force nor the tension is known. 
We first discuss some geometry: from the separation s we can deduce the angle 
that the strings make to the normal: 

s / 2  s 
sin 0 - l = 2-7" (2.5) 

From the equations of static equilibrium applied to either ball (to be explicit, 
we'll consider the ball on the right), we can obtain two conditions. These can be 
used to eliminate the tension and to relate the electrical force to the gravitational 
force and to the geometry of the problem. 

First, the ball on the right (which we will consider to be the observer) feels 
a downward force of mg from gravity, and an upward force component  T cos 0 
from the string tension. In equilibrium, since the sum of the vertical forces is 
zero, or ~ Fy = 0, we have mg = T cos 0. This can be rewritten as 

T -  mg. (2.6) 
cos0 

In addition, the ball feels a rightward electrical force F~ - kq 2/s 2 and a leftward 
force component  T sin 0 from the string tension. In equilibrium, the sum of the 
horizontal forces is zero, or ~ Fx - O, so 

Fe = kq2 s2 = T sin 0 - mg tan O, (2.7) 

where we have eliminated T by using (2.6). Solving for q, we obtain 

~/ mg tan 0 (2.8) 
q - s  k " 

To be specific, take length l =  10 cm = 0.1 m, mass m -  4 g - 0 . 0 0 4  kg, 
and separation s = 2.5 cm = 0.025 m. Then, by (2.5), sin 0 = 0.125, so cos 0 = 
v / 1 -  (0.125) 2 - 0 . 9 9 2  and t a n 0 - 0 . 1 2 5 / 0 . 9 9 2 - 0 . 1 2 6 .  Using m, s, and 0 
from the statement of the problem, and g - 9.8 m/s 2, (2.8) gives q = 1.85 x 
10 .8 C as a typical amount  of charge that can be obtained by rubbing a comb 
through one's hair. By analyzing Figure 2.4 quantitatively, we have turned a 
qualitative electroscope into a quantitative electrometer! 

At small 0, where sin 0 and tan 0 both vary as 0, s varies as 0 and thus q varies 
as 03. Correspondingly, 0 varies as q 2. This rises very quickly for small q, so a 
measurement  of angle is quite sensitive for very small charge. However, for very 
large charge, all angles will be near 90 ~ so a measurement  of angle is insensitive 
for very large charge. 

A complete solution would require the tension T o f  the string, given by (2.6). 
This quantity becomes relevant if we have a weak string that easily can be broken. 
In most mechanics problems, physicists don't  worry about such questions, but  
mechanical and civil engineers make a living out of them. 

This problem has gravity, strings, and electricity, and at first it seems like 
apples and oranges and bananas. Just as you can add the scalars representing the 
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masses or calorie contents of different types of fruit, so you can add the vectors 
representing different types of force. 

2o5ol 

Vectors and the Principle of Superposition 

What We Mean by a Vector: Its Properties under Rotation 

Sections R.9 and R.10 discuss vectors in detail. If you aren't yet comfortable 
with vectors, and you haven't already read those sections, read them now. 

It is so important to drive this message home that we'll repeat what you 
already know. Vectors are characterized by magnitude and direction~and by their 
properties under rotation. Quantities like force, position, velocity, and acceleration 
are vectors. Their magnitudes do not change under rotation, and the orientation 
between two such quantities does not change under rotation. If a position vector 
and a force vector are at 40 ~ to each other, then after any rotation they remain 
at 40 ~ to each other. 

In contrast, consider pressure P, temperature T, and energy E. None of these 
three quantities change under a rotation in space; they are scalars. Hence the 
three-component object (T, P, E) does not transform as would a vector under 
rotations in space. Merely having three components doesn't assure "vectorness." 

2.5.2 The Principle of Superposition: Add "Em Up 

Because forces are vectors, when there are individual forces acting on a single ob- 
ject, the net force is obtained by performing vector addition on all the forces. This 
is called the principle of superposition. We used this principle in the electrometer 
example, where the three forces each had a different source. In what follows, we 
will use the principle of superposition to add up many forces of electrical origin. 
A force/~ may have components along the x-, y-, and z-directions. We specify 
these directions as the set of unit vectors ()~, 3?, ~), or (~, ], k). Indeed, we will 
sometimes write -~ for ~ and ~- for -~, ~ for ] and ~ for - j ,  and 6 for/e (out 
of page) and ~ for -1~ (into page). Thus ()~, 3?, ~) = (~, J, k) = (-~, ~, 6).  You 
should already be accustomed to seeing numerous ways to write the same thing. 
For certain problems involving gravity, it is often convenient to let down corre- 
spond to 3?- The ways in which we write the laws of physics all depend upon 
conventions (e.g., we use right-handed, not left-handed, coordinate systems). 
However, the laws themselves do not depend on these conventions. 

Explicitly, we write 

F - Fx~c + Fy~ + Fz~, (2.9) 

where Fx is the x-component of i~, and so forth. By the rules of the scalar product, 
where ~. :~ - 1, ~. ~ - 0, and so forth, we have 

f . sc = f x .  (2.10) 

Similarly, we can determine Fy and Fz. Thus, if F is specified in terms of its mag- 
nitude F - I/~1 and its direction, it also can be written in terms of its components. 
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Figure 2.5 (a) Geometry for the force on q due to ql and 
q2. Lowercase vectors refer to distances from the origin, 
and uppercase vectors refer to relative distances. 
(b) Force on q, due to ql and q2. 

Likewise, if F is specified in terms of its components,  then its magnitude can be 
computed  from 

(2.]]) 

When,  in addition to the charge q at F, there are many other charges, by 
the principle of superposition the total force is the vector sum of all the forces 
acting on q. Consider a situation with many charges qi at respective positions 
r'/. Figure 2 .5 (a )dep ic t s  only q~ and q2, in addition to q. For the pair 
q and ql, we have ~ - R1 + rl, so R1 - ~ - rl. More generally, /~i - r - ri. 
With [~i -- Ri / I ]Ri ], we see that  [~i points to the observation charge q at ~. For exam- 
ple, i f in  Figure 2.5(a) ~ - (4, 4, O) and ~ - (16, - 3 ,  0), then R~ - (-12, 7, 0), 
I R~] - x/193 - 13.89, a n d / ~  - ( -0 .864 ,  0.504, 0). 

We generalize (2.4) to obtain the force on q due to q~ as -~i - (kqq~/~2)[~. 
Summing over all/~i yields the total force on q. Explicitly, it is 
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Let's talk in terms of input  and output.  The input  consists of the charge q 
and its position ~, and the charges qi at the positions ~i. For two source charges, 
this is given in Figure 2.5(a). The output  consists of the individual forces Fi and 
their vector sum F. This is depicted in Figure 2.5(b) for the cases where the 
charges q, q~, and q2 are all positive or all negative. The relative lengths of F~ 
and F2 can only be determined when actual values for q, q~, and q2 are given; 
therefore, Figure 2.5(b) is only a schematic. Each force on q is drawn with its 
tails on q, as if a person were pulling on a string attached to q. 

• Adding force almost always produces magnitudes 
garbage 

Adding vector magnitudes to obtain the magnitude of a sum of vectors 
only works when the vectors have the same direction. Thus, adding vector 
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magnitudes usually gives incorrect answers. For example, if two horses pull 
on opposite sides of a rope, each with 200 N force, the resultant vector force 
on the rope is zero, so its magnitude is zero, not 400 N. 

Let's dignify this important result with the unnumbered equation 

F = F 1 + F2, but I FI _< IF 11 + IF2 I, when adding two forces. 

Another example of this result is given by the forces in Figure 2.5(b). This sort 
of equation (called a constraint) holds when we add two vectors of any type. 

Cancellation of two collinear forces :xamDle 2.~ 

Consider that, for two charges ql and q2 whose positions are known, we 
would like to know where to place a third charge q so that it feels no net 
force due to ql and q2. We are free to choose a geometry where the charges 
are along the x-axis, with ql at the origin, and q2 a distance l to its right. 
Thus our specific question is: where should q be placed in order to feel no 
net force? (Our answer will be independent of q, a fact that is related to the 
concept of the electric field, which will be introduced in the next chapter.) 
Before performing any calculations, note that for there to be zero net force, the 
two forces on q must have equal magnitude but opposite direction. The latter 
condition can only hold if the third charge is placed on the line determined 
by ql and q2. There are two possibilities. 

(a)  ql and q2 have the same sign. In this case, q should be placed between 
ql and q2, at some distance s from ql (to be determined) where q will 
feel canceling attractions (or repulsions) F 1 = - F 2 from qL and q2. To be 
specific, let all charges be positive. See Figure 2.6(a). Then F 1 points away 
from ql and F 2 points away from q2, by "likes repel." As in Figure 2.5(b), 
the forces on q are drawn with their tails on q. Note that the position s 
where the forces P l and/~2 cancel will not change if the signs of all the 
charges are reversed,~ because again "likes repel." Moreover, the position 
s where the forces F1 and F? cancel will not change if the sign of q is 
reversed, or if the signs of both ql and q2 are reversed, because then, 
although the forces change direction, they still cancel. 

Let the magnitudes F1,2 - I F  1,2l. By (2.1) or (2.4), the equilibrium 
condition that F1 = F2 gives 

kqql kqq2 
= (2.13) 

s 2 ( l  - s )  2" 

Canceling kq, taking the positive square root (remember, we have already 

Figure 2.6 Locating the zero-force position. (a) When the 
two source charges have the same sign. (b) When the two 
source charges have opposite sign. How would this figure 
look for q < 0? 
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determined that 0 < s < l), and inverting each side, we obtain 

s / - - $  

,/q7 
(2. ]4)  

Solving for s, we obtain 

In taking limits where some quantity 
goes to zero or to infinity, it is often 
convenient to make that quantity a di- 
mensionless ratio. For the test charge to 
approach the weaker charge,/is fixed 
and s gets smaller. We could obtain the 
same limit by keeping s fixed and letting 
/ get larger. Using the dimensionless ra- 
tio s/I takes care of both possibilities. 

I 
s = . ( 2 . 1 5 )  

x/q2/ql + 1 

This value of s is independent of the value 
of q; doubling q doubles each force, so 
they continue to cancel at the same posi- 
tion. As checks, note that (1) s = I/2 for 
ql = q2 (i.e., the test charge is equidistant 
between two equal charges); (2) s / l - +  0 
as q2 / q l -+  oo (i.e., the test charge ap- 
proaches the weaker charge, here ql); and 
(3) s / l - +  1 as q2 /q l -+  0 (i.e., again the 
test charge approaches the weaker charge, 
now q2). 

(b) q] and q2 have opposite sign. It will be sufficient to consider the case 
q~ (<0), q2(>0), and q(>0),  because the other cases of this type are re- 
lated to this one simply by changes in direction of both forces. To be 
specific, let Iql] < ]q2l. Then q should be placed on the same line, but to 
the left of the weaker charge ql, so that proximity can compensate for 
weakness. See Figure 2.6(b). The two forces will cancel when q is placed 
a distance s (to be determined) to the left of q~. By (2.1), the equilibrium 
condition that F1 - F2 gives 

kqlql l  kqlq2l = (2.16) 
s 2 (l + s) 2" 

Solving for s as before, we now obtain 

l 
s = (Iq2/qll > 1). (2.17) 

~/I q2/ql l - 1' 

As checks, note that (1) s -+ ~ as lq2 /q l l -+  1 (i.e., for equal strength 
source charges, the only way their forces cancel out, if one is nearer q than 
the other, is if q is at infinity); and (2) s -+ 0 as I ql/q2l--> 0 (i.e., the test 
charge approaches the weaker charge, here ql). 

We are often tempted to develop a totally general equation that will include all cases-- 
"one size fits all." However, if we generalize too soon, we might not notice some 
fundamental distinctions. This often occurs in computer programming, where an algo- 
rithm developed for one situation does not work properly when applied to another. The 
related cases of like and unlike charges really should be treated separately. 
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~ Addition of two noncollinear forces 

Now consider the force on q due to ql and q2 when the three charges do 
not lie along a line. In principle, the charges can be anywhere with respect 
to a fixed coordinate system, each of them requiring three numbers (x, y, z) 
to specify its position. However, because there are only three charges, and 
three noncollinear points define a plane, which we may choose to be the 
xy-plane, only two numbers (x, y) per charge will be required to specify 
each position. Further, we can place q at the origin, so ~ = 0, leaving only 
two numbers (x, y) per charge to specify the positions of ql and q2. The last 
allowed simplification is to take ql to lie along a specific direction, such as )~. 
The third charge, q3, can lie anywhere in the xy-plane. Thus, the geometry is 
specified with a total of three numbers, which we take to be the distances R1 
and R2 of ql and q2 to the origin, and the angle ~)2 that R2 makes with respect 
to the x-axis (we have already taken ~)1 = 0). The problem is to find the 
net force on q. To be specific, let q = 2.0 x 10 -9 C, ql = - 4 . 0  • 10 -9 C and 
q2 = 6.0 • 10 -9 C, R1 = 0.2 m, R2 = 0.3 m, and ~)2 = 55 ~ See Figure 2.7(a). 

Find the net force on q. 

Solution: There are at least two ways in which we can proceed to solve this prob- 
lem. We shall call one the common sense method, which is particularly appropriate 
when there are only a few forces involved. (We call it the common sense method 
because it has been said, with much truth, that science is simply common sense, 
but more refined.) We shall call the other method the formal method because it 
is a bit akin to the higher mathematics to which J. J. Thomson was referring in 
the quote at the end of Section R.5. When we have a choice, the first method is 
preferable, but there are times when the only practical method is the second one. 
We will use both in the present case. 

The common sense method first finds the 
If you don't know at least two ways to 
solve a problem, you may not really un- 
derstand the problem in a deeper sense. 
Competent practitioners in any area can 
solve a given problem in multiple ways. 

magnitude of each force acting on q (the ob- 
server) by using (2.1), then gets the direction 
of each force by "opposites attract, likes repel," 
and finally performs the vector addition. That 
is more or less what we did in the previous 
example. The formal method uses (2.12) to 

compute each force in terms of its vector components (so we actually compute 
the magnitudes of the individual forces), and adds up the components. 

Figure 2.7 Force on q at origin, due to ql and q2. 
(a) Geometry of the problem. (b) Solution of the problem 
in terms of individual forces and the total force. 
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Common  sense method.  First, we find the magnitude F1 -- I Fll  of the force 
acting on q due to ql. By Coulomb's law, as in (2.1), 

kl qqll (9 x 109 N-m 2 / C2)l(2 x 10 -9 C ) ( - 4  x 10 .9 C)I 
F1 - -  = 

R 2 ( 0 . 2  m )  2 

= l . 8 x  10-6 N. 

Note that  F1 must  be positive because it is the magnitude, or absolute value, of 
/~ 1. Similarly, 

klqqi] (9 x 109 N-m 2 / C2)l(2 x 10 -9 C)(6 x 10 -9 C)] 
F 2 - ~  = 

R 2 (0.3 m) 2 

= l . 2 x 1 0 - 6 N .  

Using "opposites attract, likes repel," we can now draw the force diagram (com- 
pare Figure 2.7b). This leads to the force components 

F~ - F1 - F2 COS02 = 1.8 x 10 -6 N -  1.2 x 10 -6 N cos55 ~ 

= 1.112 x 10 -6 N, 

Fy - - F2 sin 02 - -  -0 .983  x 10 -6 N. 

Thus, as in Figure 2.7,/~ lies in the fourth quadrant. We also have 

F = I F I - v / F 2 + F  2 - 1 . 4 8 4 •  10 - 6 N ,  

and/~ makes an angle with slope 

tan0 = Fy _- -0 .884 ,  
Fx 

corresponding to an angle 0 in the fourth quadrant, with 0 = - 4 1 . 5  ~ or - 0 . 7 2 4  
radians. If/~ had been in the second quadrant, its tangent would also have been 
negative, so to obtain the correct angle we would have had to add 180 ~ (or Jr 
radians) to the inverse tangent of tan 0. 

If the positions of both q~ and q2 are rotated by 24 ~ clockwise, F too is rotated by 24 ~ 
clockwise, to an angle of - 4 1 . 5 -  24 = -65 .5  ~ relative to the x-axis. Its magnitude is 
unchanged. Thus, the value of Fx for the rotated charges would be I f  Icos ( - 6 5 . 5 ) -  
0.613 x 10 -6 N. This way to calculate the rotated Fx is simpler than recomputing and 
adding the x-components of the rotated versions of the individual forces. 

Formal method.  Even with the formal method, there are at least two ways to 
proceed. We may rewrite (2.12) as 

kqqi 
P - ~ Fi*Ri, F~* = (2.12') 

i Ri 2 '  

or as 

F ~. -~kqqi ~Ri, ~Ri - ~ - Fi . (2.12") 

Using (2.12'), we must  first compute  the signed force Fi* due to the i charge, 
and then the unit vector /~i. Thus, as an intermediate step, we can readily 
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Table 2.1 Force Calculation 

x1 Yl Z1 Xl Yl Zl R1 F~ FI* ( xl Yl Zl 

determine the magnitude of each of the individual forces, via F1 = I Fil - [El* I, 
and we can also readily determine the direction of the force. Use of (2.12'), 
although part of the formal approach, is closely related to the commonsense 
method. In Appendix B we use (2.12') to solve the last example using a spread- 
sheet. 

Equation (2.12") requires fewer operations than (2.12'). This is because 
(2.12") does not require the intermediate computation of/~i = i~i/] i~i]. However, 
with (2.12") we do not obtain the magnitude and direction of each individual 
force. Both procedures work. (Different strokes for different folks.) Table 2.1 in- 
dicates specifically what computations would have to be made using (2.12") for 
the force F1 on q at (x, y, z) due to ql at (Xl, yl, zl). The table uses X1 = x - xl, 
and so on, and Fi* of (2.12'). Columns 9, 10, and 11 contain the x-, y-, and 
z-components of F 1. 

Use of Symmetry 

When the source charge is symmetrically placed, and the observation charge is at 
a position where this symmetry is evident, certain simplifications can be made. 
We will discuss two ways to use symmetry. First, in doing a computat ion we 
notice that  certain terms must  add or cancel. Second, by some general principle 
or principles, and the fact that  force is a vector (so that  it rotates when the source 
charges rotate), we learn that  certain possibilities are disallowed. 

~ Force to two equal charges due 

Let there be two equal source charges Q symmetrically placed on the x-axis, 
and the observation charge q be along the y-axis. In what direction does the 
net force on q point? 

Solution: See Figure 2.8(a), where the individual forces/~1 and/~2, and their 
resultant F have been drawn. By symmetry, F must be along the y-axis because 
the x-components of the individual forces cancel. 

~ Force to two equal opposite charges due and 

In Example 2.4, let one source charge be replaced by - Q ,  as in Figure 2.8(b). 
In what direction does the net force on q point? 

Solution: By symmetry, the net force must be along the x-axis because now the 
y-components of the individual forces cancel. 

The above arguments are computational  in nature. Here is a noncompu-  
tational symmetry argument. Consider first the two equal source charges Q 
in Figure 2.8(a). Rotating them by 180 ~ about the y-axis gives an equivalent 
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Figure 2.8 Force on q along perpendicular bisector 
between two charges. (a) Equal charges Q. (b) Equal and 
opposite charges + Q. 

configuration, and therefore the net force on q does not change. Specifically, 
Fx does not change under this interchange of charges. However, for any vec- 
tor (including the net force), a rotation about y must  change the sign of 
its x-component.  The only way for Fx to both change sign and not change 
sign is if Fx -- 0. Consider now the equal and opposite source charges i Q  of 
Figure 2.8(lo). Rotating by 180 ~ about the y-axis, which interchanges the charges, 
must  preserve the y-components of the forces. But interchanging the charges re- 
verses the directions of the individual forces, including the y-components.  The 
only way for Fy to both change sign and not change sign is if Fy = 0. 

~ Force due to three equal charges 

Let there be three equal source charges ql = q2 = q3 = Q placed at the cor- 
ners of an equilateral triangle. Let an observation charge q be placed at the 
very center of the triangle. What is the net force on the observation charge, q ? 

Solution: See Figure 2.9, where the individual forces on q are given. The net 
force on q is zero, as can be established by algebraic computation, by numerical 
computation using particular values for the side of the triangle and the charges, 
and by the following argument. The forces on q due to each of these charges all 
have the same magnitudes, but are rotated by + 120 ~ relative to one another. The 
forces thus form the arms of an equilateral triangle that, under vector addition, 
sum to zero. 

Figure 2.9 Individual forces on 
q at the center of three equal 
charges ql = q2 = q3 = Qat  
the vertices of an equilateral 
triangle. 

A noncomputational  symmetry argument for 
Example 2.6 begins by observing that  the net 
force must  lie in the xy-plane. Because force 
is a vector, if the source charges are rotated by 
120 ~ either clockwise or counterclockwise, the 
force must  rotate in the same way. However, 
since q~ = q2 = q3 = Q, this rotation produces 
the original charge distribution, and therefore 
the same force. Hence the force must  be zero. 
For a large number  (e.g., 47) of equal source 
charges at equal radii and angles, you can gener- 
alize this argument to show that  the force on a 
charge at their center is also zero. For this more 
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complex case, there is no computational symmetry argument. (Of course, for an 
even number of charges, the net cancellation is obvious because opposite pairs 
would produce canceling forces.) 

2.7 Force Due to a Line Charge- Approximate 
and Integral Calculus Solutions 

Let us obtain the force P on a charge q at the origin, due to a net charge Q that 
is uniformly distributed over the line segment from (a,-l/2, 0) to (a, l/2, 0). 
See Figure 2.10(a). 

Note that Fy = F~ -- 0, by symmetry. In principle, to find F~ requires calcu- 
lus, where we break up the continuous line charge into an infinite number of 
infinitesimal point charges dQ, and add up their (vector) forces d/~ on q. See 
Figure 2.10(b). However, we will first consider what happens when we approx- 
imate the line charge by a finite number of point charges, and we add up their 
vector forces, using a spreadsheet. 

Approximate approach. Spreadsheets can calculate numbers from algebraic 
formulas, but cannot perform algebra. (See Appendix B for an introduction to 
spreadsheets, in case you are not already familiar with them.) Therefore we will 
have to use specific values for q, Q, a, and l. We can employ our earlier problem, 
merely extending the number of rows to accommodate the number of charges 
in our approximation. Let us take q = 10 -9 C, Q =  5 x 10 -9 C, a = 1 m, and 
l = 7 m. Now consider various approximations to the line charge Q. 

1. Approximating Q by a single charge may be done by putting all of Q at the 
midpoint (1, O) of the line. In this case, there is no y-component, so all the 
force is along the x-direction. This gives a force of 45 x 10 -9 N. 

2. Approximating Q by two subcharges may be done by breaking the line into 
two equal segments of length 7/2, and placing Q/2 at the segment midpoints, 
given by (1, 7/4) and (1, -7 /4 ) .  This gives a force of 5.5 x 10 -9 N. 

Figure 2.10 The force on a point charge due to a line charge. (a) Statement of the 
problem. (b) Force due to an element dq. (c) Force due to a discretization of the line 
into three equal charges. 
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Table 2.2 Force as a function of the number n of subcharges 

Fn 45 5.50 16.83 10.60 13.22 12.01 12.53 12.30 12.40 12.3540 12.3714 12.3631 

There are many notational choices we 
can employ to solve a problem, espe- 
cially in choosing intermediate variables. 
However, the final answer must be in- 
dependent of intermediate notation. 

3. Approximating Q by three subcharges may be done by breaking the line into 
three equal segments of length 7/3, and placing Q/3  at the segment mid- 
points, given by (1, 7 / 2 -  (1/2).  7/3) = (1, 7/3), (1, 7 / 2 -  (3/2) .  7/3) = 
(1, 0), and (1, 7/2 - (5/2) .  7/3) = ( 1 , - 7 / 3 ) .  See Figure 2.10(c). This gives 
a force of 16.83 x 10 -9 N. [These calculations are worth doing yourself, 
either with pencil and paper or with a spreadsheet, to verify that you re- 
ally understand how to use (2.12). ] 

More generally, we have Q / n  on n subcharges, at the positions (1, 7 / 2 -  
(1/2).  7 / n), (1, 7/2 - (3/2).  7 / n), and so on. By using the calculation capability 
of the spreadsheet, we can compute Fn for various n. By the symmetry of the 
problem, only the x-components of the individual forces need be calculated. 
Moreover, the net force F points to the left, so Fx has a negative sign. Table 2.2 
shows the magnitude of the sum of the x-components for n segments. It is given 
as Fn, and is in units of 10 -9 N for n up to 12. The sums are converging. 

Calculus approach. First set up the problem, which means picking out a 
typical piece of charge. Figure 2.10(b) shows one dQin  the interval dy centered 
at y. The line is divided into infinitely many d ~ s  spanning the range from 
y - - l / 2  to y - l/2. Corresponding to this y is an angle that we call 0, and a 
direction/~ to the observation charge q. The dQacts  with a force d F on q. Our 
goal is to add up the dF's for all the d ~ s  that constitute the line charge, to 
obtain the total force P acting on q. 

There is an order in which you must perform ordinary mathematical opera- 
tions: multiplication and division are performed before addition and subtraction. 
Similarly, there is an order in which you must perform the mathematical oper- 
ations associated with integral calculus: identify the type of differential you are 
adding up; find its vector components (if it is a vector); then separately add up each 
set of components. In the present case, we add up the x-components dFx to obtain 
Fx, and so on. 

As in the previous subsection, to find the force on q we need only consider the 
x-component of the force, or Fx. (By the symmetry of the problem, Fy = 0.) Now, 

instead of n segments of length 7/n and charge 
(Q/7) (7 /n)  -- (Q/n) ,  we have an infinite num- 
ber of segments of infinitesimal length ds = dy > 
0. The charge per unit length is )~ = d Q/ds  = 
( Q / l )  because the charge Q is distributed uni- 
formly over l. Thus dy has charge d Q = )~dy = 
(Q/ l )dy .  (Of course, if we add up all the d Q's, 
we will obtain Q.) We now apply the common- 
sense method to find d Fx due to d Q  For gener- 

ality, instead of a = 1 and l = 7, we will employ the symbols a and l. 
From (2.1), the magnitude dF - [d/~] of the force d/~ between q and d Q, 

separated by R = via 2 + y2 is d F - kq[dQ) /R  2. We now find the component 
dFx of the force dF along x. From dF in Figure 2.10(lo), this component is 
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dF~ = - d F  cos 0. Then, with d Q - ( Q / l ) d y ,  we obtain 

dFx = - d F  cos 0 - - 
kq (d Q)  cos O kq Q cosO dy 

(a 2 + y2) l(a 2 + y2) �9 (2.18) 

We've got to make a decision now: to eliminate y in favor of O, or vice versa. We 
choose to eliminate y. Figure 2.10(b) shows that  y = a tan 0. Thus 

d y -  (dy/dO)dO - a(d tan O/dO)dO - a sec 20dO 

and 

a 2 + y 2 _ a 2 ( l + t a n  2 0 ) _ a  2sec 20, 

so (2.18) becomes 

d Fx = kq Q cos 0 (a sec 20dO) kq Q cos 0 
- la 3 sec 2 0 = - al dO. (2.19) 

We're now ready to actually employ the integral calculus (so far we've only 
used differential calculus to express dFx). Before doing so, let's note that  for 
two reasons this problem is more complex than integrating to add up the total 
charge Q on an object (as in Section 1.9). First, force is a vector, whereas charge 
is a scalar, so we have to determine vector components  in this case. Second, the 
value of the force on q depends on its position, whereas the amount  of charge on 
an object doesn't  depend on the position of whoever is adding up that  charge. 
In Chapter  5, where we discuss electrical potential, we will perform integrals of 
intermediate complexity: they are scalars (as for charge), but  they depend on 
the position of the observer (as for force). 

Now we do the integral to obtain Fx. We have 

-- -- cos OdO - sin 0 
al o_ al 

0+ 

�9 (2.20) 
O_ 

From Figure 2.10(b), with a - 1 and l - 7, the maximum and min imum angles 
0+ and 0_ satisfy sin 0+ - ( l /2) /v /a  2 + (//2) 2 - - sin 0_. Thus 

kqQ 
F~ - - . (2.21) 

av/a 2 + (//2) 2 

For a - 1  m, I - 7  m, q - 1 0  -9 C, and Q - 5  x 10 -9 C, (2.21) yields Fx= 
- 1 2 . 3 6 2 4 5 0  x 10 -9 N. It is very close to the value obtained numerically from 
Table 2.2. For a different set of i n p u t s ~ a - 3  m, l -  4 m, q -  4 x 10 -9 C, and 
Q - - 2  x 10 -9 C ~ ( 2 . 2 1 )  yields Fx - - 6 . 6 5 6  x 10 -9 N. The advantage of the 
general analytical expression (2.21) over brute force summation should be ap- 
parent. On the other hand, a computer  can reevaluate a spreadsheet sum very 
quickly when the inputs change. 

Checks are very important, in both numerical and analytical work. If you 
derive a result that  is very general, it should work for specific cases whose answer 
you already know, and therefore you should look for specific cases that  can serve 
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Because of what it will teach you about calculus and vectors, the derivation of (2.21) 
is in some ways the most important example in the book. Reread the statement of the 
problem and its solution until you understand it well enough to explain every step to 
someone else. Then try to reproduce the solution on your own. Understand it, don't 
memorize it. Learning how to solve this type of problem, involving integral calculus, 
represents a major level of intellectual achievement. 

as checks. Without an analytic check that the spreadsheet or computer gives the 
correct result in at least one case, we cannot be sure that it gives the correct result 
in any case. With this in mind, comparison of our analytic work of (2.21) with 
Table 2.2 produced from the spreadsheet shows excellent agreement. Another 
check that can be made is to take the limit where the length l goes to zero; 
the line charge contracts to a point charge. Then (2.21) yields Fx = - k q  Q / a  2, 
which is what we expect, by (2.1). 

For an infinite wire, it is convenient to employ the charge per unit length ~, 
rather than the charge Q ,  which becomes infinite. In the present case, we have 
)~ - Q~  l, and now we let l / a  -~ ~ .  Thus we can neglect a in via 2 + ( l /2)  2. Thus 
Q / v / a  2 + ( l /2)  2 ~ Q ~  ( l /2)  - (2 Q~ l) - 2)~. Hence (2.21) yields 

Fx 2 kq )~ - ~ ,  )~ - Q / l ,  l / a  --> cx~. (2.22) 

Here is a way to check this r -1 result. Consider two identical infinite, parallel 
rods, and an observation charge q in their plane at a position that makes one 

2dQ 

a a 

Figure 2.11 Charge q and 
elements of charge dq and 2dq 
from two rods of equal charge 
density. The magnitudes of the 
forces on q are the same in each 
case. 

of the rods twice as far away. See Figure 2.11. 
Let a pair of closely spaced lines originate ra- 
dially at the observer and intersect both rods. 
The distance r' to the intersection of the ra- 
dial lines is twice as big for the further rod as 
for the nearer rod. If the charge intersected by 
the radial lines is d Q  for the nearer rod, then 
the charge intersected is 2 d Q for the further 
rod. By (2.4), with its inverse square depen- 
dence on distance and its linear dependence 
on charge, for each corresponding element in- 
tersected by the radial lines the force due to 
the further rod is (1/2)22 - 1/2 that due to 
the nearer rod. Hence, if both rods are infi- 
nite, adding up the effects for all elements of 
charge will give a total force due to the fur- 
ther rod that is one-half that due to the nearer 
rod. This is in agreement with the r -1 result 

of (2.22). Only by doing the integral, however, can we obtain the coefficient of 
proportionality. 

In contrast to the spreadsheet result, the integral calculus result is exact. If 
we set up the spreadsheet calculation with an arbitrary position for q, so we 
also compute Fy, then by changing the position of q, the spreadsheet will nearly 
instantly calculate the force at any position. However, numerous changes have to 
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be made to obtain the integral calculus result. Although this problem~to find the 
force on q if it is placed at any position in the plane~can be done in a closed form, 
there are many problems where even a slight change in the observation point will 
cause the resulting integrals to be vastly more complicated or even unsolvable. 
It is straightforward to use calculus to obtain the force on a charge q placed at 
the center of a uniformly charged half-circle. However, if q is moved slightly 
off-center, the problem cannot be solved by elementary methods of calculus. 
The numerical approach will work equally well for q both on- and off-center. 

Don't  think that the numerical approach is always applicable. Try evaluating 

(1 + x )  1/2 - 1 

for x - 10 -3~ To 30 decimal places, the answer is nearly one-half, but your cal- 
culator will give you zero because it doesn't keep numbers to 30 places. However, 
by making a straight line approximation to (1 + x) 1/2 near x - 0, with slope at 
x - 0 given by (d/dx)(1 + x)l/2lx= o - �89 + x)-l/2lx=o - �89 we can obtain the 
desired result. 

2~ Study and Problem Solving Strategy 

As you have seen, the subject of electricity and magnetism, or E&M to the 
cognoscenti, requires a mathematical background in algebra, geometry, and 
trigonometry. Chapter 1 required integral calculus, and the current chapter re- 
quires vectors and integral calculus. 

2.8.1 Some Advice  on H o w  to Succeed in E & M  

This chapter introduces more difficult material, involving both vectors and cal- 
culus. In performing integrals over vectors, first obtain the small vector you are adding 
up, and then find its components. Only after this should you consider the integral 
calculus aspect (which involves, after all, just a method to perform summation). 
Many students worry so much about getting the calculus right that they miss the 
vector aspects of a problem. 

The biggest hindrance to student understanding is an inability to see common- 
sense simplicity. There is a natural and understandable reason for this; many 
students are so involved in learning how to perform technical details that they 
don't see the forest for the trees. Ifyou can't efficiently and correctly deal with the 
details, then you won't have the leisure to sit back and think about the overview; 
you'll be exhausted simply by the task of getting the details right. Nevertheless, 
you have not completed a problem until you have looked back on it and asked 
the common sense questions that your grandmother might ask: for example, 
"are there any comparisons that can be made to related problems?" In the next 
chapter, we will study the electric field along the axis of a uniform disk of charge. 
Far away from the disk, the field should look like that for a point charge; up close 
it should look like that for an infinite sheet. Both of these extreme cases provide 
common sense checks, and are questions that could be asked by someone who 
has not even studied E&M ~. 
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Finally, a word about proportionality and scaling. In Section 2.4, we deter- 
mined the force between two protons in a helium nucleus not by computing it 
directly, but by comparing it with the already known force between a proton 
and an electron in a hydrogen atom. We used the fact that the magnitudes of 
the charges on the electron and proton are the same, but that the separation of 
two protons in the nucleus is a factor of 10 -s smaller than the electron-proton 
separation in the atom. Then, applying the inverse square law for electricity, 
we deduced that the Coulomb repulsion between two protons in the nucleus is 
10 l~ bigger than the Coulomb attraction between an electron and proton in a 
hydrogen atom. This type of proportional reasoning is essential in scientific and 
engineering problems. Scientists and engineers repeatedly must consider how 
certain effects scale as various dimensions or velocities change. They don't re- 
compute or remeasure everything~when appropriate, they scale the results. 
This is the basis of wind tunnels, for example, as used in aircraft design. Suc- 
cessful science and engineering students know how to employ this method of 
reasoning. 

Some Comments about Problem Solving 

Asking your own questions. Problems do not come out of nowhere. Someone 
has to think them up. For this book, the author had to think them up--with  the 
assistance of a vast array of problems available from other books on this subject. 
Here is a secret. Not only can problems be solved, they can also be made up. 
You can do it yourself (it is an example of what has been called active learning). 
For each chapter, spend a minute or two thinking about how to make up an 
interesting variant on at least one problem. Here are some possibilities. 

m If you don't know what an equation means, try putting in numbers or, if 
appropriate, try drawing a graph. This is the most important rule of all! It's 
how scientists and engineers get started when they confront an equation 
whose meaning they don't understand. 

2. Think about how to turn a doable problem to an undoable one. 

3. Think about how to turn an undoable problem to a doable one--and do it. 

11 

m 

Think about how to design an experiment. For example, in the electrometer 
problem, the string might have a certain breaking strength, and we want to 
know how much charge we can put on an object before the tension exceeds 
this breaking strength. 

Make up a problem in which numbers, graphs, and equations are relevant; 
in the problems on the cancellation of two electrical forces, a sketch of the 
strengths of each force as a function of position is very revealing. 

6. Think up what-if questions. 

Although the bread and butter of physics is its ability to give precise answers 
to difficult but well defined questions, you should avoid the tendency to think 
exclusively in terms of stylized, closed-form mathematics problems. Often a sim- 
ple qualitative question, whose answer can be given with a simple yes or no, or 
a direction, or greater than or less than, can teach a concept more efficiently 
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"You can't learn to swim if you don't jump in the water." 
--Anonymous 

"Tourist to passerby in Manhattan: How do you get to Carnegie Hall?" 
Violinist Jascha He/ritz, without breaking stride: "Practice, practice, practice/" 

"To learn to play the blues, first you have to learn to play one song really well." 
--Mance Lipscomb (1971 ), musician from Navasota, Texas 

"The secret to success is being able to find more than one way to get the job done." 
--Anonymous 

and effectively than a full-blown problem that  requires an enormous  amount  of 
calculation. In any situation, even outside physics, one must  be careful not  to 
lose the overview in a confusion of details. 

Thinking clearly. W h e n  you begin a problem, draw a figure in which the 
variables are clearly defined. W h e n  you complete  a problem, ask, "What  have 
I learned?" Think about  how to modify the problem, and ask, "What  changes 
does the modification cause?" Learn how to recognize problems that  you have 
seen before, even when in disguise: if an automobile  mechanic knows how to 
change a tire on a Ford, he cannot  not  plead ignorance when  someone brings 
him a Chevrolet.  

Styles of studying. There are different styles of studying. Many students work  
by themselves and don ' t  spend much  t ime giving explanations to others. In so 
doing, they lose the oppor tun i ty  to learn while explaining. On  the other  hand, 
those who work only in groups are missing the oppor tuni ty  to build their intel- 
lectual muscles; you don ' t  go to the gym to watch others get in shape. Everyone 
should be doing some of both.  

Problems 

2-2.1 (a) If, in Robison's experiment (see 
Figure 2.1), ql (with mass ml) is directly above q2, 

show that the equilibrium condition is k q l q 2 / r  2 = 

m l g .  Neglect the mass of the holder. (b) If ml 
doubles, how does r change? Does the depen- 
dence of r on ml make sense qualitatively? (c) For 
ql = q 2 -  q, ml = 75 g, and r = 4.5 cm, find q. 
(d) How would the equilibrium condition change if 
the top arm (held at a loose pivot) had mass M and 
length l? 

2-2.2 (a) In a Coulomb's law experiment, as in 
Figure 2.2, a torque of 1.73 x 10 -4 N-m is mea- 
sured for a 2 ~ twist. Find the torsion constant K. 
(b) ql = q2 = 2.4 x 10 -8 C causes a twist of 5 ~ 
Find r. 

2-3.1 Joan and Laura are separated by 15 m. 
Joan has a charge of 4.50 • 10 -8 C, and Laura 

has a charge of -2.65 x 10 -6 C. Find the force 
between them, and indicate whether it is attractive 
or repulsive. 

2-3.2 Two regions of a thundercloud have charges 
of +5 C. Treating them as point charges a distance 
3 km apart, determine the force between these re- 
gions of charge, and indicate whether it is attractive 
or repulsive. 

2-3.3 The basketball player Michael Jordan is 
about 2 m tall, and weighs about 90 kg. What equal 
charges would have to be placed at his feet and his 
head to produce an electrical repulsion of the same 
magnitude as his weight? 

2-3.4 Two point charges are separated by 2.8 cm. 
The force between them is 8.4 mN, and the sum of 
their charges is zero. Find their individual charges, 
and indicate whether the force is attractive or 
repulsive. 
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2 - 3 . 5  Show that, at fixed separation a, the max- 
imum repulsion between two point charges of 
total charge Q occurs when each charge equals 
Q/2. 

2 - 3 . 6  Two point charges sum to -5 /~C.  At a sep- 
aration of 2 cm, they exert a force of 80 N on 
each other. Find the two charges for the cases when 
(a) the forces are attractive, and (lo) when they 
are repulsive. [Answer: (a) ql = - 5 . 6 3  #C, q2 = 
0.63 #C; (b)ql  - - 4 . 1 4  #C, q2 - -0 .858  #C.] 

2 -3 .7  Consider two space ships of mass M -  
1000 kg in outer space. What  equal and opposite 
charges would have to be given to them so that once 
an earth day they make circular orbits about their 
center at a separation of 200 m? Neglect their grav- 
itational interaction, which at that distance would 
cause them to orbit only every 563 days. 

2 - 3 . 8  Two point charges sum to -0 .5  #C. At a 
separation of 2 cm, they exert a force of 80 N on 
each other. Find the two charges for the cases when 
(a) the forces are attractive, and (b) when they are 
repulsive. 

2 - 3 . 9  In esu-cgs units, where length is measured 
in cm, time in s, and mass in g, we take kesu = 1. (a) 
Find the esu unit of charge, called the statcoulomb 
(sC) in terms of the SI unit of charge (C). (b) Find 
the charge of an electron in esu units. [Answer: 
1 C =  3 • 109 sC, eesu--4.8 • 10 -10 sC.] 

2-4.1 Refer to the electrometer example of 
Figure 2.4. Let the tension at breaking be Tmax- 
2mg. Find the value of ~)m~x and an algebraic expres- 
sion for qm~x. 

2 - 4 . 2  In the electrometer example, find the 
angles and tensions if q L -  0.925 • 10 -8 C and 
qR = 3.7 • 10 -8 C? (Hint: No complex calculation 
is necessary. You can use results already obtained. If 
you are stumped, have a look at Problem 2.4.4a.) 

2 -4 .3  In the electrometer example of Figure 2.4, 
if the angles are ~) for qL = qR - q, what are they for 

1 q? Hint: If you are stumped, have qL - 2q, qR - 
a look at Problem 2-4.4(a). 

2 - 4 . 4  Two identical masses are suspended by 
identical strings. If the charges are the same, the 
strings make equal angles to the vertical. (a) If 
the charges are different, are the angles different? 
(b) If the masses are different, are the angles dif- 
ferent? (Hint: Make the charges or masses very 
different.) 

2-4.5 A positively charged bead q can slide with- 
out friction around a vertical hoop of radius R. A 
fixed positive charge Q is at the bottom of the 
hoop. Counterclockwise angular displacements of 
q relative to Q correspond to ~) > 0. (a) Find the 
electrical force on q, as a function of ~). (b) Find 
the component of this force along the hoop. See 
Figure 2.12. 

Q 

Figure 2.12 Problem 2-4.5. 

2-5.1 Let Q 1 = 5 •  -8 C be at (0,0), and 
Q2 = - 4  • 10 -8 C be at (3, 0), in m. A charge Q3 
is placed somewhere on the x-axis where the force 
on Q3 is zero. (a) If the value of Q3 is adjusted so 
that the force on Q1 is zero, find the force on Q2. 
(b) Find where Q3 should be placed to feel no net 
force. (c) Find the value of Q3 that will make Q1 
feel zero net force. 

2-5.2 Consider two charges, Q1 = 5 • 10 -8 C at 
(1 cm, 0), and Q2 = - 4  • 10 -8 C at ( - 2  cm, 4 cm). 
We want to find the position where a third charge 
Q should be placed for it to feel zero net force. 
(a) Present two methods for doing this. 
(b) Solve the problem by either method. 

2-5.3 Three charges are at the corners of an equi- 
lateral triangle of side l -- 10 cm. See Figure 2.13. 
If 2/~C is at the origin, and -3 /~C  is at (l, 0), find 
the force on 4/~C, at (l/2, ~/3l/2). 

4 

2 -3 

Figure 2.13 Problem 2-5.3. 

2-5.4 Three charges Q are placed at the corners 
(0, 0), (a, 0), and (0, a) of a square. See Figure 2.14. 
(a) Find the force on q placed at (a, a). (b) Find the 
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force on q placed at (a/2, - a / 2 ) .  (c) Find the force 
on q placed at ( - a ,  - a ) .  

Q O  O q  

Q O  O Q  

Figure 2.14 Problem 2-5.4. 

~!!i~!i!!!' 2-5.5 Repeat the force calculation for the 
..... ::~: .......... example of the addition of two noncollinear 

forces on a charge q. However, now let ql be at the 
origin, and rotate about the z-axis to make q2 along 
the new x-axis. See Figure 2.15. To produce this 
requires, in Figure 2.7, rotating the line connect- 
ing ql and q2 by an angle ~b, where m = tan ~b = 
(r2 sin02 -- O)/((r2 cos02 - -  rl) ---- --8.800. Thus, in 
radian measure, ~b = -83.52~ + Jr = 1.683 
radians. (We add Jr because we know, by Fig- 
ure 2.7, that ~b is in the first or second quadrant, 
whereas the calculator returns only a value in the 
first or fourth quadrant.) In degrees, ~b = 96.5 ~ By 
putting ql at the origin, and rotating clockwise by 
~b, we put q2 along the x-axis, at a distance r12 -- 
v/(r2 sin02 - -  0 )  2 q -  ((r2 cos02 - -  rl) 2 ---- 0.247m, and 
we put q a distance rl away from the origin, at an 
angle of J r -  ~b = 1.458 radians, or 83.52 ~ to the 
x-axis. Verify that ]/~] is the same as before, and 
that it is rotated clockwise by 96.5 ~ relative to its 
previous value. This property, that the force rotates 
by the same angle as the coordinate system, is what 
we mean when we say that force is a vector. Thus 
Figure 2.15 was obtained by rotating Figure 2.7. 

F (~)VF 1 x 
" O  ~2 

Figure 2.15 Problem 2-5.5. 

2-6.1 Use the general symmetry argument to 
show that, along the perpendicular bisector of the 
uniformly charged rod discussed in Section 2.7, 
Fy = 0 .  Hint: Assume that Fy :/: O, and then 
consider how the rod and Fy transform under ro- 
tations of 180 ~ about the x-axis. Would the argu- 

ment work ifyou considered a reflection (x, y, z) -+ 
(x, -y ,  z) of the rod and Fy? 

2-6.2 An octagon has charges - q  at each of its 
eight vertices, and charge Q at its center. See Fig- 
ure 2.16. (a) Use a general symmetry argument to 
show that the force on Q is zero. (b) Let the charges 
- q  be replaced by infinitely long line charges - 4  
normal to the page. Use a general symmetry argu- 
ment to show that the force on Q is zero. (To prove 
this, we don't even need to know the force between 
Q and a line charge!) 

0 �9 �9 

�9 �9 

�9 �9 
0 

Figure 2.16 Problem 2-6.2. 

2-7.1 A line charge with total charge Q > 0 uni- 
formly distributed over its length l extends from 
(0, O) to (l, 0). See Figure 2.17. (a) Find the force 
on a charge q > 0 placed a distance a to its right, at 
(l + a, 0). (b) Verify that this force has the expected 
inverse square behavior for large a. 

Q q 

I a 

Figure 2.17 Problem 2-7.1.  

2-7.2 A long rod of charge per unit length )~ > 0 
is normal to the xy-plane and passes through the 
origin. In addition, a charge Q > 0 is located at 
(0, a, 0). See Figure 2.18. Find the position where 
a third charge q will feel zero force. 

Q 

o q  

T 
Figure 2.18 Problem 2-7.2. 

2-7.3 Use the computational symmetry argument 
to show that Fy = 0 along the perpendicular bisec- 
tor of the uniformly charged rod of Section 2.7. 
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2-7.4 A line charge with total charge Q > 0 uni- 
formly distributed over its length l extends from 
(0, 0) to (l, 0). Find the force on a charge q that is 
placed anywhere in the xy-plane. 

2-7.5 Find the force on a charge q at (a, a) due 
to a charge Q uniformly distributed over a rod of 
length L with one end at (0, 0) and the other end 
at (0, L). See Figure 2.19. 

~ 
q 

a 

Figure 2.19 Problem 2-7.5. 

2-7.6 A rod of length a whose ends are at (0, 0) 
and (a, 0) has a charge density )~ - (Qo/a2)x. See 
Figure 2.20. (a) Find the total charge Q on the rod. 
(b) Find the force on a charge q at (-b,  0). (c) Verify 
that the force has the correct limit as b ~ oo. 

] ~ - -  a---~ 

Figure 2.20 Problem 2-7.6. 

2 -7 .7  A charge Q is uniformly distributed over 
the upper half of a circle of radius a, centered at 
the origin. See Figure 2.21. Find the force on a 
charge q at the origin. 

Q 

q 

Figure 2.21 Problem 2-7.7. 

2 -7 .8  A charge Q is uniformly distributed over 
the first quadrant of a circle of radius a. See 
Figure 2.22. Find the force on a charge q at the 
center of the semicircle. 

qT 

Figure 2.22 Problem 2-7.8. 

2-7.9 A charge Q is uniformly distributed over 
an arc of radius a and angle ~ that extends from 
the x-axis counterclockwise. See Figure 2.23. Find 
the force on a charge q at the center of the 
semicircle. 

Q 

qY 

Figure 2.23 Problem 2-7.9. 

2-G.1 Many electroscopes have a circular con- 
ducting base that is both above and connected 
to a charge detector device (often a needle that 
can rotate relative to its mount, or flexible foil). 
They work by a combination of electrostatic in- 
duction at the base (due to the source charge), 
and repulsion of like charges at the detector (nee- 
dle or foil). See Figure 2.24. (a) If positive charge 
is brought near the base of an electroscope, what 
is the sign of the charge attracted to the base? 
(b) What kind of charge must be at the needle or 
foil? 

Figure 2.24 Problem 2-G.1. 

2-G.2  Show that, for Inxl ((  1, (1 + X) n ~ 1 -~- nx. 
This gives the first two terms, for small x, in what 
is known as the MacLaurin expansion. 

2 -G .3  Determine the behavior of (x2+ 1 ) � 8 9  x 
for large x; it approaches zero, but how does it 
approach zero? 

2-G.4 In the spreadsheet calculation of Table 2.2, 
the sums for odd n seem to provide an upper 
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limit for the integral. (a) Explain why. The sums 
for n = 2, 4, 6, 8, 10 seem to be a lower limit for 
the integral. However, for n = 12 and larger, the 
approximate value is less than the exact integral. 
(b) Explain why. Hint: For odd n, all the charge is 
approximated by charge that is nearer than it really 
is, but that is not the case for even n. 

2-G.5 Two charges - Q  are fixed at (0, a) and 
( 0 , - a ) .  A third charge, q, is constrained to move 
along the x-axis. See Figure 2.25. (a) Find the force 
on q for any value of Ixl < a; (b) convince your- 
self that, for Ixl << a, this force is just like that for a 
harmonic oscillator, and obtain the effective spring 
constant K; (c) if q has mass m, find the frequency 
of oscillation of q about the origin. Hint: Expand 
(a + x) -2 for small x. 

aI Q 

a I _Q 

q 
A 
W 

Figure 2.25 Problem 2-G.5. 

2 - G . 6  In the previous problem, the motion of 
q was stable near the origin for motion along 
x. Discuss the stability of the motion if small 
displacements along the y-axis are allowed. Con- 
sider x = 0 and lyl < a. 

2-G.7 A long rod of charge per unit length )~ is 
held vertical. At its midpoint, one end of a massless 
string of finite length t is attached. At the other end 
of the string is a charge q, with mass m. See Fig- 
ure 2.26. Find the equilibrium angle of the string 
to the vertical, and find the tension in the string at 
that angle. 

Figure 2.26 Problem 2-G.7. 

~%~:~:~!~ 2-G.8 A square of side a, of uniform charge 
..... ~S~ii~ per unit area a,  is centered about the origin 

of the xy-plane with sides parallel to the x- and 
y-axes. A charge q lies a distance l along its per- 
pendicular bisector. See Figure 2.27. (a) By build- 
ing up the square from lines in the xy-plane of 
area Idz, show that the force on q satisfies I FI = 
4kqersin-~[a2/(a 2 + 412]. (b) Show that, as l/a -+ 
oo, IFI-+ (kQq/lZ). (c) Show that, as l/a-+ O, 
I/~1-~ (2rrkcr)q. Hint: Modify (3.21) to Id/~l = 
kqd Q~ lv/l 2 + a 2/4, use the direction cosine factor 
lv/l 2 + a2/4, and then integrate over dF~ to get Fx. 
A trig substitution like z = a tan 0 may be helpful. 

q+ 
I Y 

x 

Figure 2.27 Problem 2-G.8. 

......... ~.~ .... 2 - G . 9  Consider a ring of radius a, centered 
..... ~ :  at the origin of the xy-plane. It is of uniform 

charge density and has total charge Q. A charge q 
lies on the x-axis a distance l from the origin. See 
Figure 2.28. (a) Find the force on q due to the cir- 
cle, for I > a. (b) Find the force on q due to the 
ring, for l < a. This example shows that the charge 
on the ring does not behave as if it were centered 
at its geometrical center (except in the limit where 
l/a ~ oo). 

Q i l  
v 

q 

Figure 2.28 Problem 2-G.9. 

2-G.10 Conducting spheres are subject to the am- 
ber effect. Hence, as two equally charged conduct- 
ing spheres of radius a approach each other, in 
addition to the inverse square law of repulsion, 
there should be an effect due to the charge on 
one polarizing the other, and vice versa (i.e., elec- 
trostatic induction). Using advanced methods, it is 
possible to determine this effect exactly, but we 
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already know enough to determine the most im- 
portant contribution. When the separation r is only 
a few times a, this polarization effect can cause de- 
viations from pure inverse square on the order of a 
few percent. See Figure 2.29. (a) Does polarization 
make the net force appear weaker or stronger? (b) 
What dependence on distance do you expect the 
most important correction to take? (c) How would 
you determine, from experimental data of force F 
versus separation r ,  how large a coefficient it has? 
H i n t :  For large r ,  plot r 2 F vs. r -3 . 

/ -  ,, 
r 

Figure 2.29 Problem 2-G.10. 

2-G.11 Repeat the considerations given in Prob- 
lem 2.6.10 for two conducting spheres of equal and 
opposite charge. 



"That one body may act upon another at a distance through a vacuum without the 
mediation of anything else.., is to me so great an absurdity, that I believe no man, who 
has in philosophical matters a competent faculty of thinking, can ever fall into it." 

--Sir Isaac Newton (1692) 

"By magnetic curves, I mean lines of magnetic force. . . ,  which could be depicted by iron 
filings; or those to which a very small magnetic needle would form a tangent." 

~Michael Faraday, Experimental Researches (1831 ) 

Chapter 3 

The Electric Field 

Chapter Overview 

Section 3.2 shows how to measure the electric field, and Section 3.3 shows how to 
determine it by calculation. Section 3.4 discusses how to draw field lines~Faraday's 
way of looking at electricity. Section 3.5 employs the principle ofsuperposition to add 
up the electric fields due to more than one point charge, and Section 3.6 does the 
same for continuous distributions of charge. Section 3.7 discusses field line drawing in 
more detail. Section 3.8 considers the torque on and the energy of an electric dipole 
in a uniform electric field. Section 3.9 discusses the force on a dipole in a nonuniform 
electric field (this is related to the amber effect). Section 3.10 considers the deflection of 
electric charges by a uniform electric field, as in older TV tubes and computer monitors. 
(Modern TV tubes and monitors use magnetic deflection, as discussed in Chapter 10.) 
Section 3.1 1 discusses why electric forces alone are not enough to stabilize a world 
governed by Newton's laws of motion, w 

3ol 
3~1~I 

Introduction 

Development of the Electric Field Concept 

In electrostatics, the electric force between two charges can be thought of as in- 
stantaneous action at a distance, no matter the separation between the charges. 
When Michael Faraday, beginning in the 1830s, espoused an alternative view 
based on lines of force that exist everywhere in space, most other experts in elec- 
tricity thought it superfluous. Nevertheless, over a century earlier Isaac Newton, 
despite his quantitative success describing gravity via action at a distance, felt that 
an instantaneous response is untenable: when a distant star moves, by action at a 
distance a mass light-years away would have to feel a changed gravitational force 
instantaneously. 

Similarly, Faraday believed that an instantaneous electrical response was un- 
tenable. Repeatedly throughout his long career, Faraday tried to determine the 
speed at which changes in electric forces propagate. Because, as we will discuss 
in Chapter 15, such changes propagate at a very high speed (that of light, about 

108 
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3 x 108 m/s), Faraday was unable to measure this speed with the methods of his 
time. 

By thorough and self-critical experimentation, Faraday tested his ideas, re- 
jecting some and refining others, ultimately employing the concept of magnetic 
lines of force in completely new ways, and extending this concept from mag- 
netism to electricity. Faraday's concepts were first given mathematical form 
in 1845 by William Thomson. (Thomson was later made Lord Kelvin, for 
supervising the laying of the first effective trans-Atlantic telegraph cable, in 
1865. In this project, he made great practical application of his knowledge of 
electricity.) 

James Clerk Maxwell, in 1855, began his own program to develop Faraday's 
ideas mathematically. He developed the concept of the electric field, the magnetic 
field, and (when time-dependent phenomena were included) the electromagnetic 
field. Because of Maxwell, lines of force are now called field lines. In 1865, he 
found that the resulting equations unified electricity, magnetism, and light. His 
prediction of electromagnetic radiation, propagating at the speed of light, is 
one of the greatest of any scientific achievements: radio, TV, and microwave 
communications are all practical consequences of that work. Thus Faraday was 
correct about electricity: electric forces do propagate at a finite speed. In 1916, 
Newton was shown to be correct about gravity, when Albert Einstein developed 
a theory~since verified experimentally~in which the gravitational field prop- 
agates with a finite speed that is the same as the speed of light. The concept of 
the gravitational field did not arise until after the field concept had entered the 
area of electromagnetism. 

The idea of the electric field (sometimes called the electric force field) is simple: 
one electric charge produces an electric field, and another electric charge feels a 
force due to that field. 

An example of a field, and of interactions via a field, can be seen in the 
interaction of two water striders on a water surface. The weight of each depresses 
the water's surface, and the depressions produced by each can be felt by the 
other. See Figure 3.1. The field, in that case, is the  distortion of the water's 
surface. The two water striders interact through that field. When one moves, 
the distortion changes locally, and there must be a time delay before the change 
makes its presence felt at the other. Similarly, electric charge produces an electric 
field, and when one charge moves there must be a time delay before the signal 
reaches the other charge. 

Indispensible for describing dynamic phenomena, the electric field concept 
also provides insights into static phenomena. Electric field lines for a configura- 
tion of electric charges give the pattern of the electric field with only minimal 

Figure 3.1 Two water striders on a water surface. One 
water strider can detect the presence of the other by the 
latter's deflection of the water surface. The total 
deflection of the surface is the sum of the deflections due 
to each. 
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computation. The electric field concept has two additional advantages, even 
in electrostatics. First, because electric charge is the source of the electric 
field, there is a deep relationship between field lines and electric charge (recall 
Figure R.9). We will develop this in Chapter 4. Second, electrical potential en- 
ergy can be expressed in terms of the electric field. We will develop this in 
Chapter 5. 

3.2 Obtaining the Electric Field: Experiment 

The magnetic field near a magnet can be visualized with iron filings. Similarly, 
the electric field near an electrically charged body can be visualized with grass 
seeds. See Figure 3.2(a). 

Neither iron filings nor grass seeds have permanent electric or magnetic prop- 
erties, but they are more magnetizable and polarizable along their long axes. 
Because the axes of both iron filings and grass seeds have no preferred sense, the 
field direction is ambiguous. Compare Figure 3.2(a) and Figure 3.2(b). 

An analogy to gravity leads to a precise definition of the electric field. The 
gravitational field ~ is defined as the ratio of the gravitational force/~m on a test 
body to its gravitational mass m: 

Fm 
-- - - .  (3.1) 

m 

Neil Armstrong, the first person to set foot on the moon, can claim to have 
served as a test mass on both the earth and the moon. He found that ]glmoon ~" 
(]/6)lglearth. Any mass m on the surface of the moon is subject to a ~ of this 
magnitude and feels a gravitational force m~. A directional check on (3.1) is 
that, since on the earth's surface/~m points to the earth's center, (3.1) says that 

also points to the earth's center, as expected. 
By analogy, the electric field E at a given point P is defined as the ratio of the 

electrical force /~q on a test body at P to its electrical charge q" 

-. Fq {defini~on of f i e l d ) f ~ i ~ i  E 
q 

Experimentally, any value for the test charge q yields the same value for/~. That 

O O Electric field line 

Grass seed 
(polarized) 

(a) 

O O 

Co) 

Electric field line 

Grass seed 
(polarized) 

Figure 3.2 The orientation of grass seeds in response to an applied electric field is the 
same if the electric field is reversed. (a) Field in one direction. (b) Reversed field. 
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is why the field idea works: it is a property of the point in space, not of the test 
charge. The test charge does not feel a force due to itself; the electric field is due 
to charge other than the test charge. The unit of the electric field is N/C. /~  is 
called a field because it is defined at all points ~ in space. To represent/~ at the 
position ~, draw the vector representing E with its tail at the position ~. 

~ Electric a proton field of 

Find the electric field acting on the electron due to the proton, in Figure 3.3 (a). 
Take the separation to be 1.0 x 10 -l~ m. 

Solution: First consider the direction of/~. The force on the electron is, by 

@----  Source ~ Test charge 

T 

Test charge @----  Source 

Positive charge Negative charge 
makes outward field makes inward field 

(a) (b) 

Figure 3.3 Measuring the electric field 
E, whose tail is at the point where it is 
measured--the test charge. (a) Positive 
source and negative test charge. (b) 
Negative source and positive test charge. 

"opposites attract, likes repel," to- 
ward the proton, which is consid- 
ered to be the source of the elec- 
tric field acting on the electron. See 
Figure 3.3(a). From (3.2), because 
the sign of the charge on the elec- 
tron is negative (q = - e ) ,  the di- 
rection of the electric field on the  
electron is opposite that of the force 
on it. Hence the electric field at the 
site of the electron is away from the 
positively charged proton. (Note 
that/~ has its tail at the point where 
it is measured--the electron.) Be- 
cause the electric field is a property 
of space, we conclude quite gener- 
ally that 

positive charge produces an electric field that points outward from the charge. 

Similarly, as shown in Figure 3.3(b), for the electron as the source, 

negative charge produces an electric field that points inward to the charge. 

Now consider the field magnitude 1/~1. Section 2.4.1 finds that  for an electron 
and proton separated by 1.0 x 10 - l~ m, the force on the electron has magnitude 
IFI-  2.3 x 10 -8 N. With q - - 1 . 6  x 10 -19 C, (3.2) yields, for the magnitude 
of the electric field due to the proton, at the site of the electron, 

I E I  - 
F 

q 

2.3 x 1 0 - S N  

( -1 .6 )  x 10 -19 C 
= 1.44 x l 011N 

C 

Any charge q at this position is subject to an/~ of this magnitude and feels an 
electrical force q/~. 

The electric field due to the electron, acting on the proton, has the same mag- 
nitude, because the magnitudes of the force on the proton due to the electron, 
and the magnitude of the proton charge, are the same as in the previous case. 
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~ Electric on a test charge field from the force 

Section 2.5 (see Figure 2.5) found the force on a charge q = 2.0 x 10 -9 C, 
due to two other charges ql = - 4 . 0 x  10 -9 C and q 2 = 6 . 0 x  10 -9 C: 
F x - l . 1 1 2 x 1 0  -6N, F y - - 0 . 9 8 3 x 1 0  -6N, and I F l - 1 . 4 8 4 x 1 0  -6N. 
Find the electric field at the position of q. 

Solution: Use of (3.2) gives 

Ex - Fx 5.56 x 102 N Ey = Fy _ - 4 . 9 2  x 102 N 
q C' q C' 

P IFI = 7.42 x 102N 
I/~1 = q = Iql C" 

Because q is positive, by (3.2) the direction of E is along F. If the test charge 
q were negative, then F would be in the opposite direction, but E would be 
unaffected. 

3~2ol Experimental Caution 

The test charge q can produce electrostatic induction or polarization in nearby 
materials, in proportion to q. These induced charges can then contribute to the 
electric field. To eliminate this effect the test charge q must be very small: 

/~ - lim --.Fq ( 3 . 3 )  
q--~0 q 

To see how electrostatic induction can change the electric field, consider 
an everywhere neutral infinite sheet of aluminum foil. It produces no electric 
field:/~ - 6. A positive charge q, brought up to the foil, alters the distribution 
of conduction electrons, shifting their orbitals toward the positive charge. This 
produces an electric field that, at the site of the positive charge, points toward 
the foil, with strength proportional to q. Figure 3.4(a) depicts the force F acting 
on q (dark arrow), the field/~ at the site of q (shaded arrow), and the humplike 

-q 

(a) (b) 

Figure 3.4 Force on test charges above a neutral, infinite 
conducting sheet. (a) +q, (b) -q.  
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shape of the charge distribution induced on the foil. (This part of the figure 
is schematic; the induced charge density does not actually rise up near q, but 
rather it is largest near q.) If the sign of the charge q is reversed, the sign of 
the induced surface charge will reverse, which then reverses the direction of the 
induced electric field: it will now point away from the foil. See Figure 3.4(b). In 
both cases, there is a force on q, of magnitude proportional to q2. Therefore, as 
q -+ 0, (3.3) yields/~ - 0. (A similar effect occurs when a charge q is brought 
up to a neutral piece of paper, as in the amber effect.) 

The test charge must be of small physical dimension, both to define the 
observation position of the field measurement and to minimize polarization or 
induction effects on the test charge itself. 

3~ 3 Obtaining the Electric Field: Theory 

Imagine that you have calculated the force/~q on a charge q at a specific position, 
due to ql and q2, as in Figure 3.5(a). Let's say it is 2 N, pointing along ~. (In 
principle, there could be many other charges also contributing to the force on 
q.) Now mentally replace q by Q and consider how to obtain the force FQ on Q. 
It is not most easily obtained by recalculating the individual forces and adding 
them up. A simpler approach is to take the ratio of Q to q, and then multiply 
by the force /~q on q. Thus, if Q - - 2 q ,  then the force on Q has twice the 
magnitude of the force on q, or 4 N, but is in the opposite direction, or -~. 
Another simpler approach is to determine/~ by considering q to be a test charge, 
and then to use t~Q- Q~ Let us develop these ideas. 

Consider the force F q on q at F, due to charges qi at ri. With/~i - r - ri, 
(2.8) gives 

-~ kqqi Ri ]~i ~. [~i 
F q - ~ i  R2 i - q 

(/~i points to observation charge q) (3.4) 

Figure 3.5 (a) Geometry for the force on q due to ql and 
q2. Lowercase vectors refer to distances from the origin, 
and uppercase vectors refer to relative distances. (b) Field 
at site of q, due to ql and q2. 
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Then the force t~Q on Q is given by the ratio 

~ �9 
q q Ri 

(3.5) 

Proceeding more systematically, (3.4) may be rewritten, for any charge q at 
the observation point, as 

where 

In principle, we should write /~(?) because the electric field depends upon 
position ?. 

Let's discuss (3.7) in terms of input and output. The input is the observation 
position ? and the individual source charges qi at the positions ?i. For two source 
charges_r this is given in Figure 3.5(a). The output is the set of individual electric 
fields E i and the total electric field/~ at ~. Assuming that ql > 0 and q2 < 0, 
Figure 3.5(b) depicts the directions for the fields/~ ] and E 2. It also depicts their 
sum E. The relative lengths of/~l and/~2 can only be determined when actual 
values for ql and q2 are given; therefore, Figure 3.5(b) is only a schematic. The 
fields at ~ are drawn with their tails at ~. 

A more explicit expression for/~, which is useful for numerical calculations, 
is obtained by using/~i/I/~l rather than/~i. Then (3.7) becomes 

-~ kqi  Ri  = ~ i  kqi  (~ - ~i) -~ E - ~iR3-z ]r - ri ]3 " ( R i  - r - ~i to observation p o i n t  r i )  

(3.8) 

From (3.7), the electric field that a single charge ql produces at the site of q 
is given by 

- k q l / ~ l _  ql /~1, k -  1 ~ 9 x  10 9N-m2 
E1 - R--}- 4zr~0R~ 4JrE0 C 2 " 

(/~] to observation point) (3.9) 

In agreement with the previous section, a positive charge source makes a field 
that points away from the source (i.e., toward the observation point), and a 
negative charge source makes a field that points toward the source (i.e., away 
from the observation point). 

F i e l d  Ed needed to cause sparking in air 

For a charge ql = 10 -9 C (typical of static electricity) at a distance of 1 cm, 
find the electric field. Repeat for a distance of 1 mm. In both cases, compare 
with the electric field above which sparking (electrical breakdown) occurs, 
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called the dielectric strength Ed. In air at atmospheric pressure, Ed is about 
3 x 10 6 N/C. 

Solution: By (3.9), for ql = 10 -9 C and a distance of 1 cm, 

1/~11 = (9 x 10  9 N-m2/C2)(10 -9 C)/(10 -2 m) 2 - 9 x 10  4 N/C; 

this is less than Ed, so no sparking would occur. For the same ql - 10 -9 C and a 
distance of 1 mm, ]E 11 - 9 x 10 6 N/C; this exceeds Ea, so sparking would occur. 

Observe that a calculation of/~ at F, using (3.7), differs from a calculation 
of F on q at ~, using (2.12), only in that the factor q of (2.12) is omitted from 
(3.7). Before getting into any detailed calculations, we present a more geometric 
view of electric fields. 

3~ 

3o4~I 

Visualizing the Electric Field- Part 1 

Rules for Drawing Electric Field Lines 

Field lines, or lines of force, are used to represent pictorially the electric field/~. 
To be an accurate representation, they must have the following properties: 

1. Field lines point in the direction of the electric field/~. Field lines cannot cross. 
If two lines did cross, then the force on a charge would have two directions, 
which is impossible. 

2. The areal density offield lines (the number of lines per unit area in the plane 
perpendicular to the field line) is proportional to the magnitude I/~l of the 
electric field/~. Thus, the larger the field, the higher the density of the field 
lines, and vice versa. 

By definition, rules 1 and 2 hold for any vector field, including the magnetic 
field. 

In addition, for field lines due to electric charges at rest (electrostatics), the 
following rules apply: 

3. Field lines originate on positive charges and terminate on negative charges, 
the number of field lines being proportional to the charge. (This prescription 
is not unique because different people, or the same person under differing 
circumstances, might choose to use different numbers of field lines for the 
same charge.) 

4. Field lines do not close on themselves. 

Rule 3 is made more precise in Chapter 4 (which eliminates the ambiguity 
about the number of lines per unit charge). Rule 4 is derived in Chapter 5. These 
rules are simple, but they are not obvious. They hold only for electric fields due 
to electric charges at rest. Magnetic field lines do not satisfy rules 3 and 4, but 
rather have their own set of rules, which we study in Chapter 11. 

These rules yield simple pictures only outside of charge distributions. 
Everywhere within a ball of charge, field lines are originating or terminating. 
This causes complications that we need not consider here. 
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3.4.2 Applications to Simple Geometries 

~ Positive point charge q 

Figure 3.6 Representation 
of the three-dimensional 
field lines due to a point 
charge. 

Consider that q produces N field lines. Then 
the field lines point outward and are uniformly 
distributed, with one field line for each of the 
corresponding parts of the total solid angle on 
the surface of a sphere. See Figure 3.6. It is dif- 
ficult to reproduce this on a sheet of paper, so 
the figure must be considered to be schematic. 
The number of field lines N is fixed, and the area 
4rrr 2 of a concentric sphere of radius r (through 
which the lines pass) varies as r 2. Hence the 
density of field lines (and thus the electric field 
magnitude I/~l, or intensity)varies as N/4:rr 2, 
so as expected for a point charge, I EI falls off as -2 r . 

~ A  charged sphere q 

A point charge q -  10 -8 C produces N =  4 field lines. (a) How many field 
lines are produced by a small charged sphere of Q - - 2  x 10 -8 C? (b) At a 
fixed position outside the sphere, how does the magnitude I/~l of the electric 
field changeif  the radius of the charged sphere doubles? (c) How does the 
magnitude I EI of the electric field change if the observer doubles her distance 
from the charge? Assume that, since the sphere is small, it remains small even 
when its radius is doubled. 

Solution: (a) By symmetry, the field lines must point radially. Since q = 10 -8 C 
produces four field lines outward, Q - - 2 q - - 2  x 10 -8 C produces eight field 
lines pointing inward. (b) Doubling the sphere's radius doesn't change the number 
of field lines, or their density, so IEI doesn't change. (c) Since I/~1 falls off as r -2, 
when the observer doubles her distance, I/~1 decreases by a factor of 4. 

~ Infinite line of negative charge 
Negat~ll ~~r'~ ~ 

Radially inward E'~field 
Figure 3.7 Representation of 
the three-dimensional field lines 
due to a line charge. 

Unlike the electric field of a point charge, 
the electric fields of a line charge can be 
accurately represented on a plane. For a 
negative line charge of uniform charge per 
unit length ~, let N lines terminate uni- 
formly in angle over a length l (doubling 
N doubles l). See Figure 3.7. The number 
of field lines N is fixed, and the area of a 
concentric cylinder of radius r and length 
l (through which the lines pass) is 2rrrl. 
Hence the density of  field lines (and thus 
the field intensity ]El) varies as N/2rrrl, so 
I/~l falls off as r-a. 
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Figure 3.8 Positive sheet of charge intersecting the page. 
(a) Field lines above and below the sheet. (b) Sheet and two 
planes, equidistant from the sheet. 

~ Infinite sheet of positive charge 

Let the charge per unit area be positive, of magnitude or, and consider that 
it produces N field lines per unit area. Then N/2 field lines per unit area 
will point outward in each direction normal to the sheet. (Why outward?) 
See Figure 3.8(a), which depicts a side view of a sheet that is normal to the 
y-axis. The locus of points a distance r from the sheet is a pair of parallel 
planes. See Figure 3.8(b.) Their area does not depend on r. Hence the density 
of field lines, and thus the field intensity I/~l, does not depend on r, so I EI 
is constant in space; however, E changes direction on crossing the sheet, as 
seen in Figure 3.8(a). 

I ~ ~ ~  Field lines for a uniformly charged disk, near and far 

See Figure 3.9(a), which is only intended to be qualitatively accurate. This 
disk is taken to be an insulator, so the charge will stay in place. (If it were a 
conductor, we would have to imagine some extra force holding the charge in 
place.) Near the disk the field lines are nearly uniformly spaced to correspond 
to a planar geometry. Far from the disk, the field lines correspond to those of 
a point charge. Clearly, a great deal can be learned simply by sketching the 
field lines. Typically, the field lines are not along the normal as they leave the 
surface. 

Figure 3.9 Field lines for two-dimensional distributions of 
charge. (a) A uniformly charged insulator. (b) A neutral 
conductor in the presence of a point charge. 
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~ Field lines and electrical conductors 

Consider a positive charge near the center of a neutral, finite conducting 
sheet. See Figure 3.9(b), which is only intended to be qualitatively accurate. 
It was drawn using the fact that, if an electric field line has a component 
along the surface of an electrical conductor, then electric charge will move 
until the field lines become normal to the surface. Seven field lines enter and 
seven leave, each normal to the sheet. This example illustrates how much 
information can be obtained by sketching the field lines, without performing 
a single calculation. 

3~ Finding E" Principle of Superposition 
for Discrete Charges 

Having completed our geometrical detour, let's calculate some electric fields, 
using (3.7) or (3.8). 

35,1 The Electric Dipole 

Consider a set of charges that sums to zero, for which the center of the negative 
charge (of total - q )  is a distance l from the center of the positive charge (of total 
q). Its electric dipole moment  ~ points from the center of the negative charge to 
the center of the positive charge and has magnitude 

i 

oment m a ~ i ~ ~  ~ { 3 ~  = ql. (dipole m 

Like mass, the dipole moment } is a quantity associated with a given object. 
The set of charges is called an electric dipole. See Figure 3.10(a) for the case 

of a water molecule, said to be a polar molecule because it has a permanent 

(a) 

C h a r g e  source  

er 

Co) 

Figure 3.10 Examples of dipole moments. (a) 
Permanent dipole moment of water molecule. 
(b) Induced dipole moment on a neutral 
piece of paper. Note: The charge on paper is 
from polarized atoms and molecules. 

electric dipole moment. Polar 
molecules figure prominently in 
physics, chemistry, and biology. 
Without them, organisms would 
not be able to form cells. Water 
is a good solvent because of its 
permanent dipole moment. See 
Figure 3.10(b) for the case of pa- 
per, with a dipole moment only 
when polarized by an applied elec- 
tric field. All molecules can be 
polarized by an applied electric 
field. 

Now consider a dipole consist- 
ing of two separated charges +q at 
+a  along the y-axis, as in Figure 

3.11 (a). Since the charges are separated by t = 2a, the dipole moment magni- 
tude is given by p - ql - q(2a). 
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Figure 3.11 A pair of equal and opposite charges. 
(a) Individual contributions and the total field along the 
x- and y-axes. (b) Field lines from +q to -q. 

The field-line pattern is sketched in Figure 3.11 (b). We now show that electric 
dipoles have an electric field that falls off at large distances as the inverse cube 
of the distance. 

Field along Dipole Axis. Let the observation point be along the positive y-axis. 
Since the positive charge is nearer to the observation point, its upward electric 
field dominates, in agreement with the field direction at the corresponding point 
in Figure 3.11 (b). The unit vector to the observer is ~ for both 4-q. Then by (3.7) 
with p = q (2a), 

kq .. k ( -  q) .. kq (y + a) 2 _ kq (y - a) 2 

E --  ( y  _ a )  2 j -]- (y_q_ a )  2 j - -  (y2  _ a 2 ) 2  

4 k q a y  .. 2kpy  .. 
= (y2 _ a2)2 J - (y2 _ a2)2 J" (3.11) 

In the large distance limit, where y ~ a, we may neglect the a 2 term in the 
denominator, so (3.11) becomes 

2kpA 
E -- y3 J, Y ~ a. (dipole field along axis of dipole) (3.12) 

For a water molecule, as in Figure 3.10(a), p ~ 6.0 x 10 -3o C-m. Thus, at 
100 nm ( n m - 1 0  -9 m ) , a  distance of about 1000 times the size of a water 
molecule, (3.12) gives I E I -  108 N/C. This is comparable to the field in the 
earth's atmosphere. 

Field Normal to Dipole Axis. Now let the observation point be along the 
x-axis. It is a distance r ~- ~/a 2 + x S from each charge, so the fields due to each 
charge have the same magnitude k q / r  2. See Figure 3.1 l(a). However, the unit 
vectors to the observation point differ. The horizontal components of the two 
fields cancel, and the vertical components add. Thus the net electric field points 
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vertically downward, in agreement with the field direction at the corresponding 
point in  Figure 3.11 (b). Its magnitude is twice the vertical component of ei- 
ther E + or E_. Since each unit vector to the observation point contains a factor 
sin 0 - a / r  - a / ~ / x  2 + a 2 along -~,  by (3.7) the total field is 

2kqa .. 
(X 2 -s a2)3/2 j. (3.13) 

In the limit where x >> a, (3.13) becomes (with p - ql - 2qa)  

~ =  kp~. 
x3J ,  x ) )  a .  (dipole field normal to axis of dipole) (3.14) 

3.5.2 Interaction of  a Charge Q with a Dipole p 

From (3 12) and (3.13), at large distances the magnitude of the field/~p of the 
dipole ; varies as the inverse cube of the distance. This inverse cube depen- 
dence at large distances holds quite generally, with a coefficient that depends on 
the orientation with respect to the axis of the dipole: I/~pl "~ k p / r  3 The magni- 
tude of the force FQ, p on a charge Q along the axis of a dipole p satisfies, by 
(3.12) and (3.6), 

~ 2 k Q p  (3 15) 
IFQ, pl - IQEpl - r3 . 

By Newton's third law (action and reaction), the force Fp, Q on the dipole 
p due to the point charge Q must satisfy (3.15). In Section 3.9, we will 
present an expression for the force on a dipole i0 in the presence of an arbi- 
trary electric field/~. 

3.5.3 Molecular Polarizability and the Amber Effect 

In the amber effect, a charge Q induces a dipole moment i6 on an object, in 
proportion to the electric field produced by Q. The proportionality constant, c~, 
is known as the polarizability: 

.. :::::::::::::::::::::::: 
orE (field-reduced dipoI~ 

(For asymmetric molecules, c~ can vary with the molecular axis, but we neglect 
such complications. Grass seeds are more polarizable along their long axis.) 

The dipole moment interacts with the original charge Q ,  and vice versa. 
Since I E ] -  k Q / r  2 due to Q, (3.16) gives p -  l i o l - c z k Q / r  2. Using (3.15), 
the force on the induced dipole moment ~ thus satisfies 

-~ 2 k Q p  2k2c~Q 2 (3 17) 
IFQ,pl - r 3  = rS �9 
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Figure 3.12 A pair of 
equal charges. Individual 
contributions and the 
total field along the 
y-axis. 

The value of ~ depends upon the atom or molecule. It can be written as ~ - 
V~/k, where V~ is a "volume." (A characteristic atomic volume is (10 - l~ m) 3 - 

10 -3o m 3.) A scan of the polarizabilities of the atoms 
in the periodic table reveals that  those with the 
largest and smallest "volumes" are, not surprisingly, 
the very reactive alkali metal cesium (with V ~  s = 
59.6 x 10 -3~ m 3) and the very inert noble gas helium 
(with V ~  e - 0 . 2 0 5  x 10 -3~ m3). The 1/r  5 depen- 
dence of (3.17) increases rapidly as r decreases; per- 
haps you have observed, on rubbing a comb through 
your hair and bringing it closer to a small piece of pa- 
per, that  at some point the paper suddenly "jumps" 
up to the comb. Consider an atom os carbon, with 

- 1.76 x 10 -3~ m 3 and m -  20.0 x 10 -27 kg. Let 
it be acted on by a charge Q -  10 -9 C. The jumping 
point for this carbon atom is found, approximately, 
by equating (3.17) to rag. This leads to a distance 
r = 1.077 m at which the carbon atom jumps up to 
the charge! 

~ Field to two equal charges due 

Find the field at a distance y on the y-axis, due to two equal charges q] = 
q2 = q placed on the x-axis at • See Figure 3.12. 

Solution: By symmetry the x-components of /~1 and /~2 cancel, and the 
y-components add. Thus the total field points along ). By (3.7), it has magni- 
tude 21/~11 cos0 - 2[kq/(a 2 + y2)] cos0, where cos0 - y/(a 2 + y2)1/2. Thus 

2kqy 
Ey = (a 2 + y2)3/2" (3.18) 

As expected, the field is zero at the origin (y = 0), where the fields of the indi- 
vidual charges should cancel. 

3~ Finding E: Principle of Superposition for Continuous 
Charge Distributions 

Generalization of (3.7) to the electric field/~ at observation position ~ due to a 
continuous distribution of source charge dq at position ~' gives 

i i 
~i~i~iii!ii~=iiiii!iiii~iiiii!iiiiiiiiiiiii~iiiiiii~ii~iiiii~iiiii!i~i!iiiii~i~i~i!i!i!i~i~i~iii!iiiii~ii~i~!iiiiii~i~iiiiiiiiii~i~iiiiiiiiiiiiiiiiii~iiiiiiii~!~iiiiiii!ii~i~i!i~ii!!iiiii~iii!~i~!~i~iiiiiiiiiiiiii~ii~ii ~iii,=iiiiiii!i!iiiiiiiii!iiiiiiiiiiiiiililiiiiiiiiiiiiiiiiii!i!i 

Here dq is the charge at the source point ~ ', R - ~ - ~' is the vector from the 
observation point ~ to the source point, and R - ]/~]. 
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3,6.1 

As discussed in detai l  in C h a p t e r  1, t he r e  are t h ree  types  of  c o n t i n u o u s  dis- 
t r ibu t ions  of  charge:  

1. dq = (dq/ds)ds = ~.ds for l ine charge  dens i ty  )~ = dq/ds. T h u s  the  charge  
on a line s e g m e n t  is q -  f ( d q / d s ) d s - f  ~. ds, w h e r e  the  integral  ex t ends  
over  the  line segment .  

2. dq = (dq/dA) dA  = ~ dA  for surface  charge  dens i ty  ~ = dq/dA.  T h u s  the  
charge  on an area is q - f ( dq /dA)  d A -  fcr dA, w h e r e  the  integral  ex t ends  
over  the  area. 

3. dq = (dq /dV)dV  = p d V  for v o l u m e  charge  dens i ty /9  = dq/dV.  T h u s  the  
charge  wi th in  a v o l u m e  is q - f ( d q / d V ) d V -  f p dV, w h e r e  the  integral  
ex t ends  over  the  vo lume.  

W e  will w o r k  ou t  e x a m p l e s  of  the  electr ic  fields due  to  line and  surface 
charge  densities.  For simplicity,  in our  p rev ious  e x a m p l e s  w i th  d iscre te  charges  
w e  cons ide red  very  s y m m e t r i c a l  s i tuations.  H e r e  w e  will  first cons ider  a very  
n u m e r i c a l  app roach .  It is a d a p t e d  to the  case w h e r e  the  charge  d i s t r ibu t ion  is 
c o m p l e t e l y  arb i t rary  (and  po ten t i a l ly  compl i ca t ed ) .  

Numerical Analysis 

Because  the  electr ic  field is a vector,  and  vec tors  in t h r e e - s p a c e  have  t h r ee  com-  
ponents ,  and  because  (3 .19)  involves an integral ,  s tuden t s  of ten  c o n c e n t r a t e  on 
the  integral  part ,  and  neg lec t  or overs impl i fy  the  vec to r  par t .  To c o n c e n t r a t e  on 
the  vec to r  aspects,  w e  first discuss the  integral  as a sum.  

F rom the  v i e w p o i n t  of  a s p r e a d s h e e t  analysis, imag ine  tha t  s o m e  elves ap- 
p r o x i m a t e  the  source  by  m a n y  t iny  e l emen t s  of  source  charge  dqi, for e x a m -  
ple, N - 1 0 0 0 .  T h e y  d e t e r m i n e  the  dqi and  the i r  m i d p o i n t s  ri. T h e y  also de-  
t e r m i n e  the  obse rva t ion  pos i t ion  ~. Le t  R~ - F  -F~ be  given by  its c o m p o n e n t s  
Xi = x - x4, and  so on, and  let, by  analogy to (2 .12 ' ) ,  

dE'[ = 
kdqi 

(dE* can be  negat ive,  so it is no t  the  same  as ]dEi].)  For i - 1, Table 3.1 gives 
a set of  quant i t i es  leading up  to the  t h ree  c o m p o n e n t s  of  d Ei in c o l u m n s  10 to 
12. S u m m i n g  c o l u m n s  10 to 12 w o u l d  t h e n  yield  Ex, Ey, and Ez. ( N o t e  t ha t  the  
s u m  of  c o l u m n  9 is meaningless . )  F rom this E, the  force on a charge  q w o u l d  be  
given as q E. 

T h e  above  p r o c e d u r e  is wel l  def ined  and,  for c o m p l e x  n u m e r i c a l  p rob lems ,  
necessary.  O n c e  the  elves m a k e  the  source  entr ies  in c o l u m n s  one  to four, and  
m a k e  the  observer  entr ies  e l sewhere ,  all the  o the r  results  are ca lcu la ted  a u t o m a t -  
ically by  the  sp readshee t .  If t he  obse rva t ion  po in t  is changed ,  w h e n  the  observer-  
pos i t ion  is changed ,  the  s p r e a d s h e e t  au tomat i ca l ly  redoes  all calculat ions.  

Table 3.1 Spreadsheet entries for field calculation 

!iii i iiiiiiiiiiii:iiii i~iiiii :iii i i!ii~i :iii~iiiiiiiii!i:i iii!iiii~iii iii iiiiiiill iiiili i li ill i ill iiiii!i i i i ill i i ili!iil iiii~i iii iiiiiiiiii i:!i~iiiiliiiiiiii~iiiii: i i i::ii i i iii !~:iiiiiii i iiiiiii !ilii ii~iil iiliil ili if!fill iii iiil i iiiiiiii iiiiiiili}iiiiiiii !iii~i i;i~ii:~iii~ii i iiii ~iii iii~:ii i~ii!i!!~iiiiiii :iiiiiii i!iiii~ iil iilii i i ii!ii iiili iilil i iiii i lililiiiiiiiiil i iili i iiii i iii i iiiiiiiiii i ii i~ii i iii:i i i~!i!ii i iiii~ iiiii !iiii i iiiiiiiiiii !i i i! i ii!i i ilil i iiii i!i!i i iiiiiiiiii!i!il i i iiii iiiii ili ~iiii:: i iiii:ii i iiili iiiill iiiii:;::iiiiiiii ii!iiiii!ili iliii! ii!!i iliil i i if! i i if! i iiiii!iiiiiiiiiil i iiiiiiiiii ::iiii !i!~ :ii iii~i!iiii iii iiil iiiiii!iiiiiiii! iii i ii i iiiiii! ili i!iii!ii ili!i!iiiiiiiiiiiii i!iiii i iiii ~ii!iiii!iiiiiii i:i~i i iiii~ ~:ii ii~i::ii iiiii~i i~iiiii i!iiii iiii iil iii iiiiiiiiiiiiiiiii i i~iii !iliii iiiiii~il i iiii!iii ili iiiii !ii!ill ill i i if! iii iiiiiiiiijiii~iiiiiiii iiii:i ii!iii: iii i :~iiiii i~ii~i i iiiiiii~ i i i iiiiiiiiiiiiiiiili !iiiiiiiiiiiii!iiiil iil i! 
X1 Y1 Z1 dql xl yl zl X1 Y1 Z1 R1 dE{ dE{(--K-i, ) dE{(N) dE{(N) 
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3~176 

A v e r y  s i m i l a r  c a l c u l a t i o n  h a s  a l r e a d y  b e e n  p e r f o r m e d :  t h e  s p r e a d s h e e t  e x -  
a m p l e  in  C h a p t e r  2, f o r  t h e  f o r c e  o n  a c h a r g e  q a t  t h e  o r i g i n ,  d u e  t o  a l i n e  c h a r g e  
)~. F o r  q - 10  -9  C, p e r f o r m i n g  t h e  s u m  f o r  N =  12 y i e l d e d  a f o r c e  o f  m a g n i t u d e  

1 2 . 3 6  x 10  -9  N.  U s e  o f  ( 3 . 2 )  t h e n  y i e l d s  1/771- I f : / q l -  1 2 . 3 6  N / C .  I f  w e  w e r e  
t o  m o v e  t h e  o b s e r v e r  p o s i t i o n  ~ f r o m  t h e  o r i g i n ,  t h e  s p r e a d s h e e t  w o u l d  r a p i d l y  

c o m p u t e  t h e  n e w / ~  a n d  E .  

Calculus Analysis 

T h e s e  e x a m p l e s ,  i m p o r t a n t  in  t h e m s e l v e s ,  a l so  c a n  b e  u s e d  as t e s t s  t h a t  a n u m e r -  
i ca l  c a l c u l a t i o n  g i v e s  t h e  c o r r e c t  r e s u l t .  

~ Fieiddueto uniform line a charge density 

F i n d  t h e  e l e c t r i c  f ie ld  a t  t h e  o r ig in  d u e  to  a u n i f o r m  l ine  c h a r g e  d e n s i t y  )~ t h a t  
is pa r a l l e l  to, a n d  a d i s t a n c e  a f r o m ,  t h e  y-ax is .  S e e  F i g u r e  3 . 1 3 .  

Solut ion:  A p rev ious  d i scuss ion  of  this  case c o n c l u d e d  t h a t  I EI ~ r -~ �9 T h e  p re -  
v ious  c h a p t e r  c o n s i d e r e d  t h e  r e l a t e d  p r o b l e m  of  t h e  f o r c e / ~  on  a cha rge  q at  
t h e  origin,  d u e  to  a cha rge  Q u n i f o r m l y  d i s t r i b u t e d  over  a rod  o f  l eng th  l, at  a 
d i s t ance  a a long  t h e  x-axis.  ( H e n c e  t h e  cha rge  p e r  u n i t  l e n g t h  is ;v = Q~ l.) By 
(3.2) ,  d iv id ing  F by  q y i e l d s / ~ .  Tak ing  t h e  l imi t  w h e r e  l -+  oo t h e n  yields  t h e  
field d u e  to  an inf ini te  l ine charge .  Specifically,  F igure  3 .13 dep ic t s  t h e  force  d F  
on q d u e  to  t h e  cha rge  dQ-)~dy  in an e l e m e n t  o f  l e n g t h  dy. 

T h e  r e su l t  o f  s u m m i n g  t h e  dF's d u e  to  charges  dQ on each  of  t h e  l e n g t h  
e l e m e n t s  dy is t h a t  Fy = 0, and  Fx is g iven by  (2 .21) ,  r e p r o d u c e d  h e r e  as 

kq Q 
Fx = - (3 .20)  

av/a 2 + ( / / 2 )  2 

To ob ta in  Ex, by  (3.2) ,  w e  d iv ide  (3 .20)  by  q, w h i c h  leads  to  

E~ = - k Q  . (3 .21)  
av/a 2 + ( / / 2 )  2 

As a check ,  n o t e  tha t ,  as I/a -+ O, (3 .21)  goes to  t h e  resu l t  for  a p o i n t  cha rge  Q 
at  a d i s t ance  r - a.  

N o w  t ake  t he  l imi t  w h e r e  l/r -+ oc. Using  E = ]El = IExl, and  r in p l ace  o f  
a, (3.21)  yields  E -+ kQ/[r(l/2)] - 2kQ/lr.  T h u s  

~:iii ii~:iiiii ::~i:i~i~ i~:i i:~iil; :iii i i~ii~ii~il ii~ili!~i :ii~iiiiii ~ili!i iii ii~ii ~ili iii~i ii ~i~ii~i :iiiil i~ii~i :iii i i:iii :ii~i i~i ~iii~ili~!i~!i~!iiiiii ~!i ilia! ii i i~ ii :~i!~ii!i iiii~ii! i i!iii ii~ii~ill ~iiiiii~i ill ~ii~iii :ii!iiiii~ili~ii ~iii i ii ~i~iiiii ii~iiil i~i iii i~i~i~!:i i:i ii:i i i i iiii:iiii ii i i~i ii i~iiii ii~ii~iiiiii iiliii iii~il ili: ~ili!i i!i iii iiil !iii!i ii iiiiii~ii i i~i iiiiii~ii ~iiiiii ili!iiiiiiii i!i i~il iii iiii iii ill iii ~iii i i!iii i i~i i iii i~il iii iii~iiiii~i ili!i~i iii iii~i~i!i iii~il ~ii:iii i:i iii ~ii !iii~i i~ii~i:~iiiii~i ili i ii i!i i i~i i~! !~!i~i~ ~iii i~i i iiii iiii~i ili~ii i ili:i iii !i~ill i~i i il iii ii~! ili il i ii iiil i iiiiii ~iiiiil i!i!!i;il iSi ili i lii iii i!il i~i iii lii iiiii~ii!i!ii~i ii!i iilili ili!ili!i ~!i iii ilil iii i ii ili~i!i ii~iiiii iii iiiii!i i): :ili~iiiiii ii i ili ii i~!i ii iiiii ii!i~iii iii~ii!iijiiiil iii i iii il !iii iii!i iii l iii iiiii!iii i!ii i i if! iii!iiii~ii~i i!i i!iil ~ii!!iiii ii !iiii iill i!ii!i!iiiiii~i if! ~ii~i ii i~i i: ~iiiiil :iiil iii i!~iiii!iiiiii!i i!!i i;ii! i~! !ili i ili ~iii ii!ii~ii~ii! i i!~ii!i i~i i ii i!~iiii~i ii!i i li ii!iiiiiiiiiiiiiiiiiiii i!iiiiii il !i!ii!i iil ~iliiii ii iil i !il !iil ii:i iil i!i :ii ili i~iil iiii!iiii iilil iii iiiili !iiiiii iiiiiiJi ii iiiili!! i!iiiiiiiiiiiiii!ii!iiiiii 

~ii:iiiii:i!ii;ii:~i;~i~i!ii~!i~i~ii~iiii~i~i~ii~iiii~ii~i!ii~iiiii~i;ii~i~i~i~iii~ii~i!ii{iii~iii~iiiii!iiii!iii~!iiiiiiii~ii~i~iiiiii~iiiiii!ii~iiiiii~iiiiiiiiiii~iii!i~i~i!iii~iii~ii~ii~i!iii~iiiiiiii~ii~i~iiiii~iiii 

dF 

l 

dQ = (Q/ l )dy  

X - - - - ~  
Figure 3.13 Find ing  t h e  field at  t h e  or ig in  d u e  to  a l ine 
charge:  fo rce  d/~ on t e s t  cha rge  q at  or ig in  due  to  an 
e l e m e n t  dQ.  
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where )~ = Q / l  is the charge per unit length. As indicated earlier, this varies 
inversely with r. To obtain a sparking field in air (Ed = I E! = 3 x 106 N/C) at a 
distance of 1 mm, (3.22) gives ;~ = 1.67 x 10 -7 C/m. 

This important  geometry is used in particle detectors, such as Geiger counters. 
When there is ionizing radiation, a large enough field causes electrons to avalanche 
toward a positively charged wire. The field is largest at the wire. 

Field due infinite sheet of uniform surface to an charge 
density 

Find the electric field at the point  P = (0, a, 0), due to an infinite sheet  of 
uni form surface charge a in the y = 0 plane. See Figure 3.14. 

Solution: This problem could be solved using dq = adA, where dA = dxdz, and 
integrating over both dx and dz. However, the integral over a uniformly charged 

line (here involving dz rather than dy of 
Figure 3.13) has already been done in 
(3.22). Hence the area can be built up as 
an infinite number of thin strips, each of 
which can be treated as a line charge. Note 
that the directions of the fields produced 
by each line are different. 

The strip in Figure 3.14, with thick- 
ness dx, is parallel to the z-axis, at a 
distance r = ~/a 2 + x 2 from the point P. 
As a strip of charge (with a very large 
length l), it has area d A - l d x ,  charge 
dq -- (dq /dA)dA= a(ldx), and charge 
per length d)~ = dq/ l  = a dx. Since d)~ is 

Figure 3.14 Finding the field at independent of l, we may let l ~ ~ .  In 
the origin due to a sheet of charge: (3.22), let us replace E by dE and k by 
field dE due to a strip of charge, dk. This leads to 

dE = Idf21- 2kd)~ _- 2kadx, (3.23) 
T T 

which points along the normal from the strip to the observation point. By sym- 
metry, only Ey will integrate to a nonzero value, which requires the direction 
cosine cos0 = a/r. Thus 

2kadx 
dEy = dE cos0 - cos~). (3.24) 

T 

This can be integrated most easily by eliminating x in favor of 0. Since x = a tan O, 
we have dx = a sec 20dO. Also, a = r cos 0, so r = a sec 0. Then 

2ka (a sec 2 0d0) 
dEy = cos0 = 2kr~dO. (3.25) 

a sec 0 

Since J-~/2f~/2 dO = rr, (3.25) integrates to Ey - 2k~zr. Thus, with E in place of Ey, 
we have 
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As indicated earlier, this is independent of position. It is normal to the sheet and 
changes direction on crossing from one side of the sheet to the other. To obtain a 
sparking field in air (Ed - 3 x 10 ~ N/C), (3.26) gives cr - 5.31 • 10 -S C/m 2. 

This important geometry was employed inside older TV tubes to focus the 
electrons. It is also used in electrostatic precipitators, where it is used to draw off 
particles of smoke that have been electrically charged. 

The present method can be applied to compute the field due to a sheet that 
is finite along x, by changing the limits of integration. In that case, the field may 
also have an x-component. To an observer near the center of such a finite sheet, 
the field will appear to be due to an infinite sheet. 

~ Field axis of of uniform linear on a ring charge density 
and radius a 

Find the electric field a distance z along the axis of a circular ring of uniform 
linear charge density )~ and radius a. 

Solution: Let the circle lie at the center of the coordinate system, with its nor- 
mal along z. For an observation point on the axis, all charge is at a distance 
r - ~fa 2 + z 2. See Figure 3.15. 

By symmetry, only Ez is nonzero. An element of charge dq produces a field 
of magnitude dE - Id/~[ - kdq/r  2, and the direction cosine along the z-axis is 
cos~) - z /r  for each dq. Thus 

kdq z kz dq (3.27) 
dEz = ]dE] cosO - .r2 r = 7 " 

Since kz/r  3 is a constant on the axis, and since q - f dq - f (dq/ds)ds - f )~ds = 
)~ f ds - ~(27ra), integration over dq yields 

kz f kz;L(2zra) 
Ez - -r7 dq - (a 2 + z2)3/2. (3.28) 

Calculus was unnecessary to derive this result: q -  f d q -  f ) ~ d s -  )~(2z~a) is 
straightforward. 

Here are two simple checks. 
(Think of the Sesame Street charac- 
ter Grover, who likes to illustrate 
near and far.) Near the ring (here, 
at its center, z -  0), by symmetry 
the field must be zero; indeed, set- 
ting z - 0 in (3.28) gives Ez - 0. 
Far from the ring ( z ) )  a), the field 
should be the inverse square law of 
a point charge; indeed, using q -  
)~(2~a), (3.28) gives Ez -+ kq/z  2. 

Figure 3.15 Field d/~ due to part of a ring For an off-axis observer, the 

of charge, problem would be very difficult be- 
cause r and ~ would be different for each dq, and there would be three compo- 

- +  

nents of E to compute. Without advanced techniques, off-axis it would be easier 
to approximate the integral as a sum on a spreadsheet. 
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!xample 3. Field due to a disk of uniform charge density r and 
radius a 

Find the electric field at a point  z on the axis of a disk of uniform surface 
charge density a and radius a. See Figure 3.16. The field lines have already 
been sketched in Figure 3.9(a). 

Solution: Let us build up the disk out of rings to take advantage of the results of 
the previous example. Since only the z-component will be nonzero, we add up 

the dEz's due to each of the rings 
that make up the disk. Thus, con- 
sider a typical ring, of radius u and 
annular thickness du, centered at 
the origin with normal along the 
z-axis. Take an observation point 
that is a distance z along the z-axis. 
See Figure 3.16. Then the observer 
is a distance R - ~/u 2 + z 2 from all 
the charge on the ring. Moreover, 

Figure 3.16 Field d/~ due to an annulus the ring has charge d Q =  r~dA-  
of charge. ~ (2zr udu). 

To apply the results of (3.28), we let 

Ez --, dEz, q - )~(2zra) -~ dO.= a(2rrudu), 

Thus 2zr ;~a - .  2st ~ udu, so (3.28) becomes 

r = v / a  2 n u z 2 ~ R .  

k z  
d Ez - -~  (2Jr ~ udu). (3.29) 

Note that d/~ = dEz~ for the total field on the axis of the annulus, because dEx = 
dEy = 0, by symmetry. 

Now change to the variable R, so R 2 = u 2 + z  2. Note that d(R 2) = 
[~R(R2)]dR = 2RdR, and similarly d(u 2) = 2udu. Since z is constant, we have 
2RdR = 2udu. Then (3.29) becomes 

2rr kcr zd R 
R 2 

k z  
dEz = ~-g(2zrcr RdR) = 

The total Ez is due to all the rings, so 

R+ 

R_ 

(3.30) 

(3.31) 
f 2rr ka z 

Ez = I dEz = 
J R 

Since, by Figure 3.16, R+ = ~/a ? + z ? and R_ = z, (3.31) becomes 

E z = 2 z r k o z (  lz ~/a 2 1+ z ? ) = 2zrker (1 - via 2 z+ z ? ) .  (3.32) 

The integrals cannot be done with elementary methods for an observation point 
off the axis. 

Here are two simple checks. Near the disk (a/z ~ ec), the field should look 
like that ofan infinite sheet. Indeed, for a/z -+ ~ ,  (3.32) goes to Ez = 2zrkcr. This 
agrees with (3.26) for an infinite sheet built up out of lines, rather than rings. Far 
from the disk (a/z ~ 0), the field should look like that of a point charge, k Q/z  2, 
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where Q = ~ J r a  2. To show this, consider the parentheses in (3.32), and divide 
numerator and denominator by z. That gives 

1 - ~/a 2 + z 2 = 1 - X/(za)2 + 1  = 1 - 1 + . (3.33) 

As a/z  -+ O, this goes to zero. But does this approach zero as 1/z2? To see this, 
set x = (a/z) 2 and for n - - �89 apply the result 

(1 + x)  n ~ 1 + nx,  Inxl << 1. (3.34) 

Equation (3.34) follows from the straight-line (or linear) approximation y = 
mx + b for small x, applied to y = f (x) = (1 + x) n, where b = f (0) = 1. To ob- 
tain the slope m = d f / d x  at x = 0, take the derivative of (1 + x) n, and then sub- 
stitute x = 0. This gives d f / d x  = n(1 + x) n-1 at any x, so m = df/dxlx=o = n. 

Applying (3.34) to (3.33) yields 

~/a 2 + z 2 

( ( a ) 2 )  1 
= 1 -  1 +  z 

( l ( a ) 2  ) l ( a ) 2  ( a  ) 
. . . .  < < 1 .  (3.35) ~ 1  1 ~ + " "  ~ 2  z ' z 

Use of (3.35) in (3.32) then yields that, far from the disk, Ez -+ (2Jrk~)�89 2 = 
k~(zra2)/z 2 = k Q / z  2, as expected. 

For a position off-axis, the field also has a radial component, which typically 
is very difficult to calculate. 

~ Field due sheets of uniform den- to two parallel charge 
sities -I-~ 

Find the electric field due to two parallel sheets of uniform charge densities 
+or, both between the sheets and outside the sheets. 

Solution: We again use the superposition principle, here adding up the effect of 
each sheet, given by (3.26). See Figure 3.17. Outside the region of the sheets, 
either to the far right or to the far left, the net field is zero because the individ- 
ual fields E1 =/~+ and E2 = E- ,  each of magnitude 2Jrker, cancel. Within the 
sheets, however, these fields add, giving a net field E pointing from +~ to -cr, of 
magnitude 

IEI = 4zrk~. (3.36) 

Crl =~ I I 

E1 E2 
I I 

Figure 3 . 1 7  Field due to two sheets of charge 
that intersect normal to the page. 
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This case is important because parallel plate capacitors have this geometry. Note 
that /~ and/~2 add vectorially in each region by the principle of superposition; 
the field due to one sheet is independent of the presence of the other sheet. 

3.7 

3.7.1 

Visual iz ing the  Electric Field: Part 2 

More on Faraday's and Maxwell's Ways of Thinking 

Faraday considered that the source of the lines of force (the charge) is subject to 
a net force due to the force on all its field lines, using the rules that 

1. Each line of force is under tension. Therefore two objects at opposite ends of 
a line of force (and thus having opposite charges) attract. See Figure 3.11 (b). 

2. Adjacent lines of force repel one another. Therefore two adjacent objects 
with the same charge are the source for adjacent repelling lines of force, and 
hence the objects repel. 

Maxwell showed that these ideas are valid, and related the tension and pres- 
sure of the lines of f o r ce~o r  field l ines~ to  the electric field strength. He devel- 
oped an analogy where the field lines leading from a positive charge to a negative 
charge, as in Figure 3.1 l(b), are analogous to the fluid flow (flux) from a source 
(e.g., a spigot) to a sink (e.g., a drain). This led Maxwell to think in terms offlux 
tubes, whose sides are parallel to the electric field, with flow direction along/~. 
The field lines determine the flux tubes, and vice versa. 

In the fluid case, equal flux tubes carry equal amounts of fluid per unit time, 
and the unit flux tube may be defined as one that transports a m 3 of fluid per 
second. In the electrical case, the unit flux tube is defined so that if there are 300 
unit flux tubes per unit area (m2), then the electric field magnitude is 300 N/C. 

It is not possible to draw all the unit flux tubes for a given problem; thus, 
the flux tubes often are not taken to be unit tubes. Doubling the charge can 
either double the number of tubes or double the field strength associated with 
each tube. Thus, the product of the number of tubes and the field strength is 
related to the electric charge that produces the tube. In general, it is difficult to 
represent either flux tubes or field lines for three-dimensional geometries. We 
must often settle for a schematic representation. The examples that follow are 
simple enough that their field lines can be drawn exactly. 

~ Field lines for two equal line charges 

Discuss and sketch the field lines for a dipole of two equal line charges. Take 
eight lines per )~. Find the position where/~ - 0. 

Solution: In two dimensions, lines give an accurate representation of flux tubes 
(the other sides of the tubes are perpendicular to the paper). Eight lines leave 
each positive charge (at equal angles of 360/8 =45~ See Figure 3.18(a). Far 
from these charges, this combination of two charges looks like a single line charge 
with net charge 2)~. This corresponds to 16 field lines leaving, at equal angles of 
360/16 = 22.5~ See Figure 3.18(a). The boxed point is a position where/~ = 0. It 
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(a) 

I 

I 

I 
+ 

I 

I 

I 

(b) 

Figure 3.18 Representations of the field lines due to two equal 
positively charged rods normal to the page. (a) Representation with 
field lines going from one rod toward the other. These field lines 
appear to end at the origin (surrounded by a box), with two lines 
leaving vertically. Thus the net number of field lines leaving the origin 
is zero. (b) Representation with field lines that do not go from one rod 
toward the other. 

has two lines entering and two lines leaving so that it encloses no net charge. Field 
lines don't really cross where/~ = 0 since there is no field there. Figure 3.18(b) 
has been drawn with the field lines at another angle. Faraday would imagine the 
charges repelling because of the parallel field lines pushing away from each other. 

~ Field lines for two line charges on the x-axis 

Discuss and sketch the field lines for 2)~ at the origin and -)~ at a distance l 
to the right. Take eight lines per )~. The lines are oriented normal to the page, 
as in Figure 3.19. 

Solution: Sixteen lines leave the positive charge 2)~ (at equal angles of 360/ 
16 = 22.5 ~ and eight lines enter the negative charge -)~ (at equal angles of 

~ - - - l ~  s----~ 

Figure 3.19 Field lines for two rods of 
charge 2)~ and -)~; the rods are normal 
to the page. The box denotes the point 
where the field is zero. 

3 6 0 / 8 -  55~ Far away, this com- 
bination of two charges looks like 
a single line charge with net charge 
2)~ + ( - )0  - )~. This corresponds to 
eight field lines leaving at equal 
angles of 3 6 0 / 8 -  45 ~ The boxed 
~point on the x-axis, where / ~ -  
0, is a distance s to the right of 
-)~, and l +  s from 2)~. By (3.23), 
the fields due to each charge can- 
cel when 2k(2)~)/(l + s) - 2k)~/s, giv- 
ing s -  t. Two field lines leave this 
point to right and left. In order 
that the net number of lines en- 
tering this point be zero, two field 
lines enter it from top and bottom. 

Faraday would imagine the charges attracting because the field lines try to 
contract. 
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I 

I 

(a) 

Figure 3.20 Geometry associated with dipole 
field lines. (a) Sphere defining the polar angle 0 
relative to the dipole axis. (b) Field lines for an 
electric dipole. 

~ Flux tubes and solid angle for a point charge 

Find the solid angle subtended by a cone formed by rotating a line at an angle 
0 relative to the polar axis, as in Figure 3.20(a). Relate this to flux tubes. 

Solution: Your calculus course may have shown that the area A projected on a 
sphere of radius r of a cone of angle 0 is A -  2zrr2(1 - cos0). By definition, the 
solid angle fa subtended by this cone is given by fa = A/r  2 so that 

~2 = 2zr(1 - cos0). 

The larger the solid angle, the larger the flux of the associated flux tube. 

(3.37) 

~ Field lines and flux tubes for a dipole 

Discuss and sketch the field lines and flux tubes for a dipole of equal and 
opposite point charges. 

Solution: In Figure 3.20(b), the lines represent flux tubes of equal solid angle 
going from the positive charge to the negative charge. In three dimensions, they 
are rotated about the polar axis to form the flux tubes. From (3.37), the angles 
leaving the positive charge constant separations in cos 0. Thus, measuring with re- 
spect to the polar axis, the angles of the tubes entering and leaving the charges are 
at O, 60, 90, 120, 180, and so forth. The objects enclosing equal flux are the con- 
ical shells that are the differences between successive conical flux tubes. For that 
reason, they are farther apart for angles near the polar axis. (Related distortions are 
seen in maps of the world, which also involve representing a three-dimensional 
situation in two dimensions.) Faraday would imagine the charges attracting be- 
cause the field lines try to contract. At large distances, the fields vary as (3.12) on 
the dipole axis, and as (3.14) normal to that axis. 

Force, Torque, and Energy of a Dipole 
in a Uniform Field 

Consider an electric dipole in a completely uniform electric field, as in Fig- 
ure 3.21. The force q E on the positive charge is equal and opposite to the 
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force -q/~ on the negative charge, so there is no net force on the dipole. A well- 
known magnetic analog is an ordinary compass needle in the earth's magnetic 

field: the needle rotates, but the compass is 

E 

Figure 3.21 Electric dipole of 
moment ~ in a uniform applied 
electric field/~. Two equal and 
opposite charges are separated 
by l. 

subject to no net force. This is because the 
earth's magnetic field is nearly uniform in the 
vicinity of the compass needle, so its north and 
south poles feel equal and opposite forces. 

Nevertheless, a magnet placed in the 
nearly uniform magnetic field of the earth 
feels a torque ~ that tends to make it point 
toward the north pole. We will later describe 
the magnet as a magnetic dipole in a uniform 
magnetic field, so we will say that the magnetic 
dipole feels a torque that tends to align it with the 
magnetic field. 

Now consider the analogous case of a permanent electric dipole ;~ in a uni- 
form electric field/~ (The dipole could be the water molecule in Figure 3.10a~. 
The electric dipole ~2 feels a torque that tends to align it with the electric field E. 
To determine the value of the torque ~, consider that there are two charg~es +q 
connected by a rod of length l, the charges at positions +~/2. (Thus 26 = ql.) See 
Figure 3.21. Let there be a uniform field E that points to the right. The force 
on each of the charges is +q/~. Hence the torque ~, measured from their mid- 
point, is 

r - ( 2 ~ ) x  (q/~)+ ( - 1 [ )  x (-q/~) -(qh x/~. 

With ~ - q~, ~ becomes 

!iiiiiiiiiiiiiiiiiiiiii!iii!iiiiiiiiii!~ iilii iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii!iiiiiii!i!iiiiiiiiiii!i iii !iiiiiiiiiiiiiiiiiiiiiiiiiiiiii!iiii!iiiiii!iiiiiiiiiii !il i lii i iii!iiiiiiiiiil !iii!i!i !i!i !iiii!! i iiili!iiii! i ili i iiiiii i ili i iiiii!i ~ii ~iii!!ii !iiii!i!iii!ii!!iiiii!iiiiiiiii~ !ii!~!i~ii~iiii iiiiiii!i!iiiiiii!iiiiiiili~!i!i!!!ii!iiiii!iiiiiii!iiiii~ii iii ............................. iiii i i i ii 'iii ! i ii i li ................ i ............................. i i i i ii ..... 

For the dipole and field in Figure 3.21, use of the vector product right-hand rule 
yields a torque that is into the page, which tends to cause a clockwise rotation 
of the dipole. 

We can obtain the energy by using an analogy to gravity. There, a single mass 
m at position ~ in a uniform gravitational field ~ has gravitational potential energy 
Ugr~v -- mgy or, with ~ - -g56 

Ugr~v -- --m(~. ~). (3.39) 

By analogy, a single charge q at position ~ in a uniform electric field/~ has elec- 
trical potential energy 

Uel -- - q ( E  . ~). (3.40) 

If we now apply this to our two charges, on summing over both we have 

l 
U d i p - - I q ( E "  ~ ) ] - I ( - q ) ( / ~ "  ( - ~ ) ) ] - - q / ~ ' ~ ,  (3.41) 
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3.9 

3.9.1 

or, with ~ -  ql, 

When } and /~ are aligned, so iv" E -  I~11/~1, the energy is minimized, as 
expected. 

Force on  a D i p o l e  in a N o n u n i f o r m  F ie ld  

In the amber effect, there is a force on an induced dipole in a nonuniform field. 
Equation (3.17) applies only when the electric field is due to a point charge. 

| 

O 
O E 

2 | 

Figure 3.22 Electric dipole 
moments in a nonuniform 
applied electric field E. 

More generally, there can be a permanent dipole 
(e.g., due to a water molecule) in an electric field 
due to many charges. Before getting into mathe- 
matical detail, we present some general considera- 
tions. 

Since the force 1fi on a dipole ~ in a uniform field 
is zero, in general the force on the dipole must de- 
pend upon the strength of the dipole moment  and 
on how E varies in space. Consider Figure 3.22, 
depicting a nonuniform electric field/~ and three 
dipoles in different orientations. From our earlier 
considerations about field lines, the electric field is 
stronger where the field lines are closer. Further, 

the force on the end of the dipole in the larger field dominates. Thus dipole 1 
feels a net force to the right, dipole 2 feels a net force to the left, and dipole 3 
feels no net force. 

Quantitative Considerations 

Consider a dipole with q at F + [ and - q  at F. By (3.6), the force on the combi- 
nation is given by 

p = q ~ ( F  + 2 / )  _ q / ~ ( F _  1 [ ) ,  (3.43) 

where E is evaluated at F + �89 We wish to evaluate this when/~ varies slowly 
in space. 

First consider the straight-line approximation applied to a function only of 
x. If a is small, then f ( x + a ) -  f (x)  is nearly given by the slope m - d f / d x  
times the coordinate difference a: f ( x + a ) -  f ( x ) ~  (df/dx)a. Now include 
the coordinate differences in all three directions, and let f = q Ex, so f (x) -+ 
f (x, y, z) = q E~(x, y, z). Then f (x+a) generalizes to q Ex(x+lx, y+ly, z+lz), so 
f (x+a) - f (x) generalizes to 

dEx dEx dEx 
Fx - qlx T x  + qly T v  + qlz dz 

-~ d d d 
v - + + k 

dz dx JJ ~ y 

= (~. V)Ex, D -- q[, 

(3.44) 
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with similar equations for Fy and F~. (The quantity V is called the gradient 
operator.) For a dipole } aligned with E, this says that the dipole is attracted 
to regions of larger E. Magnetic dipoles have analogous behavior. Verify that 
this equation agrees with the qualitative considerations for the three dipoles in 
Figure 3.22. 

It is not important that you remember this equat ion~i t  is better that you 
don't ~. What is important is that, just as we argued above, this force is proportional 
to the dipole moment and to how the electric field varies in space. 

3.10 Motion of Charges 

Figure 3.23 depicts a positively charged particle (e.g., an alpha particle, which is 
a helium nucleus, with charge ql = 2e) moving past another positively charged 

particle (e.g., the nucleus of an atom, 
with charge q2 = Ze, where Z is usu- 
ally much bigger than 2) that is fixed 
in place. The alpha particle bends away 
from the nucleus because it is repelled, 

Scattering from nucleus (q2 = Ze) by "likes repel." Finding the orbit of the 
alpha particle is a solvable but mathe- 
matically complicated problem. It is not 
necessary to solve such a complex prob- 
lem to learn how electric fields cause 
charged particles to be deflected. How- 
ever, this problem led to the discovery of 
the atomic nucleus. 

Just as the motion of a particle in a 
uniform gravitational field is relatively 

straightforward to obtain, so is the motion of a particle in a uniform electric 
field. The motion of an object depends upon its acceleration, no matter what 
forces cause that acceleration. 

Figure 3.23 An alpha particle (a 
helium nucleus) scattering off the 
nucleus of an atom of nuclear charge 
Ze. Not depicted are the very light 
electrons, which cannot effectively 
scatter the alpha particle because of the 
mass mismatch. 

In 1910 Rutherford, winner of the 1908 Nobel Prize in Physics for his discovery of 
alpha particles, had a student measure the alpha particles that are back-scattered by 
nuclei. The then current "plum-pudding" model of the atom (due to J. J. Thomson) had 
positive charge, with most of the mass of the atom uniformly distributed throughout 
the atom. For this model Rutherford expected to find negligible large angle-scattering. 
When appreciable back-scattering (nearly 180 ~ !) was found, Rutherford developed a 
model where the positive charge was concentrated at a massive point. Working out the 
theory of the alpha particle orbit, he obtained agreement with his experimental results. 

Motion along a Uniform Electric Field 

To draw electrons from it, a cathode is both heated and placed in an electric field 
due to a positively charged grid screen. At a distance, to the electron the screen 
looks like a plane. 



134 Chapter 3 �9 The Electric Field 

Consider  a uniformly charged sheet in the 
yz-plane, with positive charge density ~, as 
in Figure 3.24. Above itself it produces a 
uniform upward  electric field of magni tude  
E = 2zr~. A negatively charged particle - q  
would  feel a constant  force downward;  the 
mot ion  would  be very like the  mot ion  of a 
baseball th rown directly upward  against grav- 

Figure 3.24 Motion of a negative ity. See Figure 3.24. Let us analyze this situ- 
charge - q  above a positive, ation neglecting the force of gravity. 
uniformly charged sheet +~ that The  force is downward,  and of magni tude  
intersects normal to the page. F - q  E. Let us call this the y-direction. By 

Newton ' s  second law, this force produces a uniform downward  acceleration ay, 
where  may = F = q E. Then  

dvy qE 
- - - -  (3.45) 

dt - a y  m ' 

which integrates over dt to yield 

dy qE 
vy = dt = vo + t, (3.46) 

m 

where  v0 is the initial speed. A second integration over dt leads to 

1 q E  2 
- t y y o + v o t + - ;  , 

L m 
(3.47) 

where  y0 is the initial position. This is very like wha t  we have for the gravity 
problem, except  tha t  the acceleration no longer is g, but  q E / m .  

~ Electron and sheet of positive charge 

Consider in Figure 3.24 an electron ( q - - e - 1 . 6  x 10 -19 C, m =  9.1 x 
10 -31 kg) with speed 107 m/s at the moment  it passes through a tiny hole in 
a positively charged sheet of ~ - 5  x 10 -6 C/m 2. Find (a) the field, (b) the 
acceleration, (c) the time for the electron to return to the cathode and 
(d) the maximum distance of the electron from the sheet. 

Solution: (a) By (3.26), E = 2rrk~ = 2.83 x lO s N/C. (b) a v = q E / m  = 4.98 x 
1016 m/s 2, an acceleration that vastly exceeds that due to gravity. (c) With initial 
velocity v0 = -107 m/s at the hole (negative because it is moving upward), by 
(3.46) with vy = 0 it takes a time t = -vo/ay = 2.01 x 10 -l~ s for the electron 
to come to rest, and an equal amount of time for it to return to the cathode. 
Therefore, ttotal = 4.02 x 10 -l~ s. (d) With y0 = 0 and t = 2.01 x 10 -l~ s, (3.47) 
yields y = 2.01 x 10 -3 m. 
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H~ 1 cathode 

§ 
e 

. . . . . . .  

Deflecting plates Phosphor~screen 
Accelerating grid 
(screen) 

Figure 3.25 Deflection of an electron emitted from a hot 
cathode. It is attracted to a positively charged grid screen 
(an anode), overshoots, is deflected by the electric field 
due to the charge on a pair of parallel plates, and then 
hits a phosphor screen, where it causes light to be 
emitted. For many years, television screens used this 
principle of electrostatic deflection. 

3~ Mot ion  in a Plane, w i th  a Uni form Electric Field 

Older TV tubes and cathode ray tubes, as well as ink-jet printers, use electrostatic 
deflection to guide the electrons. 

Once the electron has passed through the grid and is moving at about the 
desired velocity, it passes through two pairs of deflecting plates, of length L, to 
cause the appropriate deflections in the y- and z-directions. See Figure 3.25. (At 
the TV or oscilloscope screen, the electron collides with a phosphor material, 
and excites an electron from an atom in the phosphor. The excited electron 
quickly returns to its ground state, emitting visible light in the process.) Most 
of the deflection occurs in the region of length D that follows the deflecting 
plates. However, the deflection angle ~) develops while the electron passes 
through the deflecting plate region. For simplicity, we will not consider motion 
in the z-direction. See Figure 3.25. 

For simplicity, we assume three clear-cut regions: the grid acceleration region 
(which can be treated as in the previous example), the deflecting plate region, 
and the post-deflecting plate region. 

In the deflecting plate region, the electron has a constant velocity Vx in the 
x-direction, obtained from the grid region. Thus, measuring from an origin that 
is at the left edge of the deflecting plates, 

x - Vxt (3.48) 

describes the motion in the x-direction, with x - 0 at t - 0. In the y-direction, 
there is uniform acceleration starting from rest (vy - 0) at the origin (y0 - 0). 
With ay - F y / m -  ( q E ) / m  for the acceleration due to the deflecting plates L, 
the motion along y is described by 

1 Fy qE (3.49) vy - ayt, y -  vot + ~ayt  2, ay - - ~  - - -~.  

It takes a time T - L /vx  to cross the deflecting plates. 
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In the post-deflecting plate region, the electron moves in a straight line, at 
an angle 0 determined by the velocity components  at t ime T: 

tan ~) - v! 
Vx 

= a (L/vx) = ayL 

T 72x 722 " 
(3 .so) 

By suitably adjusting the charge densities + a  on the deflecting plates, which 
by (3.36) produce E -  4nkcr, we can adjust a y -  qE/m-(e /m) (4nka)  and 
therefore the deflection of the electron. 

3.11 
[eJ~14[,ln~._lil 

The Classical World Is Unstable for Electrical 
Forces Alone 

From the properties of field lines, we can prove that, when Newton 's  laws of mo- 
tion (defining classical mechanics) apply, a set of electric charges Qi alone cannot 
produce any position where a test charge q can be in stable equilibrium. Applied 
to ordinary matter, where the electrical interaction dominates, this means that  
stability is impossible. This is known as Earnshaw's theorem. 

Here is a graphical proof. Consider a point P at 
which/~ - O. (Note that  0 means that  all three com- 
ponents are zero.) Surround P by a sphere of radius 
so small that  it contains no charge. See Figure 3.26, 
which is based on Figure 3.18(b). If there is an excess 
of inward (or outward) field lines, then the sphere 
must  contain negative (or positive) source charge. 
Since there is no charge within the sphere, if four field 
lines enter then four field lines must  leave. Nowplace  

Figure 3.26 a test charge q at P. It feels no force, by F - q E - O. 
Representation of the However, if it is displaced slightly, in some direc- 
field lines and an tions it will feel a force pushing it back to P (sta- 
imaginary spherical bility), and for others it will feel a force pulling it 
surface centered along from P (instability). Thus, there is always a direc- 
the line between two tion for which displacements from equilibrium will be 
equal point charges, unstable. 

Since matter  is stable, Earnshaw's theorem is an 
indication that  Newton 's  laws of motion are inadequate at the atomic scale. At 
the atomic level, classical mechanics (i.e., Newton's  laws of motion) must  be 
replaced by quantum mechanics. Q u a n t u m  mechanics eliminates, at the micro- 
scopic level, the instability of Earnshaw's theorem. 

Problems 

3-2.1 In fair weather, at the surface of the earth 
normally there is a downward directed electric 
field. (a) Assuming it to have magnitude 125 
N/C, what is the force on a water molecule to 
which an electron has become attached? (b) Corn- 

pare this with the force of gravity on the water 
molecule. 

3-2.2 (a) A molecule with a single excess electron 
would need what molecular weight to have a force 
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due to gravity that cancels the electrical force in a 
field of 2 N/C? (b) In what direction should the field 
point for such cancellation? 

3 -2 .3  (a) Consider a dust particle of mass 5 x 
10 .8 kg and an excess of five electrons. How large 
an electric field would be needed to produce a force 
of the same magnitude as the gravitational force on 
the surface of the earth? (b) For an electron, how 
large a gravitational field would be needed to pro- 
duce a force of the same magnitude as an electric 
field of magnitude 100 N/C? 

3-2.4 Let the electric field be/~ at a point P near a 
conducting foil (or any kind of conductor). Because 
of electrostatic induction, the force on a charge 
q at P will not yield/~. Show, however, that the 
average of the fields for two equal and opposite 
test charges q > 0 and - q  gives the correct value" 
F_, = ( F q  - F_q)/2q. 

3-2.5 A string of length l hangs from the ceil- 
ing. At its bottom end is a small sphere of mass 
m and charge Q < 0. A uniform horizontal field 
of magnitude E points rightward. (a) Find the 
angle 0 that the string deflects from the verti- 
cal (and which way it deflects). (b) Find the ten- 
sion T in the string. (c) Evaluate 0 and T for 
m = 4 2  g, l = 1 2  cm, Q = - 3 . 9  nC, and E =  
875 N/C. 

3-2.6 A fellow student gives you the following in- 
formation to represent the force and electric field 
acting on a charge q: Fx - 6  x 10 -9 N and Ex = 
2 N/C,  Fy = - 4  x 10 -9 N and Ey = --5 N/C, Fz = 
4 x 10 .9 N, E~ = 0. (a) Does this data make any 
sense? (b) If it does, deduce q. If it doesn't, explain 
why not. 

3-2.7 Is F -  (1, 2, 3) N a possible force for a 
charge subject to a field E - (2, 4, - 1 )  N/C? 

3 -2 .8  A charge - 2  #C at the origin is subject to 
a force of 1.8 x 10 -6 N along the +y-axis, due to 
an applied electric field/~. (a) Determine/~ at the 
origin. (b) Can you use this information to obtain 
the electric field anywhere else? 

3 -2 .9  A charge Q is known to produce a 5/xN 
force on a charge 2 nC at a distance of 2 cm. (a) 
Find the magnitude of the electric field due to Q. 
(b) Find [Q[. 

3 - 2 . 1 0  Photocopying uses negatively charged 
toner particles and a positively charged imaging 
drum. If the field of the imaging drum has mag- 
nitude 4 x l0 s N/C, find the force acting on a 

toner particle that has an excess of 150 electron 
charges. 

3 -2 .11  One property that makes the electric field 
a field is that it is well defined everywhere in 

space. Within air, the quantities pressure, density, 
flow velocity, and temperature are everywhere well 
defined, and therefore they too are fields. Classify 
them as scalar or vector fields. 

3 - 2 . 1 2  The intensity of light from a point source 
(e.g., a small light bulb) falls off as r -2, just as for 
electric fields. Consider a light source at ( -a ,  0, 0) 
to also have charge q. If it produces intensity I0 and 
electric field/~0 at the origin, find the total intensity 
and the total electric field at the origin if an identical 
light source with charge q is at (a, O, 0). 

3 - 2 . 1 3  Consider gravity between two point 
masses ml and m2. (a) Show that the gravitational 
field ~ due to m2 points toward m2. This is opposite 
the direction of E for a positive charge q?. (b) Write 
down the gravitational analog of (3.7), making sure 
that you get the direction correctly. 

3-3.1 A charge Q = 8 . 5  nC is at the origin. 
(a) Find the magnitude and direction of the elec- 
tric field it produces at (0, I), where I = 3  cm. 
(b) Repeat for (0 , - l ) .  

3-3.2 At the origin, an electric field points along 
the +y-axis, with magnitude 560 N/C. (a) Where 
would you put a charge Q = 42 nC to produce such 
a field? (b) Repeat for Q - -  42 nC. (c) What 
charge, placed at (0, l) for l = 16 cm, would pro- 
duce such a field? 

3-4.1 For drag-dominated motion, as in wires or 
electrolytes, ~ points along E. In the absence of drag, 
df2/dt points along E. Which of these systems, drag- 
dominated or dragless, would be more useful for re- 
lating measured flow patterns by charged particles 
and electric field lines? 

3-4.2 In considering the field lines for an infinitely 
long line charge with uniform density, we only con- 
sidered the field line density along the angular direc- 
tion. Discuss how the field line density varies along 
the axis of the line. 

3-4.3 In addition to drawing continuous field 
lines, there is another way to represent a vector 
field like/~, which is the vector defined at all points 
in real space (the field): for a representative sam- 
ple of points in space, draw an arrow pointing 
along/~, with length proportional to I/~ I, (a) What 
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advantages does this method have when there is 
a sphere containing a uniform volume distribu- 
tion of charge? (b) What disadvantages does this 
method have? (c) How do both methods compare 
relative to the information gained from grass seed 
alignment? 

3-4.4 At point P, Faraday represents the electric 
field, of magnitude 20 N/C, with a density of eight 
lines per unit area. At point P', the density of field 
lines is 20 lines per unit area. (a) Find the field mag- 
nitude at P'. (b) If the strength of the charges pro- 
ducing the field now suddenly quadruples, find the 
density of field lines at P and at P'. 

3-5.1 A charge 4 nC is at the origin and a charge 
- 8  nC is on the y-axis at y = 0.8 m. Find the elec- 
tric field (E is a vector) at (a) y = -0 .4  m, (b) y = 
0.2 m, (c) y = 1.2 m. 

3 - 5 . 2  Charges 4 nC and - 8  nC are placed at the 
upper right-hand and lower left-hand corners of a 
square 4 cm on each side. See Figure 3.27. (a) Find 
the magnitude and direction of the resultant elec- 
tric field at the lower right-hand corner. (b) Using a 
symmetry argument, find the resultant electric field 
at the upper left-hand corner. 

b 4 

-8 a 

Figure 3.27 Problem 3-5.2. 

3-5.3 A circular loop of radius a, centered at the 
origin, has seven charges equally spaced around it. 
The middle of the three adjacent - Q  charges is 
uppermost, at (0, a). The other four are q. See 
Figure 3.28. (a) With Q, q > O, find the direc- 
tion of the electric field at the center of the loop. 
(b) Find the magnitude of the electric field. 

- Q  
- Q  - Q  

q q 

Figure 3.28 Problem 3-5.3. 

3-5.4 A square centered at the origin has corners 
at ( - a , - a ) ,  ( a , - a ) ,  (a, a), and ( - a ,  a). If charges 
Q are at the top left and top right, find the electric 
field at the other two corners and at the origin. See 
Figure 3.29. 

Q A  A Q  

v v 

Figure 3.29 Problem 3-5.4 

3-5.5 Physics recitation is held in a tower that, 
viewed from above, rotates clockwise once every 
two minutes. Each of 23 students is given an elec- 
tric charge. The total electric field at the front of 
the class is then calculated, and at 2:01:08 pm 
is found to have components Ex = 47 N/C and 
Ey = - 3 6  N/C as seen by an elevated external ob- 
server. (a) If the class members remain in their seats, 
find the field components 35 seconds later, as seen 
by the external observer. (b) Compare the calcula- 
tion done in part (a) with the calculation that would 
have to be done by adding up the individual fields 
a second time. 

3 - 5 . 6  A rod of length 10 cm points along the 
x-axis. It contains 2000 identical dipoles of moment  
0.25 nC-m each, equally spaced and aligned with 
their dipole moments along the x-axis. Estimate the 
electric field along the x-axis at 2 m. (Hint: For esti- 
mation purposes, you may assume that the separa- 
tion s between dipoles equals the charge separation 
I within each dipole.) 

3-5.7 Consider the charges Q at (-a, 0), - 2 Q  
at (0, 0), and Q at (a, 0). Such a combination of 
charges, with zero net charge and with zero net 
dipole moment, is called an electric quadrupole. 
(a) Find the electric field along the x axis, for x > a. 
(b) Show that, for x >> a, the electric field varies as 
x -4. Find the coefficient. 

3-5.8 Consider an equilateral triangle of equal 
charges q, where two charges are at x = •  and the 
third charge is along the positive y-axis a distance 
v ~ a  above the origin. See Figure 3.30. By compu- 
tation show that at the center, which corresponds 
to s = a/V/-3, the field is zero. 
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q3 = q  

ql = q  
a 

q2 =q 
a 

Figure 3.30 Problem 3-5.8. 

3-5 .9  A circular loop has seven equal charges q 
equally spaced around it. Use a symmetry argument 
to show that the electric field is zero at the center 
of the loop. 

3 - 5 . 1 0  (a) For the charges in Figure 3.30, find an 
expression for the magnitude of the field at any 
point s on the vertical line through q3 within the 
triangle. (b) Show that where the field is zero the 
distance s satisfies 

2s 1 
(a  2 + s2) 3/2 (v/~a - s)2 

(c) Show that, in addition to the root at s = a/~/3, 
there is also a root near s ~ 0.24858a. (Due to 
S. Baker.) 

3-6.1 A rod in the xy-plane has its ends at (0, 0) 
and (L, 0). It has uniform charge per unit length )~. 
(a) Find the total charge Q on the rod. (b) Find the 
electric field on the x-axis for x > L, and verify that 
it has the expected result for x -+ oo. (c) Find the 
electric field on the x-axis for 0 < x < L, and verify 
that it has the expected result for x = L/2. 

3-6 .2  A rod with ends at (0, 0) and (L, 0) has 
charge per unit length X = o~x, where ~ is a constant. 
(a) Give the units of ~ and find the total charge Q 
on the rod. (lo) Find the electric field on the x-axis 
for x > L. (c) Verify that the field has the expected 
result for x -+ 0o. 

3 -6 .3  Consider a uniformly charged rod of two 
pieces, from (a, a) to (3r a) and from ( - 3 r  a) 
to (-a, a). See Figure 3.31. Each piece has charge 
Q/2. Find the field at the origin. Hint: Use super- 
position. 

Q/2 Q/2 

T 
Figure 3.31 Problem 3-6.3. 

3-6.4 Consider a uniformly charged arc of radius 
a and angle ~ in the xy-plane, centered about the x- 
axis. See Figure 3.32. If it has charge per unit length 
;% find the magnitude and direction of the electric 
field at the origin. 

I 

a 

Figure 3.32 Problem 3-6.4. 

3-6 .5  Consider a ring of radius a in the xy-plane, 
centered at the origin. Its upper half has charge per 
unit length +)~, and its lower half has charge per 
unit length -)~. See Figure 3.33. (a) From symme- 
try considerations, determine the direction of the 
electric field at its center. (b) Find the magnitude of 
the electric field at this point. 

Figure 3.33 Problem 3-6.5. 

3-6.6 Consider a ring of radius R, in the xy-plane, 
centered at the origin. Its lower left-hand quadrant 
has charge - Q ,  and there is no charge anywhere 
else. (a) From symmetry considerations, determine 
the direction of the electric field at the origin. (lo) 
Find the magnitude and direction of the electric 
field at the origin. 

3 -6 .7  A ring of radius R is centered at the origin 
in the xy-plane. It is uncharged in the lower half- 
plane. See Figure 3.34. With 0 measured counter- 
clockwise from the x-axis, in the upper half-plane 
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its charge per unit length is X = c~ cos0, where 
is a constant. (a) Find the net charge. (b) Find the 
electric dipole moment,  defined as a generalization 
of (3.10) to be ~ = f~dq .  Measure ~ relative to 
the origin. (When an object has zero net charge, it 
doesn't  matter where ~ is measured from.) (c) Find 
the electric field at the origin. 

Figure 3.34 Problems 3-6.7 and 3-6.8. 

3 - 6 . 8  A ring of radius R is centered at the origin 
in the xy-plane. It is uncharged in the lower half- 
plane. See Figure 3.34. With 0 measured counter- 
clockwise from the x-axis, in the upper half-plane 
its charge per unit length is )~ - c~ sin 0, where c~ is a 
constant. (a) Find the net charge. (b) Find the elec- 
tric dipole moment.  See the previous problem for 
its definition. (c) Find the electric field at the origin. 

..... !~iiiii!iii:i ............ 3-6.9 Consider a spherical cap of angle c~, 
....... ~ .............. radius R, and uniform charge per unit area 

~. Find the electric field at the center of the cap's 
sphere. (Figure 3.20a shows a spherical cap of 
angle 0.) 

3 - 6 . 1 0  Consider a slab of uniform charge den- 
sity p within the region 0 < x < L. Use the prin- 
ciple of superposition on slabs of thickness dx' to 
find the field due to this charge. Specifically, show 
(a) for x > L that Ex = 4zrkpL; (b) for x < 0 that 
Ex =-4:rrkpL; and (c) for 0 < x < L that E x -  
2 z r k p ( 2 x - L ) .  (d) Verify that Ex is continous at 
x = 0 a n d x =  L. 

3 - 6 . 1 1  Two infinitely long rods are normal to the 
page, intersecting the page at ( - a ,  0) and (a, 0). See 
Figure 3.3 5. (a) Find the electric field at (0, y) if the 

A 
w 

- - a  
A 
w 

a 

Figure 3.35 Problem 3-6.11. 

charge densities are both X. (b) Repeat if the left- 
most charge density is -,~. 

~:~!~?i~i;: ......... 3 - 6 . 1 2  A square of side 2a is centered about 
...... ~::::::: ....... the origin in the xy-plane. Its border has a uni- 

form charge per unit length )~. (a) Find the electric 
field at (0, 0, z). (b) Find its total charge. (c) Verify 
that the electric field goes to the expected result as 
Z ---~ OO. 

3 - 6 . 1 3  You are to produce at the origin a field 
I/~1-~ 250 N/C pointing along the 4-x-axis. How 
would you do this with each of the following 
sources: (a) a point charge q -- - 6  #C; (b) an infi- 
nite line charge ;~ ~ 4 #C/m;  (c) an infinite sheet of 
charge ~ - 4/~C/mZ? 

3 - 6 . 1 4  A uniformly charged semicircular arc of 
radius a and total charge Q lies in the upper half 
xy-plane, with its center at the origin. See Fig- 
ure 3.36. Find all three components of E for a point 
a distance z along the z-axis. 

Z 

/ x 

Figure 3.36 Problem 3-6.14. 
3 - 6 . 1 5  The field above two uniformly charged, 
infinite sheets normal to 51 is 20 N/C upward, and 
the field between them is 30 N/C downward. (a) 
Find the field below the sheets. (b) Find the charge 
density on each sheet. 

3 - 6 . 1 6  Consider two co-axial disks, each of ra- 
dius a, and common axis z. One lies on the z - d /2  
plane and has uniform charge density er. The other 
lies on the z - - d / 2  plane and has uniform charge 
density - ~ .  (a) Show that, between the disks (Izl < 
d/2), the field on the z-axis is 

( z - d ~ 2 )  
Ez -- 2z rker [ (1 -  v/a2 4 . ( z - d / 2 ) z  ) 

(z 4- d/2)  
4- ~(1 - v/aZ 4. (z 4- d/2)  2)['~7"j (Izl < d/2).  

(b) Show that, outside the disks (Iz] > d/2), the 
field on the z-axis is 

( z - d ~ 2 )  
2Jrkcr [ [ - via 2 -4- (z - d/2)  z Ez 

(z 4- d/2) 1 
4- via z 4- (z 4- d/2) z J, (Izl > d/2). 
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(c) Show that, for a ~  c~, part (a) goes to 
4zrka, and part (b) goes to zero, and show that 
these results are expected for very large uniformly 
charged plates. (d) Show that, as Izl ~ ~ ,  Ez -~ 
(2nka)(a2d/z3), as expected on the axis of a dipole 
of moment p = a (rr a2)d. Hint: You may find (3.35) 
helpful. 

3-7.1 As indicated by Figure 3.2, field lines can be 
visualized with grass seeds. What does the fact that 
grass seeds tend to align along/~ say about which 
orientation has the lower energy, along or perpendic- 
ular to/~? 

3-7.2 Sketch the electric field lines for two line 
charges )~ and -4)~ that are normal to the page, and 
separated by a, as in Figure 3.37. Take four lines 
per )~. Find the position where the field is zero. 

2 0  

Ia 
-4~ �9 

Figure 3.37 Problem 3-7.2. 

3-7.3 Sketch the electric field lines for two line 
charges g and 2Z that are normal to the page, and 
separated by a, as in Figure 3.38. Take eight lines 
per )~. Find the position where the field is zero. 

d O  

Ia 
2 2 0  

Figure 3.38 Problem 3-7.3. 

3 - 7 . 4  Find the position where the field is zero. 
Two uniformly charged circular plates of radius a 
are co-axial and a distance b apart. They have equal 
and opposite charges Q. (a) Sketch the electric field 
lines between the plates. (b) Sketch the electric field 
very far from the plates. (Sketch the field lines on 
a scale large enough to show the field lines outside 
the plates.) 

3 -7 .5  Within a conductor, electric current is 
driven by an electric field. Discuss why a uniform 
volume charge distribution is possible for an insulat- 
ing sphere in equilibrium, but not for a conducting 
sphere in equilibrium. 

3-7.6 A uniformly charged rod of total charge Q 
has its ends at (0, O) and (0, L). Sketch the field 
lines. 

3-8.1 The dipole moment of a water molecule 
(H20) is about 6.0 x 10 -3o C-m. (a) Find the en- 
ergy to reorient it from pointing along a field of 
30 kN/C to pointing against the field. (b) Find the 
angle to the field where the torque is a maximum, 
and find the maximum torque. 

3-8.2 Show that the position where the potential 
energy is zero is irrelevant to the final answer for 
the dipole energy of (3.42), although it does affect 
the energy (3.40) of a single charge. Thus we are 
allowed to use (3.40) in deriving (3.42). 

3-8.3 The dipole moment of an ammonia 
molecule (NH3) is approximately 5.0 x 10 -3o C-m. 
(a) Find the torque on the dipole when it is aligned 
normal to a field of 50 kN/C. (b) Find the torque 
on the dipole when it is at 28 ~ to the field. (c) Find 
the energy change to go from the first position to 
the second. 

3-8.4 A small irregular object is centered about 
the origin. Far away from it, measurements indicate 
that the electric field varies as r -3, where r is the dis- 
tance from the origin. Also, at fixed r = 40 cm, as 
the orientation varies, ]EI varies, with a maximum 
value of 14 N/C. (a) Find the net charge Q. (b) Find 
the dipole moment. 

3-8.5 A charge .Q is placed along the axis of a 
dipole }, as in Figure 3.11. (a) Find the force on the 
charge Q. (b) Find the force on the dipole ~. (c) If 
the force is 8 x 10 -is N at y = 2 cm, and Q = 5/zC, 
find IPl. 

3-9.1 A dipole } points along the x-axis. It is 
in a field/~ = Ax~ + A y ~ -  2Az~. (a) Find an ex- 
pression for the force on the dipole in terms of 
I~1 and X (b) Let IPl = 3 x 10 -12 C-m and A -  
790 N/C-m. Evaluate the force on the dipole for 
position (2, O, O) (in cm units). (c) Repeat for posi- 
tion (4 , -3 ,  1) (in cm units). 

3-9.2 In Figure 3.22, indicate the direction of the 
force on each of the dipoles, and explain why it has 
that direction. 

3-10.1 A sheet of uniform charge density 5.6 
nC/m 2 lies in the xy-plane. An electron starts from 
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rest at z = 6 cm. See Figure 3.39. (a) Determine its 
velocity when it reaches the sheet. (b) Determine 
how long it takes to reach the sheet. 

O - e  Iz  

Figure 3.39 Problem 3-10.1. 

3-10.2 An infinite sheet with uniform charge den- 
sity cr = 4.2 x 10 -l~ C/m 2 lies on the y = 0 plane. 
On the y-axis, at 12 cm above the sheet, a Li § ion 
moves in the xy-plane moving downward and right- 
ward, with initial velocity 5.7 x 10 s m/s at an an- 
gle of 63 degrees to the y-axis. See Figure 3.40. (a) 
Find the ion's velocity components when it reaches 
the sheet. (b) Find how long it takes to reach the 
sheet. (c) Find where on the x-axis it reaches the 
sheet. 

- e  

o- 

Figure 3.40 Problem 3-10.2. 

3-10.3 Consider two horizontal plates with equal 
and opposite charge densities +or. An electron en- 
ters this region at its midline, with horizontal ve- 
locity 4 x 10 G m/s. The plates are 5 cm long and 
2 cm apart. See Figure 3.41. (a) Find the electric 
field at which the electron just misses hitting ei- 
ther plate. (b) Find the charge density correspond- 
ing to this field. (c) Find the velocity of the electron 
at this point, and the angle that it makes to the 
horizontal. 

-e  
+ a  

--(7 

Figure 3.41 Problem 3-10.3. 

3-10.4 An electron initially moves along the 
y-axis with velocity v0. Within region A, from y = 0 
to y = l, it encounters a rightward electric field 
of magnitude /~0. Within region B, from y = l to 
y = 2l, it encounters a leftward electric field of mag- 
nitude E0. See Figure 3.42. (a) Find how far it de- 
flects in region A. (b) Find how far it deflects in 
region B. (c) Summarize the changes in electron ve- 

locity and position after it has passed through both 
regions. 

B 

A 

Figure 3.42 Problem 3-10.4. 

3-10.5 An ink-jet printer uses an electric field to 
direct charged ink drops to a sheet of paper. Con- 
sider ink drops (mass m = 8.5 x 10 -11 kg, charge 
1.6 pC) of velocity 15 m/s moving perpendicular 
to a 120 kN/C electric field. How far will they de- 
flect on passing through a 2 mm region? 

3-10.6 An electron moves in a circular orbit about 
a proton. (a) Relate its velocity v to its radius r. 
(b) Find its period in terms of r. 

3 - 1 0 . 7  An electron moves in a circular orbit of 
radius r about a wire with positive charge per unit 
length ~. (a) Relate its velocity v to its radius r. 
(b) Find its period in terms of r. 

3-G.1 (a) Evaluate [(1 + x)  -3/2 - 1 ] /x  using your 
calculator for x = l 0  -14. (b) Evaluate it using 
(3.34). 

3-G.2 (a) Evaluate [(1 + x ) 3 / 2 - ( - 1  -J- x)3/2]/x 1/2 
using your calculator for x = 1014. (b) Rewrite it so 
that you can use (3.34), and then evaluate. 

3 - G . 3  Let n = 100. (a) Evaluate (1 + x) n and 1 + 
nx for x = 0.001. Compare the results. (b) Repeat 
for x - 0.01 and x = 0.1. 

3 - G . 4  (a) Use the principle of superposition to 
find the electric field midway between an infinitely 
long line charge ;~ > 0 through the origin, along the 
z-axis, and a charge q > 0 that is in the xy-plane 
at (a, 0). (b) For what value of ~ will the electric 
field at (a/2,  0) be zero? (c) How do these answers 
change if the line charge is rotated about the x-axis, 
to coincide with the y-axis? 

~!~i~ .... 3-G.5 Consider a conducting disk of radius 
'~;'~ a and charge Q in the xy-plane and centered 

at the origin. Its charge density (including both 
sides) is ~ = (2 Q / a v / 1  - r2/a2).  (a) Find the elec- 
tric field along the z-axis. (b) Compare this with the 
electric field if the disk were uniformly charged. (c) 
Is the field for the conductor larger or smaller? Why? 
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(d) For z << a, what is the electric field? For z >> a? 
Do these results make sense? 

3-G.6 Discuss the difficulties associated with 
the following measurements of the electric field: 
(a) using a 2 cm radius insulating sphere coated with 
net charge q to measure the electric field at 1 cm 
from a point charge Q; (b) using a 2 cm radius con- 
ducting sphere with net charge q to measure the 
electric field at 1 m from a point charge .0. 

3 -G .7  Consider a dipole } at the origin. For an 
observer at position F, decompose } into two parts, 
P~ = (io-~)~ and io2 = io - (P" ~)~. Use (3.12) and 
(3.14) to show that the dipole field is given by 

~ = k - ~ + 3 f f . ~ ) ~  
/ .3  

(Due to Mark Heald.) 

:::%:~ 3 - G . 8  Consider a spherical shell of radius 
.......... ~!~i~iiiiiill ............ a and uniform charge density ~. (a) By do- 

ing the integral, show that the electric field inside 
(r < a) is zero. (b) By doing the integral, show that 
the electric field outside (r > a) is the same as if 
all the charge were at the center of the shell. (This 
last is an integral that, in the context of gravitation, 
gave Newton some difficulty. However, you may 
have learned enough calculus that you can do it. 
Newton had to invent his mathematics as he went 
along.) 

3 - G . 9  A cylinder of length l and radius a, with 
charge Q, is centered at the origin, its axis along z. 
The field at z' is 2 N/C. If the object is now scaled 
up in size by a factor of two with Q fixed, find the 
field at 2z'. Hint: Show that this is equivalent to a 
making a change in the unit of distance. 

3 - G . 1 0  Consider a fixed dipole i0 at the origin that 
points along -z .  A charge q > 0 of mass m moves 
in a circular orbit of radius a about the +z-axis, 
where the plane of the orbit is a distance b from 
the origin. (a) Show that a/b = v~.  (b) Show that 
the charge has velocity v = v/3qpk/21/2m/r, where 
r = ~/a 2 + b 2. (Due to A. Zangwill.) 

3 -G .11  Consider two line charges 4-X that are 
both parallel to ~. They intersect the z = 0 plane 
at (x, y) = (0, 0) and (x, y) = (0, l), respectively. 
See Figure 3.43. Define the dipole moment  per 
unit length to have magnitude I A] = xl, and to 
point from negative to positive. Let l - - ,  0, and 
let ;~ grow to keep A finite. Show that /~ = 
2k [ -A  + 2(A./~)/~]/R 2, where R is the nearest 

distance from the midpoint of the dipole lines to 
an observer at (x0, y0) This corresponds to a line of 
dipoles along the z-axis, with dipole moment  along 
+y. 

z 

Figure 3.43 Problem 3-G.11. 

~'%~ .... 3-G. 12 Consider the semiinfinite sheets de- 
4 G  ....... 

.......... fined by y = 0 and x < 0, and y = l and x < 
0. Let the upper sheet have uniform charge den- 
sity or, and let the lower sheet have uniform charge 
density -cr. See Figure 3.44. In the limit as l --~ 0 
this can be thought of as a dipole sheet defined by 
y = 0 and x < 0, with finite dipole moment  per unit 
area crl along +y. Find its electric field by adding up 
an infinite number of dipole lines, discussed in the 
previous problem. For each dipole line, let/~ -+ d/~ 
and X --~ ~dx. Then for an observer at ()co, y0), show 
that /~  = -(2k~/ro)(~ x ~0), where r0 = ~/x 2 + y02 
and r0 = y cos 00 + ~ sin 00. 

--O" 

Figure 3.44 Problem 3-G.12. 

3-G.13 The previous problem obtained the 
~i~iii ............... electric field of a dipole sheet by adding up 

the fields of many parallel dipole lines. Now ob- 
tain the electric field for that same dipole sheet by 
adding up the electric fields of two nearby parallel 
planes with equal and opposite charges. To avoid 
infinities, make the sheets extend from x = 0 to 
x = - L ,  and only after including both sheets take 
the limit L -~ ec. 

......... i!!ii!!"!ii~.:~ii 3 - G . 1 4  Consider the amber effect when 
.................. the neutral object has one axis that is 

more polarizable than the others. In the dipole 
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system, let Px' = o~lE~,, and p / =  cg2Ey,, where 
c~2 < c~1. Let (x', y') be rotated by 0 relative to 
the lab frame (x, y), so Ex, = cos 0 Ex + sin 0 Ey 
and E / =  cos0Ey-  sin0Ex. See Figure 3.45. (a) 
Show that py = cos Op/+ sin Opt, can be rewritten 
as 

y 

Y' x' 

py = (c~1 sin 2 0 + c~2 cos 20)Ey 

+ (c~1 - 0~2) sin 0 cos 0 Ex, 

and that 

Px = (c~l cos 2 0 + c~2 sin 20)Ex 

+ (c~1 - c~2) sin 0 cos 0 Ey. 

(b) For Ex = 0 and Ey = k Q / r  2, corresponding to a 
point charge, evaluate Px and py. (c) If ~1 ( (  c~2 and 
0 ( (  1, show that the transverse component  px can 
dominate, giving a force that is mostly transverse to 
the applied field. 

Figure 3.45 Problem 3-G. 14. 

3-G.15 The 18th-century philosopher Bishop 
Berkeley (pronounced "Barkley") posed the ques- 
tion "If a tree falls in a forest and there is no one 
to hear it, does it make a sound?" Show that the 
answers are different for the two viewpoints of ac- 
tion at a distance and of field (here, the pressure 
field). Berkeley is also responsible for questioning 
the mathematical rigor of Newton's approach to 
calculus. This issue was not resolved until a century 
later, when mathematicians developed ideas asso- 
ciated with continuity and l imi t s - -wha t  students 
study, perhaps without fondness, using the machin- 
ery of epsilon (E) and delta (S). 



"Now the quantity of electricity in a body is measured in terms, according to Faraday's" 
ideas, by the number of lines of force.., which proceed from it. These lines of force must 
all terminate somewhere, either on bodies in the neighborhood, or on the walls and roof of 
the room, or on the earth, or on the heavenly bodies, and wherever they terminate there 
is a quantity of electricity exactly equal and opposite to that on the part of the body from 
which they proceeded. 

---James Clerk Maxwell, 
A Treatise on Electricity and Magnetism (1873) 

ChaDter 4 

Gauss's Law: Flux and Charge 
Are Related 

Chapter Overview 

Section 4.2 defines electric flux and electric flux density, and obtains the constant of 
proportionality between electric flux leaving and charge enclosed by a Gaussian sur- 
face. Section 4.3 discusses Gauss's law in more detail. Section 4.4 presents a number of 
examples of the calculation of electric flux, from which the charge enclosed is deduced. 
Section 4.5 considers the three symmetrical cases where a Gaussian surface S can be 
found for which the flux per unit area is constant, and uses a knowledge of the charge 
enclosed to find the electric field. Section 4.6 considers electrical conductors in equi- 
librium, showing that the electric field is zero inside them (electrostatic "screening"); 
application of Gauss's law then shows that any charge on the conductor must reside 
on its surfaces. Section 4.7 shows that, for a conductor in equilibrium, the local value 
of the surface charge is proportional to the field just outside the surface. Section 4.8 
discusses charge measurement using a charge electrometer and Faraday's ice-pail con- 
ductor. Section 4.9 proves Gauss's law. Section 4.10 discusses electrostatic screening 
in more detail, and shows that there can be no analogous gravitational screening. 
Section 4.11 discusses some properties of electrical conductors that depend on the 
microscopic nature of the conductor, s 

4.1 Introduction 

Electricity is difficult to comprehend in part because we cannot actually see the 
electric charge that produces specific electrical effects. However, by tracing the 
path of the field lines due to a set of electric charges, Faraday would have been 
able to locate the charges, and even determine their magnitudes. This is the basis 
of field-line drawing rule 3 of Chapter 3. 

For more precision, we replace field lines by electric flux. (In discussing a 
fluid, with the electric field replaced by the fluid velocity, the fluid flux would 
be a measure of the rate at which fluid volume leaves.) Gauss's law states that 

145 
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Figure 4.1 Flux tube associated with a charge 
dq on one conductor, and a charge -dq on 
another conductor. 

the total electric flux leaving a 
closed surface equals 4zrk times 
the net electric charge ~.,enc en- 
closed within that surface. Because 
of Gauss's law, flux tubes can be 
drawn, whose sides are parallel to 
the electric field, and which carry 
the same amount of flux along 
any cross-section. This flux can be 
traced along the tube at one end 
to a definite amount of positive 

charge, and at the other end to an equal amount of negative charge. See the 
flux tube and its associated charge in Figure 4.1, which is drawn for charge on 
two conductors. 

A consequence of Gauss's law is that, if the electric flux leaving the surface of 
an object is known, either by calculation or by measurement, we can determine 
the electric charge within that object. 

4.2 

4.2.1 

Motivating Gauss's Law: Defining Electric Flux (~E 

The Number  o f  Field Lines N Leaving a Closed Surface 

According to Faraday, the number N of field lines (or lines of force) leaving a 
closed surface (such as the exterior surface of a football) is proportional to the 
charge enclosed (Qenc) by that surface. That is, 

N = o~ Q~enc. (4.1a) 

However, the proportionality constant ~ depends upon the choice of number 
of field lines per unit charge: Faraday might choose eight lines per unit charge, 
whereas Maxwell might choose six lines per unit charge. Our goal is to write 
a relation like (4.1 a) with a new c~ whose value everyone will agree upon. The 
new relation is called Gauss's law. 

Let's find N for the irregular closed surface of Figure 4.2(a). Break up the 
full surface into an infinite number of infinitesimal areas dA. Take ~ to point 
along the outward normal to dA. Measure the number of field lines dN leaving 
each dA and add them up. Representing this sum as an integral, and using a little 
circle to denote an integral over a closed surface, we have 

dN "A N -  f d N -  f -d-~d . (4.1b) 

Since the number per unit area dN/dA of the field lines is proportional to 
IEI, this suggests taking dN/dA ".. IEI in (4.1b). That works for a surface dAo to 
which E is normal (i.e., E points along the normal h0 in Fig 4.2b). Then 

dN 
]El, for E along fz0. (4.2a) 

However, consider a surface dA inclined to dAo at an angle O, where the 
same number of field lines dN pass through both dAo and dA. Now E makes 
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Figure 4.2 Defining electric flux ~ .  (a) Flux leaving an arbitrary closed 
surface, in terms of the flux through a surface element dA with outward 
normal h. Flux per unit area is dq)~/dA =/~ �9 h. (b) Reorienting from 
surface element dAo with normal h0 along/~ to surface element dA with 
arbitrary normal h0 decreases d ~ / d A .  

an angle 0 relative to h" cos0 - / ~  �9 h. From Figure 4.2(b), dAo - d A  cos0, so 
dA - d A 0 / c o s  0. Wi th /~  - I/~ I/~, we have 

d N  d N  d N  -. -~ -. 
= = ~ cos0 ~ IEI cos0 - I E I / ~ "  ~ -  E - h .  (4.2b) 

d A  dAo/  cos 0 dAo 

Eguation (4.2b) is consistent with the fact that, if/~ is parallel to our surface 
( E .  ~ -  0), then  no field lines cross the surface (so d N / d A -  0). Moreover, it 
also includes information about  whe the r  or not  the field lines go in or go out: 
/~ �9 ~ is positive for field lines leaving, and negative for field lines entering. Indeed, 
/~ �9 ~, not  I E l, is the proper  measure of d N / d A .  

4~176 Def in ing  Electric Flux �9 E 

Instead of (4.2b) for d N / d A ,  define 

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii iiiiiiiii iii iiiiiiiiiii ii i!iiiiili!ii iiiiiiiii!iiii iliiiiiiiiiiiiiiiiiiii!iiii iiii~iiiiiiiiiiiiiiiiii iiii !iiii!iiiiiiiiiiiiiiiiiiiiiiiiii ii!iiiiiiiiiii i~i: i: i ~i!i~iiii!iiiiiiiiiiiiii!iiiiiiii iiiiiiiiiiiiii!iiiiiiiil iiiiiiiiiii!ii iliiiiiiiiiii iiiiiiliiiiill iiiiiiiiiiiii iiiiii! i i!iiiiiiiiiiiiiiiiii !iiiiiiiiiiii!iiiiiii!iiiiiiiii iiiiiiiiiiili i!iiii!iiiii!i iiiiiiiiiii! iiiiiiiil iiiiiiljil 

Then (4.1 b) is replaced by 

In (4.4), there may or may not be a real physical object associated with the closed 
surface. Such a surface, because it is in tended for use with Gauss's law, is called 
a Gaussian surface. 
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Some authors  use the  equivalent  definition 

d ,~ = ildA, (4.5) 

where  d A  = IdA I. The  nota t ion  d S -  d A  is somet imes  used. 
Wi th  (4.4), instead of (4.1 b) we write, 

r E m ol ~ e n c  , (4.6) 

where  c~ will be de t e rmined  shortly. 
No te  tha t  

E �9 ~ - Exnx + Eyny + Eznz - I EI cos O, (4.7) 

where  0 is the angle (of less than  or equal  to 180 ~ be tween  E and ft. Equa- 
tions (4.7) and (4.3) give us more  than  one way to obtain d O E / d A .  

~ Surface, field, and flux 

Consider a closed surface and an element of area d A  = 10 -6 m 2 where the 
outward normal is ~ = 0.36)? + 0.851 + 0.48s and the electric field is E = 
(2)? - 33? + 4s N/C  at dA. (a) Verify that the normal fi is a unit vector. Find 
[b) ]E 1, (c) the flux per unit area, (d) the flux, and (e) the angle 0 between 
E and ft. 

Solution: (a) By (R. 11), 

Ifi - V/(0.36) 2 + (0.8) 2 + (0.48) 2 1. 

(b) I/~1 = v/(2) 2 + (.-3) 2 + (4) 2 = , / ~  = 5.39 N/C. (c) By (4.3), the flux per unit 
area is d O E / d A =  E.  fi = (2)(0.36) + (-3)(0.8)  + (4)(0.48) = 0.24 N/C at dA. 
(d) Since dA = 10 -6 m 2, we have d o e  = (dOE/dA)dA = 0.24 x 10 -6 N-m?/C. 
This is the flux that leaves through dA. (e) By (4.7), cos0 =/~./~/I/~l =0.045,  
so that 0 = 87.4 ~ Thus, the field line leaves the surface element at near glancing 
incidence. 

~ Flux for rotated surface 

For the same E and d A  as in Example 4.1, rotate the normal fi until it makes 
an angle of 25 ~ to/~.  Find the flux through dA. 

Solution: By (4.4), the flux dOE = (dOE/dA)dA= IEI cose dA - ~ cos(25 ~ 
�9 10 -6 - 4.88 x 10 -6 N-m?/C leaves through dA. 

4.2~3 Relating Electric Flux @r and Charge Enclosed Qenc 

The constant  c~ in (4.6) is de t e rmined  once and for all by considering a case 
for which  bo th  O E and Qenc c a n  be obtained:  a po in t  charge q at the  origin. 
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Figure 4.3 Electric flux ~ for  a 

concentric Gaussian surface, due to a point 
charge. Here, the flux per unit area is 
uniform, and easily computed, so the total 
flux can be easily computed. A Gaussian 
surface is a closed (and typically imaginary) 
surface, used for application with Gauss's 
law, which relates electric flux to charge 
enclosed. 

It makes a spherically symmetric electric field at ~, given by/~ = (kq / r2)~ ,  so 
E~ - E .  ~ -  ( kq / r2 ) .  For a concentric spherical Gaussian surface of radius r, 
h = ~, because the electric field points along the outward normal. See Figure 4.3. 

Thus the flux per unit area over this concentric spherical surface of constant 
radius r takes on the constant value 

d c b e / d A -  E . : , -  E . ~ - Er - ( kq / r2 ) .  

Hence the total flux is 

�9 ~ - ( d ~ / d A ) A s p h e r e  - (kq/rP)Asphere - ( kq / r2 ) (4zcr  2) - 4Jrkq. 

Moreover, for this Gaussian surface Qen~ - q. Placing these ~e  and Qenc in (4.6) 
yields 4Jrkq - aq,  so ~ - 4Jrk, where 4Jrk - 60 -1. 

4o3 Gauss'sLaw 

Using c~ = 4rck, (4.6) becomes 

ii!i}~}i}i) ii}ii?iiiiiiiiiiii}iiiiiiiiili!iiiiiil iiiNi!!iiiiiiiiiiiiiiii!)i?i!i ili ii }iiiiii}!ii!iiiiiiiiiiii!ilil }}i}}iil }?iiiiii!ii!i!iiiiiii!iiiiiiiiiiiii!iiiiiiiiiiiii?}i}i }!i}~:i~iii::ili!iiiii)ii!!iiiiiiiiii~;i~iiiiiiiiiili!!ii~ill i!ili!i!iiii !ii ?ili}iil ?i iiii!ili!iiiiiiil i!ii!iiiiiii! !iii iiiii ii !iili iili 

or equivalently, 

_ 1 
Qenc 4:rk ~e  - 60~e, k - 8 9875 • 109 N-m2 . C2 . (Gauss's law) 

(4.9) 

Either of these results is known as Gauss's law. They are true for any shape of the 
Gaussian surface. Coulomb's law looks simpler using k, and Gauss's law looks 
simpler using ~0. 

Equation (4.8) expresses the idea that only Qenc is responsible for the electric 
flux. It doesn't  tell us how the charge is arranged, or how many charges there 
are; only the net charge. If the charge inside is moved, the flux doesn't change. 
If the charge outside is moved, the flux doesn't change. Only if charge enters 
or leaves the Gaussian surface does the flux change. If we were to move the 
enormous charge Q = 109 C from infinity to just outside a Gaussian surface, the 
local values o f d ~ / d A  on the surface would change considerably, but ~ would 
not change at all. If we were to move this enormous charge to the inside of the 
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Gaussian surface, not only would the local values of d ~ , / d A  change conside- 
rably (including sign changes) but so would ~e. The local values of d ~ . / d A  
are affected by both internal and external charge, but ~e is affected only by 
internal charge. 

~ Charge from flux 

For Example 4.1, find the amount of charge dq associated with the flux d ~ .  

Solution: Using (4.9) in the form dq = d~e/(4nk),  Faraday would trace from 
d~e to dq. With d~e = 4.88 x 10 -6 N-m2/C, this gives dq = 4.31 x 10 -17 C. 
The equation dq = d~E/(4~rk) also relates the dq and d~e of Figure 4.1. 

4.3,1 Numerical Integration of Electric Flux 

For a specific example of electric flux computation for a more complex surface 
than a sphere concentric with a point charge, consider a potato. See Figure 4.4. 

Imagine that some elves have set up a fine grid on 
E" ^ the surface of the potato (with perhaps 1000 surface el- 

ements). Into a spreadsheet (see Table 4.1), they enter 
information about the Gaussian surface, taken to be the 
outer surface of the potato. 

Column A gives the integers i from 1 to 1000. For 
the i element, the elves measure the area dAi and de- 
termine the three components of the outward normal 
~i. Column B contains the dAi's, and columns C, D, 

Figure 4.4 Elec t r i c  E contain the three components of the ~i's. (So far, the 
flux ~ e leaving an elves have considered only the properties of the surface. 
arbitrary closed surface These do not change even when the electric field 
(a Gaussian surface), changes.) Now, for each surface element, the elves~ mea- 
with the surface sure the three components of the electric field Ei, which 
broken into many are entered in columns F, G, H. The measurements are 
surface elements, now complete, and we now can compute the electric 

flUX. 
Equation (4.2) gives the flux per unit area for each surface element, and is 

entered in column I. (In terms of the spreadsheet, the dot product is the sum 
of the products of columns C and F, D and G, and E and I.) The corresponding 
flux is the product of the flux per unit area (column I) and the area (column B), 
and is placed in column J. (In Table 4.1, the entries were made assuming that 
Example 4.1 corresponds to i = 1 .) Summing all 1000 entries in column J gives 
a numerical value for (4.4), the total flux leaving the surface. (If a grid of 1000 
points isn't fine enough for an accurate measure, then a finer mesh should be used. 

Table 4.1 Spreadsheet calculation of flux 

i dAi nix ni x niz Eix Ei x Eiz E. ~t E.  fidA 
1 1.0 x 10 -6 0.36 0.8 0.48 2 -3  4 0.24 0.24 • 10 -6 
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4~3o2 

In principle, all numerical integrations should always use at least two meshes, 
one finer than the other, to be reasonably sure that there isn't an error due to 
too crude a mesh.) Let's say that the answer, converged to two decimal places, is 
CI)E -- 8.4 x 102 N-m2/C. Applying (4.9) to our potato-shaped Gaussian surface, 
with ~ = 8.4 x 102 N-m2/C, yields that it contains ~enc-- 7.4 x 10 -9 C, a 
value characteristic of static electricity. 

Gauss's law has let us determine the total, or net, electric charge inside the 
potato-shaped Gaussian surface, without actually measuring that charge. We 
measured something else, the electric flux, which by Gauss's law yielded the 
total charge enclosed. That is something of a miracle. In principle, we could 
build an extensible surface (like a balloon, or a 1950s comics character called 
Plastic Man, or the "shape-shifters" of the 1990s television show Deep Space 
Nine) to surround any region, and to determine the electric flux through it. In 
practice, direct measurements are difficult. As will be discussed, devices using 
the principle of Faraday's ice pail (with an attached electrometer) remove that 
difficulty. 

Useful Result for Uniform Flux through Only One Part 
of the Gaussian Surface 

Consider a Gaussian surface that has been decomposed into partial surfaces. If 
the flux goes through only one of those parts (a big if), and if the flux is uniform 
through that part (an even bigger if), then 

�9 E -  dA  
(uniform, nonzero flux only through Aflux) 

(4.10) 

where Afl~ is the area of the surface that picks up the flux. There are cer- 
tain important geometries, which involve either conductors in equilibrium or 
very symmetrical charge distributions (spherical, cylindrical, and planar), where 
(4.10) does apply. For these cases, (4.8) and (4.10) combine to yield 

i~i iiiiii ~ iiii ~i~ iiiiiiiiiiiii i i i i iii i i iii i i iiii 

i iii i i iiiii 
As a check, note that for a Gaussian surface that is a sphere of radius r concentric 
with a point charge q, the entire sphere is the part through which the flux is 
uniform. See Figure 4.3. With Aflux - 4rrr 2, (4.11) then yields/~. ~ - kq/r  2, as 
expected. Equation (4.11) is central to Sections 4.5 and 4.7. 

4~ Computing E and Then Using Gauss's Law 
to Obtain Qenc 

Here are some examples of how to compute (I)E for a closed surface, and then 
determine the charge enclosed Q~n~, by Gauss's law, (4.9). 
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~ Uniform field and cube 

Consider a Gaussian surface S that encloses a cube of side a, with one corner 
at the origin, and another corner at (a, a, a). It is in a uniform electric field 
along the x-axis, so/~ - E~, where E is a constant. See Figure 4.5. Find the 
flux through S and the charge enclosed. 

Solution: Since E is constant, every 
net number of lines leaving S is zero. 

Figure 4.5 Gaussian surface that is 
a cube. 

(t~ fr~ ~ back ~E ont is ,,~ = E A .  The total flux is ~ =  + 
expected. 

line that enters S also leaves it, so the 
Thus we expect the explicit calculation 
to yield zero net flux, or ~E = 0. Then, 
by Gauss's law, Qenc "--O. Let's now do 
the actual calculation of ~ .  The top 
and bottom of this cube, with h = +~, 
have no flux passing through them 
because d ~ / d A  = E -h = 0 for these 
cases. There is also no flux through the 
right and left faces, with h = +3?. For 
the back face, where h = -2c, d ~  / d A  = 
E .  h = - E ,  it is negative because the 
field enters the surface. Thus, the flux 
through the back face is q~back = - E A ,  
where A = a 2. For the front face, where 
h = Yc, d ~ / d A =  P,. h -  E. It is pos- 
itive because the field leaves the sur- 
face. Thus, the flux through that face 

= - E A +  E A =  O, as 

Note: a uniform field can be produced  by a sheet of uniform charge density 
or, where  

E - 2zrkcr, (3.26) 

determines  or. (A field along + x  can be produced  either by a sheet cr in a constant  
x-plane with x < 0 or by a sheet -cr  in a constant  x-plane with  x > a. Indeed, 
there  are infinitely many  ways to produce  a un i fo rm/~  for 0 < x < a.) Since 
the sheet of charge does not  intersect  the  cube, we expect  tha t  ~_~enc - - O .  By 
Gauss's law, (4.8), we then expect  tha t  ~ - O, consistent with the discussion 
above. (If the charged sheet lies in 0 < x < a, so it intersects S, then  the flux 
is + E  A for both  front and back faces, for a net  flux of ~ - 2E A, and ~_~enc -- 
(4Jrk) -1 ~E - crA, as expected.  We will re turn  to this case.) 

~ Uniform field and half-cube 

Now consider that the cube is sliced diagonally, as in Figure 4.6. Find the flux 
leaving this new Gaussian surface S and the amount of charge enclosed by S 
when it is in a uniform electric field along the x-axis. 

Solution: For this uniform field, every line that enters S also leaves it, so the 
net number of lines leaving S is zero; again we expect zero net flux, and 
zero enclosed charge. Let's now do the calculation. As before, there is no flux 
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F i g u r e  4 . 6  Gaussian surface that is 
half of a cube. 

through the top or bottom (there is 
no bottom), and no flux through the 
right or left, because the field lines 
do not pass through any of these sur- 
faces. As before, the flux through the 
back is - E A .  For the front, the nor- 
mal is h = ( ~ -  ~)/~/2, so d ~ E / d A -  
/~ �9 fz - E / v ~ ,  a decreased flux per unit 
area. However, for the front face the 
area has increased to ~ A ,  so that 

E ~ - -  ( E / v / 2 ) ( v ~ A )  = E A does not 
change. Thus the total flux is @~ = 
- E  A + E A = 0, and by (4.9), Qenc = 
0, as expected. 

~ Nonuniform field and box 

Consider a Gaussian surface that  encloses a parallelopiped whose front and 
back faces have x -  b and 
x - a, and area A. Let the 
electric field E point  only 
along ~, with a component  
Ex that  may depend on x, 
but  not on y or z; E -  
Ex(x)Yc. See Figure 4.7. 
(a) Find the net  flux thro- 
ugh this Gaussian surface. 
(b) For A - 4 x  10 -4 m 2, 
a = 1.5 m, and b = 2.5 m, 
and E x ( x ) - C x ,  where 

F i g u r e  4.7 Gaussian surface that is a C -  2 x 106 N/C-m,  find 
rectangular parallelopiped. ~ and Qenc. 

Solution: (a) Here the field is nonuniform, so more field lines may  enter the 
front than the back, meaning possible net flux and n o n z e r o  Qenc. As in the pre- 
vious examples, there is no flux through the top or bottom, or the right or left. 
The f luxper  unit area through the front takes on the uniform value dq)E/dA = 
/~ �9 h - E �9 )~ = Ex(b); through the back the flux per unit area takes on the dif- 
ferent uniform value d ~ E / d A -  E . f~ = E . (-Yc) - -Ex(a) .  The net flux thus is 
given by 

�9 ~ = E x ( b ) A -  E x ( a ) A =  [ E x ( b ) -  Ex(a)]A. (4.12) 

If Ex(x) > 0, this corresponds to positive flux for x = b (leaving) and negative 
flux for x = a (entering). (b) From Gauss's law and (4.12), w e  can obtain Qenc. 
Here Ex(a) = Ca = 3 x 106 N/C and Ex(b) = Cb = 5 x 106 N/C, so by (4.12) 
�9 ~ = 8 x 102 N/C. Hence, by (4.9), Qenc --- 7.07 x 10 -9 C. If desired, we could 
also identify charges Q a  and Qb associated with the fluxes Ex(a)A and Ex(b)A 
through the front and back faces. 
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Figure 4.8 Spherically symmetric 
charge distribution and concentric 
Gaussian surface S that encloses a 
spherical shell of finite thickness. Thus 
S has both an inner surface and an 
outer surface. The inner (outer) normal 
points along the outward (inward) 
radial direction. For each surface, the 
flux density is uniform. 

• Spherical symmetry 

Consider a Gaussian surface S that encloses a spherical shell whose inner 
and outer radii are at r = a and r -  b, where a < b. (Thus S has an inner 
and an outer surface.) Let there be a nonuniform radial field, so E - ~'Er(r) ,  
where E r ( r )  means that Er is a function ofr .  See Figure 4.8. Find the net flux 
through S. 

Solu t ion:  The flux per unit area leaving the inner surface at r = a, where 
h = -~, is 

(d@E/dA)l inner = E . h = E . ( - ~ )  = - E r ( a ) ;  

for the outer surface at r = b, where fi = ~, the flux per unit area is 

(d~E/dA)]outer  - E .  n - -  E"  ~" -  Er(b) .  

The flux through the inner surface, of a r e a  Ainner  - -  4zra 2, is - E r ( a ) ( 4 r r a 2 ) ,  and 
the flux through the outer surface, of area Aouter = 4;rb 2, is Er(b)(4rrb2) ,  so the 
net flux leaving the spherical shell is given by 

@6 = Er(b)(47rb  2) - Er(a) (4rra2)  �9 (4.13) 

If E (a) > 0, then flux enters at r = a, and if E (b) > 0, then flux leaves at r - b. 

• Estimating the charge on the earth! 

Assume that a measurement of I EI at the surface of the earth (b - 6.37 x 
106 m) yields E r ( b )  = - 1 3 0  N/C, which points toward the earth, indicat- 
ing that the earth is negatively charged. Taking this field as characteristic 
of the entire earth and eliminating the inner surface by setting a = 0 in 
(4.13) yields CE = - 6 . 6 3  x 1016 N-m2/C. Gauss's law, (4.9), then yields 
Qearth ~ - - 5 . 8 6  X 10 5 C. This is quite a lot of charge. It corresponds to a 
charge per unit area r h - -  Qear th /47rb  2 - - 1.15 x 10 -9 C/m 2. Overall, the 
earth and its atmosphere are neutral; an equal and opposite amount of positive 
charge resides in the atmosphere. 

ylindrical symmetry 

Consider a cylindrical geometry with a nonuniform radial field, so E - i" Er ( r ) ,  
and employ a concentric Gaussian surface of length L that is a cylindrical 
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Figure 4.9 Cylindrically symmetric charge 
distribution and concentric Gaussian surface 
that is a finite cylinder. Flux passes only through 
the round side, where the flux density is 
uniform. 

shell of radius r. (Sometimes the symbol p = v/x 2 + y2 is used for the ra- 
dius in cylindrical coordinates, but we have already used p for the charge 
per unit volume. There just aren't enough symbols to go around!) The full 
surface has three parts: the top, bottom, and round parts. See Figure 4.9. 
(a) Find the net flux through this Gaussian surface. (b) If L - . 2  m, r = .02 m, 
and Er(r)  = 4.00 x 104 N/C, find ~enc. 

Solution: (a) The fluxes for the top and bottom are zero because the outward 
normals are along z; this is perpendicular to/~, which is radial. The flux per unit 
area lea~ng the side at r, where fi --~, takes on the uniform value d ~ E / d A  = 
F, �9 h = E �9 ~ - Er(r).  The flux through the round surface, of area A = 2Jrr L, is 
Er(r)(2zrrL) ,  so the net flux is given by 

*E = Er(r)(2JrrL).  (4.14) 

(b) For our specific values of L, r, and Er(r),  (4.14) gives ~E = 1.005 x 
103 N-m2/C. From Gauss's law, (4.9), we then deduce that Qenc = 8.89 X 10 -9 C. 
This positive sign is consistent with the fact that the field points outward. 

4.5 Determining E by Symmetry" The Three Cases 

Charge distributions of three and only three types produce a flux that  is uni- 
form or zero for all parts of an appropriately chosen Gaussian surface: centro- 
symmetric charge distributions with spherical, cylindrical, and planar symmetry. 
Gauss's law and a knowledge of the charge then enables us to deduce the mag-  
n i tude  of the electric field; we simply apply (4.11). (A cube that  is concentric 
with a point charge has some symmetry; each of its faces picks up the same flux, 
which is one-sixth of the total flux. However, the /~  field is not uniform over 
each face, so that  we can only obtain the average flux for each face, rather than 
the electric field itself.) 
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Figure 4.10 (a) Spherically symmetric charge distribution and concentric 
Gaussian surface for which the flux density is uniform. (b) Electric field 
magnitude when the charge density is uniform for r < a and zero 
forr > a. 

4.5.1 Spherical Symmetry 

Consider a spherical distribution of charge, which produces an electric field that 
points radially. Take as Gaussian surface S, a sphere of radius r that is concentric 
with the charge distribution. See Figure 4.10(a). In general, the charge distribu- 
tion may extend beyond r. 

Here d ~ E / d A  is uniform over S, and the area that picks up the flux is Aflux - 
4zrr 2. Thus, by (4.11), wi th /~ ,  h - / ~ .  ~ - Er, 

4;rkQ,  enc kQ,  enc 
Er - 4Jrr 2 = r2 . (spherically symmetric charge distribution) 

(4.15) 

This looks like Coulomb's law for a point charge, but it applies to any  spher- 
ically symmetric charge distribution. It is deceptively simple. Equation (4.15) 
says that (1) if charge is within the Gaussian surface of radius r, it contributes 
as if it were at the center, and (2) if charge is outside the surface, it does not 
contribute at all. This result is relatively difficult to obtain by direct calculation 
from E - k f ( d q / r 2 ) ~ .  Equation (4.15) reproduces the result for a single point 
charge q, E - kq / r 2. 

Since gravity satisfies an inverse square law, there is a Gauss's law for gravitation, which 
would have saved Newton a great deal of effort. It was not easy, even for the great 
Newton, to directly calculate the gravitational field due to a ball of uniform mass density. 
At a great distance, it is not too bad an approximation to consider the earth to be a 
point, but for a satellite in near earth orbit, the earth is not a point. By the gravitational 
analog of Gauss's law, the earth's gravity can indeed be treated as if it is due to all the 
earth's mass concentrated at the geometrical center of the earth. 

U n i f o r m  ball of charge 

Consider a spherical ball of radius a and total charge Q that is uniformly 
distributed over its volume (the next section shows that this cannot be a 
conductor in equilibrium). Find Er for all r. 
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Solution: A concentric spherical Gaussian surface S with r > a has Qenc-Q. 
By (4.15), this implies Er - kq / r  2. (This is the large r part of Figure 4.10b.) For 
r < a, there is a charge per unit volume 

Q Q (4 16) 
 all 4=a  

Then for r < a, 

fff 4r (r)  Qenc -~- d Q =  p d V -  p d V -  p V =  T - - - -~ rc  = Q - . (4.17) 
~ rc a 3 a 

Placing Qenc in (4.15) then gives Er -- k Q ( r / a ) 3 / r  2 = k Q r / a  3. This falls to zero 
at the origin, as expected by symmetry; it also takes the value k Q / a  2 at r = a, 
as expected because then all the charge is enclosed. Of course, a conductor in 
equilibrium cannot produce such a volume charge distribution; a conductor in 
equilibrium would have all the charge Q on the outer surface at r = a. Figure 
4.10(b) plots I/~] = ]Er[ for all r. We can also obtain (4.17) by the ratio of the 
appropriate volumes: Qenc/Q-- (4rcpr3/3) / (4npa3/3)  = r3/a3. 

4o5o2 Cylindrical Symmetry 

Consider a cylindrically symmetric distribution of charge, infinite in extent. By 
symmetry, it produces an electric field that  points radially. See Figure 4.11 (a). As 
the Gaussian surface S, take a cylinder concentric with the charge distribution, 
of radius r and finite length L. (Er should not depend on L.) Here, d ~ E / d A  is 
zero over the top and bottom, and is uniform over the cylindrical surface, so the 
area that  picks up the flux is Aflux - 2rcrL.  Because Qenc is proportional to L, 

Figure 4.11 (a) Cylindrically symmetric charge distribution and concentric Gaussian 
surface that is a finite cylinder. The flux density through the round side is uniform. 
(b) Electric field magnitude when the charge density is uniform for r < a and zero for 
/ ~ > a .  



158 Chapter 4 �9 Gauss's Law 

)~enc ~ ~_~enc/ L is independent of L. From (4.11), with E �9 fz - E �9 ~ - Er, 

4rr k ~enc  2kXenc 
= . (cylindrical charge distribution) (4.18) 

E~ = 2rr r L r 

Equation (4.18) implies that, if charge is within the Gaussian surface of radius r, 
it contributes as if it were on the axis, and if it is outside the surface, it does not 
contribute at all. For a line charge )~, (4.18) reproduces (3.22), with ~.enc ~ ~: 
that is, Er - 2k)~ / r. 

~ Uniform cylinder charge of 

Let the charge per unit volume p be a constant for r < a, and zero otherwise. 
Find Er for all r. 

Solution: A concentric cylinder of radius r and length L contains charge Q~enc 

prrr2L, so ~enc ~ ~ . e n c / L - - p z r r  2. Equation (4.18) then gives Er = 2zrkpr for 
r < a. As a check, note that, as expected by symmetry, the field is zero at the 
origin (r = 0). For r > a, we have Xenc = prra 2. Equation (4.18) then gives EF = 
2zrhpa2/r for r > a. As a check, note that outside the charge distribution the 
charge behaves like a line charge on the axis. Figure 4.11 (b) plots ]El-IEF] for 
all r. 

4o5~3 Planar Symmetry 

For a planar distribution of charge that is uniform in the y z - p l a n e ,  the electric 
field must  point along the x-direction. If, in addition, there is a center of sym- 
metry at the origin, the electric field will be the same in magnitude at both x 
and - x .  We now enclose the charge distribution with a Gaussian surface S shaped 
like a tiny right-circular cylinder (a "pillbox"). With normals along +)~, and area 
A for each of the right and left sides, we have Aflux - 2 A .  (For the pillbox, which 
can be made as flat as a pancake, the round side parallel to E3~icks up no flux.) 
See Figure 4.12. Let (Yenc ~ Q e n c / A .  From (4.11), with E = E �9 h, 

2rrkQ~enc 
E - A = 2rrkcren c. (symmetrical planar charge distribution) (4.19) 

Figure 4.12 Planar symmetric charge distribution and 
concentric Gaussian surface that is a finite cylinder. The 
flux density through the round side is zero, and the flux 
density through each of the caps is uniform. 
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For a sheet of charge density or, (4.19) reproduces (3.26) with O'en c = (7 ;  that  is, 
E = 2Jrka. 

~ Uniform slab of charge 

Let the charge per unit volume be given by p for - a  < x < a, and zero 
otherwise. Find Er for all r. 

Solution: Consider a Gaussian surface S that is a symmetric pillbox of area 
A that extends from - x  to +x. It contains charge ~)_~enc--  fiA(2x), so (Ten c - -  

~enc/A = p ( 2 ) c ) .  Placed in (4.19), this gives E = 4zckpx for - a  < x < a. As a 
check, note that, as expected by symmetry, the field is zero at the origin (x = 0). 
For x > a, we have (Ten c . ~ - / ) ( 2 a ) .  Placed in (4.19), this gives E = 4Jrkpa for 
x > a. As a check, note that outside the charge distribution the charge behaves 
like a sheet charge on the axis. More generally, for planar symmetry, if there 
is a region where E varies linearly with distance, that region contains a uniform 
charge density p. For example, if Ex = cx + d, then c = 4ztkp relates c and p. 
The constant d could be due to distant sheets or distant slabs of charge. An 
indication of a uniform charge density is that the slope of the field versus dis- 
tance is a constant; here axEx = c = 4zrkfi is constant. An approximately uni- 
form planar charge density can be produced by bombarding a plastic slab with 
ions. 

4~ Electrical Conductors in Equilibrium 

Consider an electrical conductor of arbitrary shape (e.g., a potato, an aluminum- 
painted rubber duck, or the object in Figure 4.13). 

In isolation, the conductor contains a large number  (a "sea") of mobile, nega- 
tively charged conduction electrons (the "electric fluid"), and a fixed background 
of positively charged nuclei, with overall neutrality. How does that  electric fluid 
respond when we bring a charged rod near this conductor? When  we add some 
electric charge to the conductor? If the charge is external to the conductor, then 
(as discussed in Chapter  1) it causes electrostatic induction of the electric fluid (a 
polarization of the conductor); if the additional charge is placed on the conduc- 
tor itself (perhaps as additional electrons, or as positively charged ions that  stick 
to the surface), the electric fluid redistributes itself throughout  the conductor. 

Figure 4.13 Conductor in a uniform field. (a) The mobile charge 
on the conductor not permitted to move (no electrostatic 
induction). (b) The mobile charge on the conductor permitted to 
move (full electrostatic induction). The field lines enter negative 
charge and leave positive charge. 
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Recall that the mobile electrons are in orbitals that extend over the entire conductor. 
When the electric fluid redistributes itself throughout the conductor, it is not via indi- 
vidual mobile electrons. Rather, all the mobile electrons on the conductor adjust their 
orbitals slightly, collectively redistributing their total charge in the same way as would 
the classical electric fluid. 

4.6.1 

An example of charge redistribution can be seen by comparing Figure 4.13(a) 
to Figure 4.13(b). Figure 4.13(a) shows a conductor in a uniform electric field 
before the conductor has had time to respond. Figure 4.13(b) shows the con- 
ductor and the total electric field after the conductor has come to equilib- 
rium. It demonstrates that in equilibrium (a) there are no field lines within the 
conductor ( / ~ -  0); (lo) excess charge resides on the conductor's surface (no 
charge lies within the material of the conductor); and (c) just outside the con- 
ductor the electric field is normal to the surface. In the remainder of this section, 
we will derive each of these results, and then discuss what happens when the 
conductor has a cavity. 

Within  Conductors in Equi l ibr ium,  E = 0 

We now establish that, for an electrical conductor in equilibrium, the electric 
field is zero within the material of the conductor. This result depends only upon 
two properties of electrical conductors: 

1. In equilibrium, there is no electric current flowing anywhere within an elec- 
trical conductor. In contrast, the filament of a flashlight bulb connected to a 
battery carries an electric current and is not in equilibrium. However, after 
the power has been turned off and the filament has cooled down to room 
temperature, it is in equilibrium. No electric current then flows through it. 

2. In an electrical conductor, such as a wire, if there is an electric field, then the 
charge carriers feel an electrical force, which drives an electric current. Since 
in equilibrium there is no electric current,/~ - 0 in equilibrium. (In fact, the 
current is proportional to the electric field. This is a version of Ohm's law.) 

Consider a conductor, such as that in Figure 4.13. Let external charge qext 
produce a field Eext, and let electric charge qcoM distributed over the conductor 
itselfproduce a field Econd. Then the total field E = Eext + Econd. Ifthe conductor 
is in equilibrium, then by property 1, the electric current must be zero. Further, 
by property 2, within the conductor (but not outside it), the total electric field 
E -  0. Hence, within the material of the conductor itself, E~ond must cancel 
Eext. That is, 

E =  ~ E ~ +  E~o~," s o E ~ o ~ = ~  ~ ~: ~ :".'.!~exti i!~!i !~ ~i! i~ ~. iii!i: 

The field inside the conductor is zero because the field of the conductor cancels 
the external field, not because the conductor somehow prevents the external 
field from entering ("screening"). The result of this subsection is true regardless 
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4o6~2 

of the electrical force law. Even if the force law were a radially outward inverse 
cube (for which Gauss's law does not apply), the electric field would be zero 
within the material of a conductor in equilibrium. 

One might expect the charge associated with the electric fluid to be dis- 
tributed throughout the conductor. The next section shows that, because of 
Gauss's law (which follows from Coulomb's law), the charge associated with 
the electric fluid resides only on the surfaces of the conductor. 

For a Conductor in Equilibrium, Any Net  Charge Can 
Reside Only on Its Surfaces 

Consider a conductor with outer surface Soute r (such as in Figure 4.13b) and, 
if it is hollow, with inner surface Sinner. Draw an arbitrary Gaussian surface S 
that totally passes through only conducting material. Because/~ - 0 within the 
conductor, the electric flux density d ~ E / d A  = E, �9 h is zero for any part of S, so 
the total flux through S is zero. By Gauss's law, the electric charge within the 
volume enclosed by S must also be zero. By breaking up the conductor into tiny 
volumes, we can piecewise eliminate the possibility that there is electric charge 
in any of those volumes. Thus, for an electrical conductor in equilibrium, net electric 
charge can reside only on its surfaces. This result depends crucially on Gauss's law. 
The electric field due to the electric fluid arises only from surface charge. In 
general, this surface charge distribution is complex and difficult to determine. 

".oncept Quiz 4.  

If an object has a nonzero volume charge distribution (as in Example 4.1 O) 
and it is in equilibrium, can the object be a conductor? 

Solution: No. It must be an insulator. For example, charged ions might be held 
in place within an insulator by a nonelectrostatic interaction with the molecules 
of the object. 

:oncept Quiz 4., 

If an object has a nonzero volume charge distribution and it is not in equilib- 
rium, must the object be a conductor? 

Solution: No. It also could be an insulator. For example, charged ions within the 
insulator might be in the process of rearranging. 

.'oncept Quiz 4.'. 

If an object has a nonzero surface charge distribution, must the object be a 
conductor in equilibrium? 

Solution: No. The object could be either an insulator or a conductor, and it could 
be either in or out of equilibrium. For example, a comb rubbed through your 
hair has a surface charge distribution, but the comb is an insulator. (Moreover, 
the distribution may or may not be in equilibrium.) Or, a piece of aluminum 
foil could have a surface charge distribution due to a sudden discharge, but not 
enough time has passed for the foil to reach equilibrium. 
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4.6.3 
_a,  

Just Outside a Uni form Conductor  E Is Normal  
to the Surface 

Consider an electrical conductor that is uniform (or locally uniform) along its 
surface. (Here, uniform means that the atomic order is uniform.) If the electric 
field had a component that is parallel to the surface, an electric current would 
flow along the surface, contrary to the assumption of equilibrium. Hence, in 
equilibrium, the electric field is normal to the surface. See Figure 4.14. 

Field is normal _~ ]~ 
to surface ~ E  \ 

Electrical conductor 
in equilibrium 

Figure 4.14 Electric flux ~ leaving an 
electrical conductor in equilibrium, with the 
surface broken into many surface elements. 
The field lines are normal to the surface. 

The result that E is normal to 
the surface can also be obtained 
from Faraday's viewpoint. Ima- 
gine freezing in place the mobile 
charge (the electric fluid) on a neu- 
tral conducting object, and then 
placing it in an external field. See 
Figure 4.13(a). With the charge 
on the conductor frozen in place, 
these field lines, due only to the ex- 
ternal field, pass through the con- 
ductor unaffected. According to 
Faraday's view, on unfreezing the 
mobile charge, the field lines, to 
whose ends the mobile charge is 
attached, shorten because of field- 
line tension (subject to the con- 

straint that the lines not get too dense, because of field-line pressure). The motion 
stops when the lines are normal to the conductor and have the appropriate sep- 
aration. See Figure 4.13(b), where three lines terminate on negative charge and 
three lines originate on positive charge, the conductor having zero net charge. 
Because of charge rearrangement on the conductor, the total electric field is nor- 
mal to the surface. In Figure 4.13(b), the field due to the external charge is the 
same as in Figure 4.13(a); the difference in the two cases is solely due to charge 
rearrangement on the conductor. 

~ l i _ L , :  ~ . I . ; L ! X i l I i ~  Ji]:.li ! it'~l.~l i~Tg,Sr.ql !]r~-i ~-ii ~1~_i iT, T d l  

The idea of freezing and unfreezing the charge distribution isn't theoretical. Certain 
types of paper can take many seconds to fully respond. For short times only the polar- 
ization of localized electrons is noticed, but for longer times ions can move, to give a 
response more like that of a metal. 

4.6.4 E = 0 wi th in  a Conductor's Empty  Cavity 

Consider an electrical conductor with outer surface Souter that is solid except for 
a cavity with surface Sinner, a s  in Figure 4.15. Consider what happens if there is 
external charge or charge on the conductor, but no charge in that cavity. 

To study this case, we use an almost trivial but very important result that may 
be called the scooping-out theorem, which states that removal of material from a 
conductor in equilibrium does not disturb the electric field anywhere. 



4.7 Just Outside a Uniform Conductor 163 

Figure 4.15 An electrical conductor 

The proof of the scooping-out the- 
orem is straightforward. There are two 
ways that scooping-out might produce 
an electric field: (1) Scooping-out might 
leave behind volume charge in the in- 
terior, which would produce an electric 
field. However, the interior of the con- 
ductor is neutral, so that scooping out 
the cavity does not remove volume elec- 

with a cavity, tric charge. (2) If the removed mate- 
rial were polarized, scooping-out might 

leave behind surface charge, which would produce an electric field. However, 
the interior of a conductor can only have an induced polarization, proportional 
to E. Since/~ - 0, the interior is not polarized, and therefore scooping out the 
cavity does not leave behind surface charge. 

Within the cavity of the conductor in Figure 4.15, since the electric field was 
zero before there was a cavity, the electric field is zero after scooping out the 
cavity. There is no charge anywhere on the inner surface of the conductor, since 
there was no charge there before the cavity was scooped out. 

4~ 
- +  

Just Outside a Uniform Conductor, Eout. h Varies 
as the Local Surface Charge Density ~s 

Consider a conductor in equilibrium, as in Figure 4.13(b). Since E - 6 inside a 
conductor, all field lines and electric flux entering or leaving part of a conductor 
can be attributed only to the charge on that part of the conductor. This permits 
us to determine the surface charge density ~s. 

Very close to an electrical conductor, the surface appears to be flat. (We 
neglect the atomic nature of matter.) Draw a Gaussian surface S that is a small 
pillbox of area A enclosing a piece of the surface, oriented with its flat outer face 
parallel to the surface. See Figure 4.16(a). The electric flux ~E comes only from 
the flat outer face because E = 0 inside and because the thin round part of the 
pillbox may be taken to have negligible area. For a pillbox so small that there is 
a uniform nonzero flux through only one part of the surface, (4.11) applies with 

Figure 4.16 Locally planar charge distributions, and associated pillbox-shaped 
Gaussian surfaces. (a) At surface of a conductor, only the outside circular face 
picks up flux. (b) Infinite sheet of charge, the circular surfaces pick up equal 
amounts of flux. 
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Affix ~ A. Here Q e n c  - -  ~ s A -  ~sAfl~, where ~s is the surface charge density. 
With Eout the electric field just outside the conductor, and ff the outward normal 
from the conductor (and from the outside of the pillbox), (4.11) yields 

Eout - /z = 4zrk~s. (field just outside any c o ~ t o ~  ~ :i ~ ~I): 

This can be rewritten as 

E o u t  �9 l"t 

~ s -  4rrk " (4.22) 

If/~ points away from the surface, then ~s is positive; if/~ points toward the 
surface, then ~s is negative. These are as expected. 

By measuring Eout, o n e  can deduce ~s. For example, if ] E ] -  250 N/C at P, 
just outside part of a surface whose local charge density is negative, then by 
(4.22) ~s - -2 .21 x 10 -9 C/m 2 near P, and E points into the surface. Note the 
field lines entering the conductor in Figure 4.13(b). 

Coulomb developed a device called a proof plane, a small thin conducting disk with an 
insulating handle, to determine c~s directly. On part of the conducting surface he would 
place the proof plane and then lift it off. The amount of charge on the proof plane 
was proportional to c~s so that he could obtain relative charge densities. By suitable 
calibration, absolute measurements can be obtained with a proof plane. 

For ~s = ~, (4.21) for the exterior of a conductor has an extra factor of two 
relative to the case of the electric field Esheet = 2rrk~ produced by an isolated 
sheet of charge density e. This factor of two occurs because, for the conductor, all 
the electric flux leaves one side (the exterior) of the conductor pillbox, whereas 
for an isolated sheet of charge, only half the electric flux leaves each side of the 
corresponding pillbox, as in Figure 4.16(b). Thus, for the conductor, all the flux 
gets concentrated on one side. Equivalently, in terms of (4.11), Afl~ is half as 
large when applied to a conductor, so the flux is twice as large. 

~ A n  infinite sheet conducting 
An infinite conducting sheet initially has charge per unit area cr on only one 
surface. (a) Find the electric field. (b) The system now comes to equilibrium. 
Find the charge distribution and the electric field outside the conductor. 

Solution: (a) On each side of the charged surface (even inside the conductor), 
the field has magnitude 2rrkc~ and points away from the surface. Because/~ 4= 0 
within the conductor, it is not in equilibrium. (b) The charge rearranges so that, 
by symmetry, in equilibrium each surface has ~s = ~/2. This gives zero field 
inside the conductor. By (4.22), the field outside each surface of the conduc- 
tor has magnitude 4rrk~s = 4rrk(cr/2)= 2zrk~, the same as before the charge 
rearranged. 

Equations (4.21) and (4.22) hold just outside any conductor in equilibrium. 
By integrating over (4.22), we obtain the result that the total charge on the 
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surface is 

4 rr k 4 rr k 
-- Qenc, (4.23) 

as expected. That  is, Qenc, the total charge enclosed by a Gaussian surface en- 
closing the conductor, equals the total charge Q s  on the outer surface of the 
conductor, even in the presence of cavities. 

~ T w o  parallel charged conducting sheets 

Consider two infinite parallel conducting sheets of net charge/area (top and 
bottom of each sheet) ~1 > ~2 > O, with ~1 = (3/2)~2. Find the equilibrium 
charge densities on the inside and outside of each sheet. Figure 4.17 presents 
sheets of finite size; think of these as infinite, so that there are no edges. 

Solution: For the planar geometry, unlike the geometry of Figure 4.13, the rear- 
rangement of charge on a conductor has no effect on the electric field outside that 
conductor. However, as in Figure 4.13 and Example 4.12, the rearrangement of 
charge does cause the field to be zero within each conductor. In equilibrium, there 
is charge only on the surfaces of the conducting sheets. Since the field for a sheet 
doesn't fall off with distance, we can compute the field as the sum over the total 
charge on each sheet. Superposition applied to (3.26), o r  ] E s h e e t l  - -  2:rkl~l, yields 
the fields outside and between the sheets. See Figure 4.13. Including direction, 
above both sheets 

Eout = 2 7 r k ( ~ y l  - [ - o - 2 ) {  - 5 y r k o 2 { .  

With h = { just above sheet 1, (4.22) then yields _top = 

Including direction, between both sheets 

Ebetween -- 2:rk(~l - ~y2)j ,  - J r k f f 2 $ .  

With ~ - ~ just below sheet 1 (4.22) then yields ~ottom _ 1 , -- X~2. The total charge 

Figure 4.17 Two infinite sheets of charge, and the 
electric field in the regions above, between, and 
below them. 
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_top  0 "b~176 = 3~2 = thus satisfying charge conserva- density on sheet 1 is o 1 + ~1, 
tion. A similar analysis can be made for sheet 2. The charges on the inner surfaces 

r t o p _ _  __o.bottom) are equal and opposite t~2 so, as expected, the field lines start on 
positive charge and end on equal negative charge. The charges on the outer sur- 
faces are equal (a~ ~ - (ybot tom) and produce field lines that extend to infinity so 
that each outer surface produces the same flux. 

4.8 Charge Measurement and Faraday's Ice 
Pail Experiment 

Consider a charge electrometer as discussed in Section 2.4.3, attached to the 
exterior of a conductor into which objects can be placed. The conductor itself is 
placed on an insulated stand to prevent the escape of electric charge. With this 
electrometer we can determine the charge on an object, without tearing apart 
that object and without even measuring the electric flux passing through the 
surface of that object. See Figure 4.18. (We assume that the simple electroscope 
in Figure 4.18 has been calibrated, thereby making it into an electrometer.) 
The electrometer gives a response that is directly proportional to the local charge 
density on the outside of the conductor: either it measures the electric field, 
which by (4.22) is proportional to the surface charge density, or it measures the 
surface charge density directly. 

4.8,1 Noncontact Experiments 

Faraday hung an electrically charged object A, with charge + Q ,  by an insulating 
string. On lowering A into the uncharged ice pail, without A touching the sides, 
the electrometer reading increased, but once A was about 4 inches below the 
top of the ice pail, the electrometer reading stabilized, even when A was moved 
about. When A was lifted back out of the ice pail, the electrometer reading 

Figure 4.18 Faraday ice pail experiment. The 
electroscope responds to charge that goes to the 
outer surface of the ice pail. 
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returned to zero. Moreover, when A was within the ice pail, the electrometer 
reading was the same as if all the charge on the object had been placed on the ice 
pail. This indicated that (1) if the charged object A is far enough within the ice 
pail, then a charge distribution goes to the outer surface that is the same as if + Q  
had been placed directly on the ice pail; (2) the charge + Q  on A and the charge 
-Qremaining on the inner surface together produce electric fields that have no 
effect on the charge distribution on the outer surface of the ice pail. Recall that 
(4.22) relates the electric field at the surface and the surface charge density. 

4~8~2 Contact Experiments 

On lowering a charged conducting object A into the ice pail, the electrometer 
response increased, as before. Touching A to the inside of the ice pail, temporarily 
making an ice pail-object combination, yielded no change in the electrometer 
reading. However, lifting out A, the electrometer reading remained at the same 
value as when A was within the ice pail. Moreover, placing A within another 
ice pail electrometer gave no response. This indicated that, while A and ice 
pail were in contact (1) there was no charge on the inner surface of the ice 
pail-object combination; (2) there was no charge in the volume associated with 
A, thought of as part of the ice pail-object combination. Hence, touching the 
charged conducting object to the interior of the ice pail made A transfer its 
charge to the ice pail. 

Although A originally was attracted to both the interior and the exterior 
of the neutral ice pail, after contact with the interior it was attracted only to 
the exterior of the now charged ice pail. (This was noted earlier by Franklin.) 
This behavior after contact with the interior can be explained using electrostatic 
induction if now A is uncharged, and the ice pail is charged on the outside but 
not on the inside. 

4~8oS Interpretation in Terms of Field Lines 

Once A is far enough inside the ice pail, all the field lines produced by + Q  termi- 
nate on the inner surface so that a net surface charge - Q  has been attracted (by 
electrostatic induction) to the inner surface. Since the ice pail itself is a conduc- 
tor in equilibrium, it has zero volume charge density. By charge conservation, 
the charge - Q  on the inner surface must have been attracted from the outer 
surface, which therefore has a charge +!2- Moving + Q  around inside the cavity 
may change the field lines and the distribution of charge density on the inner 
surface, but it does not change the value - Q  of the total surface charge. More- 
over, moving + Q  around inside the cavity does not change the charge density 
on the outer surface, nor its integrated value of Q, nor the exterior field lines. 

~ Reproducing Faraday's results 
Many of Faraday's results can be reproduced using only (1) a charged plastic 
comb as the charge source A; (2) a small food can (or soft drink can) with 
its top removed, having insulating handles of folded-over sticky tape; (3) a 
large food can with its top removed (which serves as the ice pail); and (4) a 
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Figure 4.19 A modem, home version of the Faraday ice 
pail experiment. 

plastic-bag-twister versorium as the electrometer. See Figure 4.19. The larger 
can should be mounted on an insulating surface, such as a styrofoam cup. The 
versorium should be placed near an edge of the large can, where the electric 
field is largest. The comb can be charged and used as an insulating charge 
source within the can. Placing the charged-up comb within the small can, 
and then touching the small can charges the small can, which then can be 
used as a conducting charge source within the large can. The small can and 
the comb are oppositely charged, as shown by the lack of versorium response 
when both are within the larger can. 

By determining how much charge goes to the interior of a hollow conductor, 
and comparing to the predictions of non-Coulomb's law-based theories, we can 
set a limit on how well Coulomb's law (and thus Gauss's law) is satisfied. This 
was the basis of Cavendish's experiments. Measurements made in 1970 show 
that, if Coulomb's law is assumed to vary as r -(2+~), then ~ < 1.0 x 10 -16. 

4.9 Proof of Gauss's Law 

We now prove Gauss's law by using the concept of solid angle. This is perhaps 
most readily approached from the viewpoint of astronomy. If we look up at the 
sky and imagine that it is a great sphere of very large radius R, then by definition 
the solid angle fa taken up by, say, the constellation Orion, is given by the area 
A of Orion, projected onto this great sphere, divided by R 2. More generally, for 
a small projected area dAt_ perpendicular to the line of sight, we have a small 
solid angle 

dA~ R. ~dA 
d ~ -  r2 -- R2 . (4.24) 

Here /~ is the direction in which the observer is looking, and fi is the normal 
to the small area dA. Note tha t /~- f i ,  and thus dfa, can be either positive or 
negative. We now develop some properties of the solid angle that are needed for 
the proof. 
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For the entire great sphere the area is 4Jr R 2, so the total solid angle of a sphere 
is ~2 = (4;r R2)/R 2 = 4Jr, independent of the (unknown) radius R. Moreover, if 
we move or deform the great sphere, so long as it contains the observer within 
it, the total solid angle will remain 4Jr. Further, if we consider the moon, its total 
solid angle, front and back, is zero, because the positive solid angle of any part on 
the bright side is canceled out by the negative solid angle of the corresponding 
projection onto the dark side. Finally, if we move or deform the moon, the total 
solid angle will remain zero. 

Here is the proof of Gauss's law. Consider an arbitrary Gaussian surface. Let 
there be a point charge q atthe origin, so @e - J /~ .  ~zdA= f(kq[~/RZ) �9 ~zdA = 
kq f d~ - kq~. That is, Ce - kq~2, where the solid angle ~2 enclosed by the 
Gaussian surface is measured relative to the position of the charge q. From the 
discussion of the great sphere and of the moon, either ~2 = 4jr (where Qen~ = q) 
or ~2 = 0 (where ~P_~enc = 0), SO (~PE---4zrkQen~. By superposition, this result 
can be established for as many charges as needed, so it is true in general. This 
establishes Gauss's law. 

When charges move, the electric field is no longer given by Coulomb's law. 
Nevertheless, Gauss's law continues to hold. That field lines are produced by 
electric charge is a more generally valid idea than that there is action at a 
distance with an inverse square law. 

4.10 Conductors with Cavities: Electrical Screening 

We now extend our earlier discussion of conductors. For our present purposes, 
we may consider the Faraday ice pail to be equivalent to a closed conductor with 
a cavity; the large opening of the ice pail serves only to permit us to bring objects 
in and out. 

4.10.1 Conductors with Cavities 

Consider an electrical conductor with outer surface Souter that is solid except for 
a cavity with surface Sinner, a s  in Figure 4.15. In the most general case, there is 
charge in, on, and outside the conductor. We will be able to treat this general case 
by using the principle of superposition applied to three cases: 

1. There is a net charge Qo,, on the material of the conductor. This case was 
already considered in Section 4.6. Its distribution depends only on the shape 
of Souter and the amount of Qou. 

2. There is a charge Qout outside the conductor, and the conductor has net 
charge Qon = -Qout. In this case, the charge Qon is only on the outer surface, 
with a distribution that depends on the position and amount of Qout, and on 
the shape of Souter. 

3. There is a charge Qin inside the cavity, and the conductor has net charge 
Qon --'- --Qin. In this case, the charge Qon is only on the inner surface, with 
a distribution that depends on the position and amount of Qin, and on the 
shape of Soute r. 
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Figure 4.20 An isolated charged conductor in equilibrium, with field lines. 
(a) Without any internal cavities. (b) With an internal cavity. 

Each of these cases has an electric field that is zero in the bulk and is normal to 
the surfaces. Therefore we can superimpose linear combinations of these three 
cases because superposition will not cause any disturbance either in the bulk or 
on either surface. We will use these cases to analyze the Faraday cage and the 
Faraday ice pail. 

We now apply the scooping-out theorem to these three cases. 

1. Conductor with net charge Qon 
First consider an uncharged, solid conductor with (outer) surface Souter that 
is given a net charge Qon. See Figure 4.20(a). 

Previous considerations show that Qon must be distributed over the sur- 
face Souter. Since the interior of the conductor is neutral, by the scooping-out 
theorem we can scoop out from the conductor a cavity with surface Sinner 
without affecting the electric field anywhere. See Figure 4.20(b). Hence, 
after scooping out neutral material from the conductor, the electric field in 
the scooped-out region (the cavity) remains zero. (This argument repeats 
Section 4.6.3.) Thus the electric field due to Qon has been screened out. 
Moreover, the charge distribution on the outer surface is unaffected. If Qout 
is doubled, the charge distribution doubles everywhere on the surface, and 
the field lines have the same pattern, but are twice as dense. 

2. External charge Qo~t and conductor with charge Qon =-Qout 
First consider a charge Qout external to a solid conductor with surface Souter 
and a charge Qon -- -Qout. See Figure 4.21 (a). 

Figure 4.21 A charged conductor near an equal and 
opposite external charge, with field lines depicted. 
(a) Without any internal cavities. (b) With an internal 
cavity, the conductor is in equilibrium. 
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By the previous section, in equilibrium the interior of the conductor is 
neutral, so all the charge on the conductor must reside on the (outer) surface 
Souter. If Qout is moved to a new position, the surface charge adjusts. There is an 
attractive force between Qout and the surface charge. If Qout and Qon = --Qout 
are doubled, the field lines have the same pattern, but become twice as dense. 

Since the interior of the conductor is neutral, by the scooping-out theorem 
we can scoop out a cavity with surface Sinne r from the conductor without af- 
fecting the electric field anywhere. See Figure 4.21 (b). Hence, after scooping 
out neutral material from the conductor, the electric field in the scooped-out 
region (the cavity) remains zero. 

That is, the electric field within the cavity, due to the charge outside the 
cavity, has been screened out. Moreover, we have not affected the surface 
charge. 

Faraday cage: Superimposing cases 1 and 2, to produce arbitrary charge 
outside and on a hollow conductor, gives the situation corresponding to the 
Faraday cage, where there is no electric field within a metallic cage. See 
Figure 4.22. 

Faraday had so much faith in electrical screening that he built an 
electrified metal cube and lived inside it: "Using lighted candles, electrometers, 
and all other tests of electrical states, I could not find the least influence upon 
them.. ,  though all the time the outside of the cube was very powerfully charged, 
and large sparks and brushes were darting off from every part of its outer surface." 

For high precision in electrometer readings, a Faraday cage is placed 
around the electrometer to screen out the effects of uncontrolled external 
charge, such as that induced on the experimenter by the charge we are trying 
to measure. Present-day automobiles use electronic circuitry that must be 

A Faraday cage need not be solid. If the cage is a screen with hole dimension a, then 
approximately a distance a from the screen into the cage, the field will be screened 

Figure 4.22 A Faraday cage. The person 
within the cage is unaffected by electrical 
discharges outside it, or on the cage itself. 

out. See Figure 4.22. This is 
consistent with the Faraday ice 
pail interior being relatively 
open, yet still behaving as if 
it were nearly enclosed. Note 
that, when sparking occurs, 
electromagnetic radiation of a 
wide range of frequencies is 
emitted, and the system goes 
out of equilibrium. This does not 
affect the screening for radiation 
with wavelengths larger than the 
hole dimension. For microwave 
ovens, the screened door pre- 
vents the long-wavelength, low- 
frequency microwave radiation 
(but not the short-wavelength, 
high-frequency optical radiation) 
from escaping. Within a building 

or tunnel with steel girders, the longer-wavelength, lower-frequency AM stations are 
inaudible, but the shorter-wavelength, higher-frequency FM signals can be heard. 
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Figure 4.23 Charged conductor with a cavity 
containing an equal and opposite point charge. 
(a) View from a distance. There is no external 
field. (b) Close-up of the vicinity of the cavity. The 
field lines, which originate on the point charge, 
also terminate on the inner surface of the cavity. 

protected from unwanted electric fields, which can be very intense near radio 
and television transmitters. What may appear to be spontaneous opening 
and closing of windows, or activation of cruise control, can occur for a car 
whose electronics is inadequately screened. 

3. Internal charge Qin and conductor with charge Qon = - Q i n  
Now consider a conductor with charge Qin within a cavity. See Figure 4.23 (a). 
By Section 4.6, if the conductor is in equilibrium, there is no charge within 
the material of the conductor; any electrostatically induced charge (subject, 
as usual, to charge conservation) must reside on the surfaces of the conductor. 
Consider a Gaussian surface S that just barely encloses the actual inner sur- 
face Sinner, as in Figure 4.23(b). If the system is in equilibrium, the electric 
field is zero everywhere on S. Hence the flux through S is zero. By Gauss's law, 
(4.9), Qenc - 0 fol* Sinner. Since Qenc -- Qin -Jr- Qinner, we thus conclude that 
Qinner ~ --Qin" the charge on the inner surface cancels the charge in the cav- 
ity. Since there is no charge in the bulk of the conductor, and the total charge 
on the conductor is Qon - - Q i n ,  there is no charge on the outer surface. 

Typically, the charge distribution on the inner surface is nonuniform, 
being larger in magnitude n e a r e r  Qin,  and opposite in sign t o  Qin.  There 
is an attractive force between Qin and the charge on the inner surface. If 
Qin and Qo~ - --Qin are doubled, the field lines have the same pattern, but 
become twice as dense. 

Faraday ice pail: Superimposing case 1 with Qon -q l ,  and case 3 with 
Qin - - Q o n  - ql ,  SO there is zero net charge on the conductor, corresponds 
to a neutral Faraday ice pail. The charge distribution on the outer surface, 
being due to case 1, is independent of the position of the charge within 
the cavity. This explains why the Faraday ice pail works as an electrometer, 
independent of the position of Qin within Sinner. 

4~10o2 Gravitational Screening Cannot Occur 

Many people think that, because gravity and electricity both satisfy an inverse 
square law, they might be able to find a way to screen out gravity. However, 
the ability to screen out electric fields is not shared by all materials~electrical 
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insulators cannot do it. What electrical conductors have that electrical insulators 
do not have, and which permits electrical screening, are mobile electric charges 
(the electric fluid) of sign opposite that of the immobile background charges, to 
produce a field that can cancel the applied electric field. For matter to be able to 
screen out gravity, that matter must have both positive and negative masses, and 
one of them must be mobile (like the conduction electrons). However, negative 
gravitational mass does not exist; even a so-called antiparticle has positive mass, 
equal to the same mass as its corresponding particle. Therefore gravitational 
screening cannot occur. 

4 . t l  

4,11.,I 

Advanced Topics in Conductors and Screening 

Electrostatic Screening: A Nontrivial Example 

At 21, William Thomson (later to become Lord Kelvin) invented the method of 
images to solve the problem of the charge density on conductors in the presence 
of external charges. It works for only a few cases, but that includes the important 
one of a point charge q and an infinite conducting sheet (e.g., of aluminum foil). 

Consider a neutral, infinite sheet of aluminum foil. Freeze the neutral elec- 
tric charge distribution so that electrostatic induction cannot occur. Along the 
midplane between two charges q (above) and - q  (below), place the sheet of 
foil. See Figure 4.24(a). Now unfreeze the charge distribution so that electro- 
static induction occurs. Because/~ from q and - q  already is normal to the sheet, 
it does not cause electric currents to flow along the sheet. However, it polar- 
izes the sheet by electrostatic induction. The surfaces of each sheet develop 
equal and opposite charge densities -~s  and c~s, with net charges - q  and q, to 
terminate and originate the field lines from the point charges. See Figure 4.24(a). 
The equal and opposite surface charge densities are so close that, outside the 
sheet, they produce no field; they serve only to produce a field that, inside the 
foil, cancels the field of the external charge. Outside the sheet the field is due 
only to q and -q .  

Below the sheet, the foil may be considered part of a spherical shell of in- 
finitely large radius with center above the sheet. The field lines that originate on 
q terminate on a surface charge density -~s  on the top surface of the foil (the 
interior of the infinite spherical shell). Together, q and -~s  produce no effect 

q q 

~3 S --G S 

. . . . . . . . . . . . . . . .  t x ~.. ~ .  ~ ~.. ~ .  ~,. \ x .~. ~.. ~.. ~ ~ ~ ,  ~.. x ~ ~ , .  ~.. ~ ~ 1 

o GS 
_ q  - q  

(a) (lo) 

Figure 4.24 Electrostatic "screening" of point charges by a thin conducting 
sheet in equilibrium. (a) Point charges +q above and below the sheet, with 
field lines. (b) Surface charge density, positive on the upper surface and 
negative on the lower surface. 
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outside the infinite spherical shell. Therefore, below the sheet, it is as if the only 
charges are - q  below the foil, and ds on its lower surface. This converts the 
original problem to the case of a single charge - q  and a sheet of aluminum foil 
with charge density ~s. 

Equation (4.22) yields ~s from F, out" ~, which can be computed using only 
q and - q  (these form a dipole) and finding the field on their midplane. This 
was considered in Chapter 3, where 2a was the separation between the charges. 
With x the distance normal to the dipole axis, Equation (3.13) yields a field of 
magnitude 2kqa / (x  2 + a2) 3/2. Rewriting this result, with r instead of x, yields a 
field of magnitude 2kqa/ ( r  2 + a2) 3/2. Hence, from (4.22), on the - q  side, where 
E points along h, 

_.p 

E .fi qa 
~s -- = (4.25) 

4Jrk 2zr(r 2 + a2) 3/2" 

Using u - r 2 + a 2, so du - 2rdr, and zrdu - 2Jrrdr, (4.25) yields 

oo qa 
f ~ s d A  - / ~s(2zrr)dr - L2 2Jru 3/2Jrdu 

- - 2 u  -1/2 - - q a  0 - -  - q .  
a 2 a 

Figure 4.25 Field lines for 
a neutral conductor in the 
presence of a point charge. 

(4.26) 

Thus, as indicated, the surface charge is equal 
and opposite to the charge - q ,  to whose field 
lines it connects. We plot (4.26) in Figure 
4.24(b). 

If the sheet is uncharged and finite, this re- 
sult for ~s is only approximate and does not 
hold very well near the edges, where there must 
be a neutralizing negative charge. Figure 4.25, 
repeated from Figure 3.9(b), presents the field 
lines. 

4.11.2 O u t w a r d  Electrical Pressure on a Charged Conductor  

There is an outward electrical force acting on the surface charge of conduc- 
tors, which we may interpret as an electrical pressure. It is due to the force of 
the external field on the surface charge density. Very near the conductor, ei- 
ther inside or outside, the field may be written as E - E ext -Jr- E s. Here E ext is 
due to distant charges (both on and off the conductor), and thus remains the 
same on crossing the surface, s o  E e x t  - *-,~~ - -  EZnext. The field/~ s is due to the -=) 

local surface charge density ~s, which is like a sheet of charge, and thus Es 
changes direction on crossing the surface: E,~ _/~n. See Figure 4.26. Since 
by (4.20) the total field inside is zero in equilibrium, or E zn - -  E e?~t-Jr- ~ n  _ O, 

w e  have E~ n - -Eext .  Hence ~out _ E e x t  _]_ EOUt _ E e x t _  Eisn ~ 2 E e x t .  T h u s  

p 

aF 
-d-fi 

- - I ~ s l l E e x ~ l -  I~sllE~ " ~zl IE~ 2 

(4.27) 
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Figure 4.26 Conductor in equilibrium. The field 
depiction is only for a small region of the upper 
surface. The fields/~ s due to the local charge 
density as, E ext due to more distant charge (both on 
and off the conductor), and the total field/~ are 
given. ~'ext does not change on going from just 
inside to just outside the conductor, but E s reverses. 

4.11 ~3 

Consider a conducting sphere for which ]E out] equals the dielectric strength 
6 air __ Ed of air, 3.0 x 10 N/C. Then am~ ~ = Ed/4rrk 5.3 x 10 -s C/m 2, which 

gives Pm~i~- 77 N/m 2. Since Patm ~ 105 N/m 2, this outward electrical pres- 
sure is insufficient to inflate a balloon against atmospheric pressure. However, in 
outer space, where there is negligible atmospheric pressure, electrical inflation 
of an aluminized mylar balloon might be more feasible. 

Microscopic Screening Length 

Our discussion of electrical screening due to surface charge has assumed the 
surface to be geometrically sharp. This is not literally true because at the mi- 
croscopic level the surface contains atoms of characteristic dimension 10 -l~ m. 
Even if deviation from ideal sharpness can be neglected, there is still the issue of 
the characteristic length over which the screening takes place. Gauss's law ap- 
plied to the electric fluid model says that to screen out the applied electric field 
charge literally piles up at the surface. However, for real conductors, the charge 
must be distributed over a finite distance from the surface, called the screening 
length l. 

For metals, where the charge carriers are electrons, this screening length l is on 
the order of the distance a between atoms. The net electric field, including that of 
the screening charge due to adjustments in the electron orbitals, both oscillates 
and decreases in amplitude on moving to the interior. See Figure 4.27(a). (In 
the mathematics of Fourier series, the Gibbs phenomenon is a related effect.) 
Clearly, the physics of surfaces is complex. Wolfgang Pauli, whose idea it was 
that only one electron per orbital is allowed, once remarked that "surfaces are 
the invention of the devil." 

Distance from surface Distance from surface 

(a) (b) 

Figure 4.27 Schematic of electric field in vicinity of 
two types of real conductors in equilibrium. (a) A metal. 
(b) A semiconductor or an ionic conductor. 
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In semiconductors, where the conduction electron density can be much lower, 
the screening length l can be hundreds of times larger, and the net electric field 
decays exponentially with this length. See Figure 4.27 (b). 

For ionic conductors (living cells contain such ions as Na +, K +, H +, and 
C1-), the electric field decays exponentially in space, and the characteristic size 
of the screening length l depends on temperature. It has an order of magnitude 
given by the product of the distance b between ions with the square root of the 
small dimensionless ratio of the characteristic thermal and electrical energies. 
For general information ~ not because it gives the student a deeper under- 
standing of electricity~this ratio takes the form l/b - [kn T/(ke2/b)] ~/2. (Here, 
ks = 1.38 x 10 -23 J/K is the Boltzmann constant, K is degrees Kelvin, and the 
temperature T is given in units of K.) In a human cell, l is on the order of ten 
atomic dimensions; in the electrolyte of a well-charged car battery, l is on the 
order of an atomic dimension. Note that ke2/b 2 has the dimensions of a force, 
so ke2/b = (ke2/b2)b has the dimensions of an energy. Electrical energy is the 
subject of the next chapter. 

4 . t I~4  Depletion Layer in Semiconductors 

Figure 4.27 (a) is a good representation of what happens when a weak external 
electric field is applied to a semiconductor so that the change in density of charge 
carriers is small compared to the equilibrium charge carrier density. However, 
when a strong electric field is applied, so many semiconductor charge carriers may 
be required to screen out the applied field that near the surface they exceed the 
equilibrium charge carrier density. In this case, the system responds differently. 
For purposes of discussion, assume that the charge carriers are electrons. There 
are two cases to consider. 

If the applied electric field is directed toward the conductor, that will attract 
electrons to the vicinity of the surface, at a density higher than the equilibrium 
density (accumulation). See Figure 4.28(a) for a schematic of the charge carrier 
density within the semiconductor. This is qualitatively similar to what happens 
for small electric fields. 

Carrier density 

' "X~Equilibrium density 

Distance from surface 

Depletion 
width w Carrier 

~" -= /densi ty  

"\i~qi;iiibrium 
density 

Distance from surface 

(a) (b) 

Figure 4.28 Schematic of charge carrier density near the 
surface of a semiconductor in the presence of an applied 
electric field. (a) When an excess of charge carriers is 
attracted to the vicinity of the surface. (b) When charge 
carriers are repelled from the vicinity of the surface 
so much that a depletion layer of thickness w is 
formed. 
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If the applied electric field is directed away from the conductor, that  will 
repel electrons, causing t h e m  to be completely  depleted in a region near the 
surface. The thickness, or width,  w of this dep le t ion  layer  is de termined by the 
electric field magni tude  I EI and the background density n of positive charge 
that, in equilibrium, cancels the charge of the electrons in charge-carrying states. 
See Figure 4.28(b).  Full deplet ion leaves behind a positive charge density en.  

Integration over the deplet ion width  gives a charge per unit  area of e n w .  Applying 
(4.22) as I ~ s I -  I/~l/4Jrk with ~s - e n w  then  gives 

IEI 
w - 4Jr ken"  (depletion layer width)  (4.28) 

Hence, the lower the density of charge carriers, the further the deplet ion region 
extends into the semiconductor.  Let n = 1018 m -3, corresponding to a linear 
separation be tween  charge carriers of 10 -6 m. If the linear separation be tween  
atoms is 3 x 10-1~ m, this corresponds to a linear separation of about  one charge 
carrier per 3300 atoms. If ] E I -  2 x 10 s N/C, then  (4.28) gives w = 1.105 x 
10 -5 m, or about  ten t imes the linear separation be tween  charge carriers. 

Problems 

4 -2 .1  (a) What happens to the electric flux if we 
define it with the inward normal? (b) Specifically, 
if ~ = 34 N-m2/C with the usual definition, what 
is ~ with the inward normal? (c) How would we 
have to write Gauss's law using that definition of 
flux? 

4-2.2 A cube of side 12 cm lies in the first octant 
with one corner at the origin, as in Figure 4.5. A field 
points along the y-axis, with Ey = 10 N/C on the 
y -  0 plane, and Ey- 20 N/C on the y = 12 cm 
plane. Take Ex = Ez - O. Find the net flux leaving 
the cube. 

4 - 2 . 3  A cube of side 4 cm lies in the first octant 
with one corner at the origin. It is in a field given by 
/~ = (1 - 3x2)~, where x in m gives/~ in N/C. Find 
the net flux leaving the cube. 

4 - 2 . 4  Consider an electric field /~ - - ( -2 ,4 ,  
-5)  N/C, and a surface element of area 4 mm 2 
and normal along (2.4, -4.5, 6.0). (a) Find the unit 
vector fi normal to the surface. (b) Find the flux 
per unit area. (c) Find the flux through this surface 
element. 

4 - 2 . 5  A circle of radius R sits on the z = 0 plane, 
its center at the origin. A uniform field/~ points 
along the z-axis. See Figure 4.29. Find the flux 
passing through the circle. 

E 

Figure 4.29 Problem 4-2.5. 

4 - 2 . 6  A hemispherical shell of radius R sits above 
the z = 0 plane, its center at the origin. A uniform 
field/~ points along the +z-axis. See Figure 4.30. 
Find the flux passing through the shell. 

Figure 4.30 Problem 4-2.6. 

4-2.7 Calculate the electric flux through a disk of 
radius R, due to a charge Q a distance d along its 
axis. 

4-2.8  An infinitely long line charge X is along the 
z-axis, and passes through the origin. Concentric 
with it is an infinitely long cylinder of radius R. 
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Calculate the electric flux per unit length passing 
through the cylinder. 

4-3.1 A Gaussian surface surrounds an elephant, 
which resides on an insulating platform. The ele- 
phant accidentally swallows a glass bead whose in- 
terior has a charge q = 6 nC. Determine the electric 
flux through the Gaussian surface (a) before swal- 
lowing, (b) while swallowed, and (c) after expulsion 
of the glass bead through the elephant's trunk. 

4 -3 .2  The center of a sphere of charge Q and ra- 
dius R is at one corner of a cube of side a > 2R. 
(a) Find the total flux through the cube. (b) In the 
limit R/a  --~ O, find the flux through each side. 

4 - 3 . 3  The center of a sphere of charge Q and ra- 
dius R is at the center of a cube of side a > 2R. 
(a) Find the total flux through the cube. (b) In the 
limit R/a  ~ O, find the flux through each side. 

4 - 3 . 4  A tiny sphere carrying 650 #C is at the cen- 
ter of a cube of 12 cm per side. (a) Find the flux 
through one face. The charge now is moved to the 
center of one face (half inside the cube and half 
outside it). (b) Approximately how much flux goes 
through that face? (c) Approximately how much 
flux goes through the remaining faces? 

4 - 3 . 5  A surface element of area 2 x 10 -4 m 2 has 
its normal along (20, 12 , -9 ) .  For this element, 
/~ = ( 6 , - 2 , - 5 )  N/C. Find (a) the normal h; (b) 
]/~ ]; (c)/~. h; (d) the angle between E and h; (e) the 
flux d ~  through this element; and (f) the charge 
d Q associated with this flux. 

4 - 3 . 6  A uniform field of magnitude 750 N/C 
points 20 ~ off the normal from the plane of a circu- 
lar plate of radius 15 cm. See Figure 4.31. Find the 
flux through the plate, and the charge to which this 
corresponds. 

E 
A 

o 

Figure 4.31 Problem 4-3.6. 

4 -4 .1  A spherical conducting shell of radius 2 cm 
is uniformly charged. The field just outside its sur- 
face is 200 N/C, pointing outward. Find the charge 
density at the surface. 

4 - 4 . 2  Measurements of the electric field in a re- 

gion reveal that it points along the (vertical) y- 
axis and is given by Ey = 2 + 4y 2 - 5y 3, for Ey in 
N/C and y in m. Consider a cylinder of 0.02 m 2 
cross-section that sits on the y = 0 plane and has 
height h =0.05 cm. Find (a) the net flux leaving 
the cylinder, and (b) the charge enclosed by the 
cylinder. 

4-4.3 The electric flux through a donkey was ini- 
tially 150 N-m2/C, but after eating a potato, it is 
-275  N-m2/C. Find the charge within the potato. 

4-4.4 A point charge is at the center of a regular 
tetrahedron. The flux through one of its four sides 
is 400 N-m2/C. Find the charge within the tetrahe- 
dron. 

4-5.1 Outside a spherical distribution of charge, 
at a radius of 2.5 cm, the electric field has mag- 
nitude 28 N/C and points inward. (a) Find the 
total charge associated with this charge distribution. 
(b) If the charge were 18 nC, find the electric field 
at this position. 

4 -5 .2  Outside a cylindrical distribution of charge, 
at a radius of 4.6 cm, the electric field has mag- 
nitude 15.8 N/C and points outward. (a) Find 
the total charge per unit length associated with 
this charge distribution. (lo) If the charge per unit 
length were 18 mC/m, find the electric field at this 
position. 

4 - 5 . 3  Outside a planar distribution of charge, at 
a distance of 1.3 cm from its center, the electric 
field has magnitude 7.3 N/C and points outward. 
(a) Find the total charge per unit area associated 
with this charge distribution. (b) If the charge per 
unit area were 47 mC/m 2, find the electric field at 
this position. 

4 - 5 . 4  A spherical shell of inner radius a and outer 
radius b contains a uniform charge density p of total 
charge ~. (a) Find p. (lo) Find the electric field for 
r < a , a < r  <b ,  a n d b < r .  Sketchit. 

4 - 5 . 5  A cylindrical shell of inner radius a and 
outer radius b contains a uniform total charge per 
unit length k. (a) Find the charge density p in terms 
of k, a, and b. (lo) Find the electric field for r < a, 
a < r < b, and b < r. Sketch it. 

4 - 5 . 6  Two concentric conducting shells have radii 
2 cm and 4 cm. At r = 3 cm, the electric field has 
magnitude 40 N/C and points inward. At r -- 5 cm, 
the electric field has magnitude 40 N/C and points 
outward. (a) Find the charges on each shell. (b) Find 
the electric field at r = 10 cm. 
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4-5.7 Two concentric conducting cylinders have 
radii 1 cm and 3 cm. At r = 2 cm, the electric 
field has magnitude 650 N/C and points inward. At 
r = 6 cm, the electric field has magnitude 40 N/C 
and points outward. (a) Find the charge per unit 
length on each shell. (b) Find the electric field at 
r =  12cm. 

4 - 5 . 8  Two conducting sheets are normal to the 
x-axis, at x = - 2  cm and x = 2 cm. At x = 1 cm, 
the electric field has magnitude 650 N/C and points 
rightward. At x = 12 cm, the electric field has mag- 
nitude 40 N/C and points leftward. (a) Find the 
charge per unit area on each sheet. (b) Find the 
electric field at x = - 8  cm. 

......... ~::~,~ ..... 

........... !::!!!ii~ ....... 4 - 5 . 9  (a) Write down the gravitational ana- 
.... ~ii::i~ ....... 

~'<::~: .................... log of Gauss's law. (b) Apply it to find the 
gravitational field within a ball of radius R and mass 
M, with uniform mass density. (c) Show that, if 
a tiny hole is drilled through the center of such 
a ball, then a tiny mass m, dropped from the sur- 
face, will undergo simple harmonic motion, and 
find its period. (d) Put in parameters appropriate 
to the earth, and thus determine the period of the 
motion. 

4-5.10 Whenever there is an area for which the 
flux per unit area is constant, then ( d ~ e / d A ) A f l u  x = 
4zrk~enc. Discuss how this applies to the cases 
we have s tudied-- in  particular, for sheets, cylin- 
ders, spheres, and pillboxes outside conductors. 
Does it apply to a cube-shaped charge, sur- 
rounded by a Gaussian surface that is a concentric 
cube? 

4-6.1 Consider two conductors A and B, well- 
isolated from each other, with surface charge densi- 
ties ~A and ~B. If we can freeze the charge in place, 
and then bring the conductors near each other, will 
these charge densities produce electric fields that 
are normal to each surface? Hint: Think in terms of 
conducting spheres. 

4-6.2 Explain why, for purposes of the principle 
of superposition, a small conducting sphere can be 
thought of as a point charge. Hint: For a charged 
sphere of small radius, all other charges are very far 
away relative to the charge on the sphere. What  does 
this say about the amount that the sphere can be po- 
larized, and therefore the effect of this polarization 
on other charges? 

4-6.3 Consider a point charge q outside a neu- 
tral conductor, as in Figure 4.32(a). The response 

of the conductor can be obtained as a superpo- 
sition of (1) the equilibrium charge configuration 
for q itself and a charge - q  on the conductor [see 
Figure 4.32(b)]; and (2) the equilibrium charge 
configuration for only a charge q on the conduc- 
tor [see Figure 4.32(c)]. (a) If the net potential 
of the neutral conductor is +40 V, and its poten- 
tial in the presence of q itself and the conduc- 
tor with - q  is +15 V, find its potential if there 
is only q on the conductor. (b) Discuss the di- 
rection of the dipole moment  on the conductor, 
and the direction of the net force on the point 
charge q. 

Q 
o n  " - -  0 

q O ~  q 

Qon = - q  Q o n  = q 

(a) (b) (c) 

Figure 4.32 Problem 4-6.3. 

4-6.4 Consider a neutral dielectric whose 
molecules are polarized to the right. If molecules 
are scooped out from the interior, charge is left 
behind on the surface of the resulting cavity. 
(a) What  is the net charge on the cavity surface? 
(b) For a spherical cavity, in what direction does the 
resulting electric field point? 

4-6.5 A brass "football" sits on a styrofoam pad. 
A charge Q~ is within the cavity of the football, 
and there is no net charge on the football. (a) Find 
the charge on the football's inner and outer sur- 
faces. (b) The football is now connected by a wire 
to ground. Find the charges on its inner and outer 
surfaces. 

4 - 6 . 6  Consider two concentric, thin, conducting 
shells, of radii r~ < r2 and positive charges Q1 and 
Q2. (a) Find the charge densities on their inner 
and their outer surfaces. (b) If a charge Q3 > 
Q2 is brought up from infinity to just outside r2, 
how does this affect the charge densities qualita- 
tively? 

4 - 6 . 7  P. Heller has developed a "screening" device. 
It consists of a set of vertical conducting slats a few 
cm wide and about 20 cm long, close to one another 
but not in contact, all hung from a circular mount  of 
about 10 cm diameter. When the slats are connected 
to one another by a wire, they screen the interior of 
the enclosed cylindrical region, but when discon- 
nected they don't  screen. See Figure 4.33, where 
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the connecting wire is the circle. Explain why con- 
necting the slats enables screening to occur. 

7 
I 

! 
/ 

Figure 4.33 Problem 4-6.7. 

4 -7 .1  Just outside point P on a sheet of crum- 
pled aluminum foil, the electric field has magnitude 
24 N/C and points inward. Determine the surface 
charge density at P. 

4 -7 .2  The electric field just outside a uniformly 
charged conducting sphere of radius 4.7 cm has 
magnitude 1400 N/C and points outward. (a) De- 
termine the surface charge density on the sphere. 
(b) Determine the total charge on the sphere. 

4 - 7 . 3  Explain, in your own words, the factor of 
two difference between the equations for the elec- 
tric fields outside a conductor and outside a uniform 
sheet of charge. 

4 - 7 . 4  Two thin conducting plates are normal to 
the x-axis. 1, on the left, has total charge per unit 
area 2~, and 2, on the right, has total charge per unit 
area -4~, with c~ > 0. See Figure 4.34. (a) Find the 
electric field to the left, to the right, and between 
the plates. (b) Find the surface charge density for 
each surface. 

#1 #2 

20 -4o 

Figure 4.34 Problem 4-7.4. 

4-7.5  Three thin conducting plates are normal to 
the x-axis. 1, on the left, has total charge per unit 
area 2a, 2, in the middle, has total charge per unit 
area - 4 a ,  and 3, on the fight, has total charge per 
unit area -3~ ,  with ~ > 0. See Figure 4.35. (a) Find 
the electric field to the left, to the right, and in 
the two intermediate regions between the plates. 
(b) Find the charge densities for both sides of each 
plate. 

#l #2 #3 

2c~ -4c~ -3cy 

Figure 4.35 Problem 4-7.5. 

4-7.6  The field between two parallel, vertically 
stacked conducting sheets is 200 N/C upward. The 
field above both of them is 20 N/C downward. Find 
the electric field below both sheets, and the charge 
densities on each surface of each sheet. 

4 -7 .7  A conducting spherical shell has a 2 cm 
radius. Just outside it, the electric field points ra- 
dially inward and has a magnitude of 900 N/C. 
(a) Find the surface charge density. (b) Find the to- 
tal charge on the shell. (c) Find the field just inside 
the shell. (d) Find the field at 3 cm from the center 
of the shell. 

4 - 7 . 8  Let a conducting spherical shell of radius 
R possess a net charge Q. Let a point charge 
q be within the shell. (a) Show that, for the 
shel l ,  Qinner = - q  and Qouter = Q-]-q .  (b) Show 
that ( ~ o u t e r  is distributed symmetrically, so O'oute  r m 

Qouter/4~ R z = ( Q +  q) /47r  R 2. (c) Show that 
CTinner ~ Qinner/4275 R 2 = - q / 4 z r  R 2 if q is on-center. 
(d) Can you find O' inne  r if q is off-center? 

4 - 7 . 9  Two thin, conducting, concentric spherical 
shells have radii a and b, where a < b. The total 
charge on the inner shell is Q ,  and that on the outer 
shell is -2Q.  (a) Find the electric field for r < a, 
a < r < b, and b < r. (b) Find the charge on the in- 
ner and outer surfaces of the inner shell. (c) Repeat 
for the outer shell. 

4 - 7 . 1 0  Three thin, conducting, concentric spher- 
ical shells have radii a, b, and c, where a < b < c. 
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The total charges are, respectively, Q a  --" 3 Q,  Qb = 
- 2 Q ,  and Qc = Q. (a) Find the electric field for 
r < a, a < r < b, b < r < c, andc < r. (13) Find the 
charge on the inner and outer surfaces of the inner 
shell. (c) Repeat for the middle shell. (d) Repeat for 
the outer shell. 

4-7.11 Two thin, conducting, concentric cylindri- 
cal shells have radii a and b, where a < b. The total 
charge per unit length on the inner shell is 2)~, and 
that on the outer shell is -3)~. (a) Find the elec- 
tric field for r < a, a < r < b, and b < r. (b) Find 
the charge per unit length on the inner and outer 
surfaces of the inner shell. (c) Repeat for the outer 
shell. 

4-7.12 Three thin, conducting, concentric cylin- 
drical shells have radii a, b, and c, where a < b < c. 
The total charges per unit length are, respectively, 
)~a = 2)~, Xb = -35v, and ;% = 4)v. (a) Find the elec- 
tric field f o r r < a , a < r < b , b < r < c ,  a n d c < r .  
(b) Find the charge per unit length on the inner and 
outer surfaces of the inner shell. (c) Repeat for the 
middle shell. (d) Repeat for the outer shell. 

4-8.1 An electrometer is connected to the exte- 
rior of an isolated metal cup resting on an insulat- 
ing surface. The electrometer reads 5 ttC. (a) Where 
on the cup does the charge reside? (b) A ball on an 
insulating string now is lowered into the cup. The 
electrometer now reads 2 #C. What is the charge on 
the ball? (c) The ball in the cup is touched briefly to 
the electrometer. What does the electrometer read? 
(d) The ball is removed from the cup, and the elec- 
trometer reads 2.4 #C. Find the charge on the ball. 

4-8.2 Repeat the previous problem, for parts (a), 
(b), and (d), giving the number of field lines into or 
out of each surface, with one field line per 0.2/ ,C. 

4 -9 .1  Find the solid angle subtended by a disk of 
diameter d, at a distance s along its normal. 

4-9.2 Find the solid angle subtended by a square 
of side a, at a distance a/2 along its normal. Hint: 
Use symmetry. 

4-10.1 Consider a point P on the outer surface 
of a conductor with a cavity. For Q i n  ~" Q ]  = 2 x 
10 -6 C in the cavity, and Qou = Q A  distributed over 
the conductor, measurement yields ~s = 2 x 10 3 
C/m 2 at P. For Qiu = - 2  Q1, and Qou = - Q 1  mea- 
surement yields ors = - 4  x 10 3 C/m 2 at P. Deter- 

mine ors at P when there is only Qiu = 3 Q1 and 
Qo~ = O. 

4-10.2 A charge ql is outside a conductor, a 
charge q2 is inside a cavity within the conductor, 
and q3 is on the conductor itself. Discuss the forces 
on ql, on q2, and on the conductor. 

4-11.1 A rod of charge per unit length ~ is parallel 
to the z-axis, a distance b from an uncharged infinite 
conducting sheet in the y = 0 plane. (a) Using the 
method of images, find the electric field as a func- 
tion of x just outside the surface of the sheet, on 
the same side as the rod. (b) As a function of x, find 
the charge per unit area on the surface of the sheet 
near the rod. 

4-11.2 (a) Find the electrical pressure on a cylin- 
drical shell of radius r and charge per unit length )~. 
(b) Determine the work done against the electrical 
force to compress it from radius b to radius a. 

4-11.3 (a) Find the electrical pressure on a spheri- 
cal shell of radius r and charge ~. (b) Determine the 
work done against the electrical force to compress 
it from radius b to radius a. 

4-11.4 A semiconductor layer above a metal has 
thickness 50 nm and carrier electron density n = 
2.6 x 1018/m 3 . Find how large an electric field must 
be applied to produce complete depletion of carrier 
electrons from the semiconductor. 

4-G.1 Why are these equations incorrect? 

(a) f = f  dA. 
Co) f  aA= f  aA. 
(c) f  aA= f i l aa. 

4 - G . 2  Consider a region where there is a uni- 
form field/~ of arbitrary magnitude and direction. 
(a) Apply Gauss's law to a W closed surface in this 
region to show that 0 = ~ E .  hdA. (b) . Show that 
0 = E .  ~ hdA. (c) Hence deduce that 0 = J fzdA 
for any closed surface. This is a very powerful math- 
ematical result. 

4-G.3 Consider a charge distribution with planar 
symmetry p = p(x).  (a) For a Gaussian surface that 
is a slab of area A and thickness dx, show that �9 ~ 
(d /dx ) (Ex ) (Adx ) .  (b) Show that Qenc ~ p (Adx ) .  
(c) Hence, from Gauss's law, deduce that, for planar 
symmetry, (d /dx) (Ex)  = 4zrkp. 

4-G.4 Consider a charge distribution with cylin- 
drical symmetry p = p(r). (a) For a Gaussian 
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surface that is a cylindrical shell of length L, inner 
radius r, and thickness dr <<r, show that 
~E ~ 2rc(d/dr)(Err)(Ldr). (b) Show that Qenc ~. 
p(2rrrLdr). (c) Hence, from Gauss's law, de- 
duce that for cylindrical symmetry, (d/dr)(Err) = 
4n krp. 

4 - G . 5  Consider a charge distribution with spher- 
ical symmetry p = p(r). For a Gaussian sur- 
face that is a spherical shell of inner radius r 
and thickness dr <<r, show that ~ 
4rr(d/dr)(Err2)(dr). Show that Q ~ p(4rrr2dr). 
Hence, from Gauss's law, deduce that for spherical 
symmetry, (d/dr)(Err 2) = 4rrhr2 fi. 

4 - 6 . 6  Within a charged region with planar sym- 
metry, the electric field varies as x 3. How does the 
charge density vary with x? See Problem 4-G.3. 

4 -G .1  Within a uniformly charged cylindrical re- 
gion, the electric field points radially and has a con- 
stant magnitude. How does the charge density vary 
with r? See Problem 4-G.4. 

4 - G . 8  Within a charged spherical region, the elec- 
tric field points radially and varies as r 2. How does 
the charge density vary with r? See Problem 4-G.5. 

4-G.9 Consider an infinite slab of thickness 2R 
with uniform charge density p. A smaller parallel 
slab is scooped out, of thickness 2a < 2R and with 
center a distance b from the center of the original 
slab, where a + b < R. Show that the electric field 
within the cavity is uniform, and find its magnitude 
and direction. Hint: Superpose two charge distri- 
butions. 

4-G.10 Consider an infinite cylinder of radius R 
with uniform charge density ft. An infinitely long 
cavity of radius a is scooped out, with center a 
distance b from the center of the larger cylinder, 
where a + b < R. See Figure 4.36. Show that the 
electric field within the cavity is uniform, and find 
its magnitude and direction. 

Figure 4.36 Problem 4-G.10. 

4-G.11 Consider a sphere of radius R, centered 
at the origin with uniform charge density p. A cav- 
ity of radius a is scooped out, with center a at D, 
where a + b < R. See Figure 4.36. Show that the 
electric field within the cavity is uniform, and given 
by/~ = (2hp/3)D. 

4-G.12 For a planar distribution of charge p(x), 
consider the charge Q(x) that is enclosed by a rect- 
angular parallelopiped with area A normal to )~, 
and with sides at 0 and x. (a) Show that Q(x) = 
A fop(x)dx  , and hence that d Q / d x =  Ap(x). 
(b) For Q(x) = 2Ax 5, find p(x). 

4-G.13 For a cylindrical distribution of charge 
p(r), consider the charge Q(r) that is enclosed 
by a concentric cylinder of radius r and length L. 
(a) Show that Q(F)= L fo 2rcp(r)dr, and hence 
that dQ/dr=2rrrLfi(r).  (b) For Q(r)=8Lr  4, 
find p(r). 

4-G.14 For a spherical distribution of charge tiff), 
consider the charge Q(r) that is enclosed by a con- 
centric sphere of radius r. (a) Show that Q(r) = 
fo 4rcr2p(r) dr, and hence tha tdQ/dr  = 4rcr2 fi(r). 
(b) If Q(r) = 12 exp(-2r) ,  find p(r). 

4-G.15 (a) Consider charges Q at (a, 0, 0) and 
( -a ,  0, 0). Find the field at the origin. (b) Con- 
sider small lightbulbs at (a, 0, 0) and ( -a ,  0, 0). If 
each produces intensity I0 at the origin, find the 
total intensity at the origin. (c) Compare and con- 
strast the addition of electric fields and lightbulb 
intensities. 

4-G.16 Light intensity from a flashlight satisfies 
something like Gauss's law because intensity from 
a point source falls off as r -2. However, inten- 
sity is always positive. (a) Find how the inten- 
sity falls off with distance r for a fluorescent tube 
of length l and radius a, for a << r << I. (b) Find 
how the intensity varies with distance r from a 
uniformly lit square movie screen of side a, for 
r << a. (c) At the midpoint between two equal 
charges q, the electric field is zero. If the inten- 
sity of each of two identical flashlights is I0 at 
their midpoint, find the total intensity at their 
midpoint. 

........ %~-~ 4-G.17 A point charge q is at the origin. 
....... ~V, Consider a square of side a that is normal 

to 3?, at a distance l from q. (a) Show that the 
electric flux through it is ~ = 2kq sin -1 [a2/(a 2 q- 
4l 2)]. (b) Find the solid angle f2 subtended by the 
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square, as measured from the origin. (c) Verify 
that ~ has the expected form for l --~ ~ ,  l - .  O, 
and l = a/2. 

4-G.18 A line of charge )~ runs along the z-axis. 
Consider a Gaussian surface that is a cylinder of 

radius a parallel to the z-axis. Develop a spread- 
sheet to calculate the flux per unit length along z 
for this Gaussian surface, due to the line charge. 
(This requires a numerical value for )~.) Verify 
that the flux changes discontinuously as the line 
charge moves from inside to outside the Gaussian 
surface. 



"The whole theory.., of the potential.., belongs essentially to the method [of fields] which 
I have called that of Faraday. According to the other method [of action at a distance], 
the potential, if it is considered at all, must be regarded as the result of a summation of 
the electrified particles divided each by its distance from a given point. Hence many of 
the mathematical discoveries.., find their proper place.., in terms of conceptions mainly 
derived from Faraday." 

James Clerk Maxwell, 
Preface to A Treatise of Electricity and Magnetism (1873) 

Chapter 5 

Electrical Potential Energy and 
Electrical Potential 

Chapter Overview 

Section 5.1 introduces the concepts of electrical potential energy and electrical po- 
tential. Section 5.2 briefly reviews the relationship between gravitational force and 
gravitational energy. Section 5.3 defines electrical potential and its relationship to 
electrical potential energy. Section 5.4 applies electrical potential to electrical conduc- 
tors in equilibrium, energy conservation involving electrical potential energy, and the 
use of a force measurement to deduce voltage differences (thus making voltage dif- 
ferences accessible to mechanical measurements on macroscopic objects). Section 5.5 
discusses equipotential surfaces in some detail. Section 5.6 studies the electrical po- 
tential and electrical potential energy of point charges to obtain typical atomic and 
nuclear energies. Section 5.7 shows that the electrical potential of point B relative to 
point A depends only on their positions, not on the path from A to B. This is a conse- 
quence of conservation of energy for the electrostatic force. It implies the non-close 
on itself field-line rule of Chapter 3. 

Sections 5.8-5.10 are reprises of material touched on lightly in earlier sections. 
Section 5.8 shows how to calculate the electrical potential from the electric field 
using the field viewpoint, and Section 5.9 does the same using the action-at-a-distance 
viewpoint. Section 5.10 shows how to determine the electric field from the spa- 
tial variation of the potential. (Example 5.20 of Section 5.10 goes from V to E to 
the charge enclosed by a specific surface, thus relating material from Chapters 1 
through 5.) Section 5.11 shows why the electric field on a conductor is often 
largest where its radius of curvature is smallest, thus explaining Franklin's observation 
(Section 1.4) of the "power of points" to produce electric fields large enough to cause 
electrical discharge. Section 5.12 discusses the electrical properties of nonuniform 
conductors. 

Having a precise definition of electrical potential permits us to discuss the ratings on 
charge reservoirs, or capacitors, some of the fundamental building blocks for electrical 
circuits. The capability to store charge, or capacitance, is such an important subject 
that the next chapter is devoted to it. 

184 
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5o I Introduction 

In your mechanics course, you studied how the gravitational force on a mass m 
led to gravitational potential energy. The amount of gravitational potential energy 
Ug equals the product of m and a quantity Vg called the gravitational potential. 

This chapter shows that the electrical force on a charge q leads to electrical 
potential energy, denoted by U. The amount of electric potential energy equals 
the product of q and a quantity V (italicized) called the electricalpotential, whose 
unit is the volt (V, not italicized). Just as for gravity, where only differences in 
the gravitational potential are meaningful, so for electricity, only differences in 
the electrical potential are meaningful. Sometimes electrical potential energy is 
called merely electrical energy. 

There is a simple geometrical relationship between electric field E ~ a  vector- 
valued function of position ~ a n d  electrical potential V ~ a  scalar-valued func- 
tion of ~: (1) The scalar V(x, y, z) - constant defines a surface to which the vector 

/~ is normal. (2)/~ points from higher po- 

E points from 
high V to low V 

Hig Low V 

\ J 
Equipotentials 

Figure 5.1 Two equipotentials and 
field lines between them. Each field 
line points from a region of high 
potential to a region of low potential. 

tential to lower potential. (3) The mag- 
nitude of the slope of V in the direction 
of/~ gives I/~ 1. See Figure 5.1, where the 
positively charged source where the field 
lines originate, and the negatively charged 
source where they terminate, do not lie 
between the two equipotentials. Compare 
Figure 5.1 to Figure 4.1, where the charges 
dq and -dq that initiate and terminate a 
flux tube are depicted. In Figure 4.1, the 
surface on which dq resides is at a higher 
potential than that on which -dq resides. 
If their potential difference is 20 volts, 
then the flux tube in Figure 4.1 can be 
decomposed (for example) into 10 sub- 
tubes across each of which the potential 
difference is 2 volts. Using the concepts of 
flux and potential, it is possible to cate- 

gorize the electric field completely. Note that, because both the electric field 
and the electric potential have values at all points of space, they are both, in a 
technical sense, fields. Indeed, temperature, like electrical potential, is a scalar 
field, whereas the electric field is a vector field. (We will often interpret "field" 
as "electric field" although "potential field" would be a perfectly valid inter- 
pretation.) 

The quotation from Maxwell at the head of the chapter notes that there 
are two ways to consider electrical potential. (1) From the action-at-a-distance 
viewpoint, the electrical potential is obtained as a sum of the contributions from 
every electric charge, with the potential at infinity conventionally taken to be 
zero. This requires a complete knowledge of the positions and magnitudes of 
every charge. To obtain the electrical potential difference between two points 
thus requires the potential at both points. (2) From the field viewpoint, the 
electrical potential difference between those two points is obtained as an integral 
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Figure 5.2 An electron 
moving between two 
conducting plates held at 
different electrical potentials 
by a battery; the large plate is 
positive, the small plate is 
negative. 

Consider a battery that causes two conducting plates to have a specific potential dif- 
ference (e.g., 12 volts, or 12 V). We do not need to know the details of an electron's 

motion (e.g., its position and velocity as a function 
of time) in order to determine its speed on cross- 
ing from the negative plate, where it starts at rest, 
to the positive plate. (See Figure 5.2.) Here, just 
as for the motion of a stone under gravity, con- 
servation of energy yields the final speed. As indi- 
cated in Review/Preview, power companies provide 
electric current at a specified electrical potential, 
or voltage, just as water companies provide water 
current at a specified pressure. (An important dif- 
ference is that the electrical potential oscillates in 
time, but at a rate that, from the viewpoint of an 
electron, is incredibly slow.) Hence it is sufficient 
to know the applied voltage and only a few prop- 
erties of an electrical device to determine the de- 
vice's performance. We need not know the loca- 
tion of every bit of charge, only the initial and final 
voltages. Faraday's desire for a visualizable physical 
picture and Maxwell's desire for a mathematically 
consistent representation of that picture have led 
to a powerful conceptual structure, using the idea 
of voltage, on which modern technology and civi- 
lization crucially depends. 

over the electric field along some path between them. The field viewpoint is 
particularly useful in describing real electrical conductors in equilibrium, where 
typically the detailed surface charge distribution ~s is unknown, but  the potential 
over the conductor is known. 

Conductors in equilibrium are characterized by a fixed value for the electri- 
cal potential, which is the same over the surface and even the volume of the 
conductor. (Thus they are called equipotential surfaces.) You already know some- 
thing about electrical potential. The terminals of a battery or the prongs of an 
electrical outlet provide a difference in electrical potential. Voltage and electrical 
potential are used interchangeably. 

Gravitational Potential Energy 
and Gravitational Potential 

The idea of electrical potential energy has already been used in Section 3.8, in 
the context of an electric dipole i~ in a uniform electric field/~. This was done by 
analogy to gravity. Let us now review some additional results for gravity. Consider 
an object with mass m subject to a gravitational force F. The object could be on 
the moon, on the earth, or in outer space. See Figure 5.3. 

m T - m g  
Figure 5.3 Gravitational force on a mass m. The gravitational field 
need not correspond to earth, nor need it be uniform. 
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The gravitational force/~ on the object equals the product of the gravitational 
mass m and the local value g of the gravitational field: 

F - m g .  (5.1) 

(At the surface of the moon, Ig] ~ 1.4 m / s  2, and g points toward the center of 
the moon.) From (5.1), the local value of ~ can be obtained from a knowledge 
of both F and m, via 

F 
- - .  ( 5 . 2 )  

m 

Newton's law of universal gravitation yields, for the force on m due to a point 
mass M, at a distance r from M, 

GmM 
F - - ~ ~ .  (~ points to m) (5 3) /,2 

From (5.2) and (5.3), we deduce that a point mass M produces 

F GM^ 
= m = - r - -H-r"  (~ points to m) (5.4) 

Gravity, like electricity, also satisfies an inverse square law. Unlike electricity, 
gravity only has the equivalent of "like" charges, and they only attract .  That is 
the significance of the minus sign in (5.4). 

The gravitational energy Ug is given in terms of the mass m and the gravita- 
tional potential, Vg, by 

U e - mVr (5.5) 

where Vg - 0 at some convenient place. 

~ Vg for a point mass 

In your mechanics course, you may have learned that, if Ug = Vg = 0 at infin- 
ity, then Ug = - G M m / r  gives the gravitational interaction energy between 
the two masses m and M a distance r apart. What is the gravitational potential, 
Vg, produced by a point mass, M?. 

Solution: Equation (5.5) yields Vg = - G M / r .  

~ V g  for a uniform gravitational field 

For a uniform downward gravitational field, as on the surface of the earth, 
- -g3?. With Ug = 0 = Vg for y = 0, in your mechanics course you learned 

that Ug - mgy .  What is Vg (y) ? 

Solution: From (5.5), we find that Vg - gy. 
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For gravity, energy conservation takes the form 

l m v  -4- m Vg - constant. (5.6) 

We cannot overemphasize that the value of Vg itself has no meaning; only dif- 
ferences in Vg have meaning. Moreover, for (5.6) to apply at two positions ~ and 
~', the value of Vg at ~ must be independent of the path from ~' to ~, and vice 
versa. 

5.3 Electrical Potential Energy and Electrical Potential 

We now turn to electricity, and a derivation of results analogous to those for 
gravity. 

5~3~I Overv iew 

The electrical force on a charge q can be written as the product of q with the 
electric field/~" 

F - qE.  (5.7) 

Let us develop a similar relationship between the electrical energy U of a charge 
q as the product of q with the electrical potential V: 

U qV.  (electrical energy from electricaI p o ~ t i a I ) i ~ 8 i  

From (5.8), the electrical potential V has units of J/C, which defines the volt 
(V). Just as for gravity, only differences in electrical potential energy and electrical 
potential have meaning. Usually, such differences are measured with respect to 
"ground," which is taken to be at zero potential. The electrical potential concept 
has the same advantage as the electric field concept: it is a property of position 
and is independent of the test charge. 

The origin of the term ground lies in early electrostatics experiments, where sometimes 
the experimenter or the experiment was electrically connected to the ground, and there- 
fore was said to be grounded. In a modern building, lightning rods are connected to 
ground, or to electrical appliances or outlets that are grounded. However, ground for 
one building is unlikely to be exactly the same as ground for another building. Even the 
grounds at two wall plugs in the same laboratory can differ by a millivolt or more; this is 
because there are often small electric currents flowing from regions with a (temporary) 
excess of positive charge to regions of a (temporary) excess of negative charge. Therefore 
it is essential to know explicitly what ground is used in making voltage measurements. 
Let two electricians, A and B, use different grounds. If the ground of A is 2 V higher 
than the ground of B, then all voltages measured by A relative to his ground are higher 
by 2 V than those measured by B relative to his ground. However, all voltage differences 
are the same to both A and B. 
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5~3o2 

~=~ds 

A~ ~X, Origin 

....~B qN~ -~F = qE -~"'~B 

Fhand • qE 
A 

(a) (b) 

Figure 5.4 (a) A path from point A to point B, needed 
to compute the difference in electric potential between 
A and B. (b) To obtain/~, a test charge q is held in 
equilibrium by an external source of force, considered 
to be provided by a hand. 

Electrical Potential from Electrical Potential Energy 

Let us obtain an expression for electrical potential energy. Consider moving a 
charge q from A to B. Move it very slowly so that the work done does not increase 
the kinetic energy; then all the work W will go into changing the electrical poten- 
tial energy U. It is a bit like winding up a spring. If our hand does the work, then 

W h a n d  - -  F ~ . ds (5.9) 

Here, d~' represents the tiny displacement vector between two nearby points 
and ~ ' - F  + dF along the path. See Figure 5.4(a). Clearly, d F -  d~', but it 

is convention to use d~" rather than dF. Note that d~ points along the tangent 
vector ~ and has length ds - Ids'l > O, so 

d ~ -  ~ds. (5.10) 

Because q is moved ever so slowly, for all practical purposes q is subject to 
zero net force. See Figure 5.4(b). Thus, in taking this zero net force limit, (5.7) 
yields 

F hand - -  - -  F - - q  E. (5.11) 

Then, equating W h a n d  to the change in electrical energy yields 

W h a n d  - -  U B  - -  U A .  (5.12) 

Thus (5.9) and (5.11) yield 

F E U B  - -  U A  - -  F* hand"  d ~ -  - q  F. . d~. (5.13) 

Using the definition (5.8) in (5.13), the electrical potential difference be- 
tween points A and B is given by 

............................................................................................................................ ........................... ............ i ........ i iili ii ......... i i i i i i i  ili�84 
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Figure 5.5 Information 
needed to compute the 
difference in electric 
potential between A 
and B. 

Equation (5.14) is the basis for the remainder of this 
chapter. With E known all along some path from 
A to B, by (5.14) l i b -  VA can be determined. See 
Figure 5.5. This is the field method, which Maxwell 
calls that of Faraday. (The self-taught Faraday didn't 
really think in this mathematical way since he had 
not studied calculus.) Note that E, previously given 
in units of N/C, from (5.14) has the equivalent units 
of V/m. For (5.14) to be useful, we must establish 
that the potential difference VB - VA is independent 

of the path between A and B. This is done in Section 5.7, after which Section 
5.8 gives a number of examples of how to apply (5.14). 

By the fundamental rules of integral calculus, the left-hand side of (5.14) can 
be rewritten as 

f, B lAB d V d s  V t 3 - V A -  d r -  ~ . (5.15) 

We obtain dV/ds ,  the change in potential per unit length, from the right-hand 
side of (5.14), on using (5.10)" 

VB -- VA -- - E �9 d~ - - E �9 $ds. (5.16) 

Equating the integrands in (5.16) and (5.15) yields 

d v - 
- r - -  E , ~ = - l E l c o s ~ b ,  
a S  

(relationship between e l e ~ i c  field and gra~ents in potential~ ~ i ~ i  

where ~b is the angle between/~ and $. Hence, if the path of d~" is along the 
field lines (/~), then E �9 d~" > 0, and the potential decreases. In other words, field 
lines point from positions of high potential to positions of low potential. The local 
direction of E defines the normal to a local surface called an equipotential; ev- 
erywhere on an equipotential surface, the potential has the same value. The 
negative sign in (5.17) is important; it explains why E points from positions of 
higher voltage to positions of lower voltage. See Figure 5.1, where the lines that 
represent surfaces of constant potential are drawn with thicker lines than the 
electric field lines. Section 5.5 gives a more detailed discussion of equipotential 
surfaces, and Section 5.9 shows how to use (5.17) to obtain/~ from a knowledge 
of V. One advantage of the potential V is that it is a scalar from which the vector 
E can be obtained. 

E s t i m a t e  of ~ from drawn equipotentials 

In Figure 5.1, if the equipotentials are at 10 V and 8 V, and are separated 
by 5 cm at the position of the/~ symbol, estimate 1/~1 midway between the 
equipotentials. 
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Solution: The two equipotentials have a voltage difference A V = 2 V and a sep- 
aration As -- 0.05 m. Then, by (5.17) 

I E I -  IdV/dsl  ,~ IAV/zXsl = 2 V/0.05 m = 40 V/re. 

~ Estimate of ff from the electrical potential 

Joan has been given the rule that  V ( x )  - 2x  3, where V is in V and x is in m, 
and she is trying to find/~ at x = 1 m. We tell her that  we can estimate it 
from V(1.1) and V(0.9). How do we do this? 

Solution: First, we compute that, on the planes x = 1.1 and x = 0.9, V(1.1) = 
2.662 V and V(0.9) = 1.458 V. Thus, as in the previous example, we have two 
equipotentials. Since the electric field points from the position where the voltage 
is high (x = 1.1 m) to the position where the voltage is low (x = 0.9 m), we imme- 
diately can tell her that the electric field points to the left, along -)?. To estimate 
I EI at x = 1 m, we use (5.17). First, we take d~, and thus ~, along )?, corresponding 
to ~b = 180 ~ in Figure 5.5. Then (5.17) gives us d V / d s  = -IEI  cos~b - IEI. But 

d v  

-Z;s 
AV 

 2Ts 
_ (2.662 - 1.458)V = 6.02 V/m. 

0.2m 

Hence we tell her that I/~l - IdV/dsl  ~6 .02  V/m at x = 1 m. In Section 5.9, we 
will show how to calculate/~ exactly. 

~ Estimate of VB from VA and ff in region between nearby 
points A and B 

At point  A, let V A -  15.2 m V  ( m V - m i l l i v o l t s - 1 0  -3 V) and let / ~ -  
(3 )? -  43)+ 5~) N/C. Estimate VB, where B is separated from A by a small 
distance r B -  ~A-d~ ,  with d s -  Ids ' l -  1 m m  and dk" is along ~ - - 0 . 6 ) ?  + 
0.643? - 0.48~. 

Solution: We solve this by first using (5.17), which gives 

d V / d s  - - E  �9 ~ - 6.76 N / C -  6.76 V / m ,  so d V  ,~ ( d V / d s ) d s  - 6.76 mV. 

Then, since points A and B are close to each other, we can rewrite (5.15) as 
V ~ -  V A -  d V  (we approximate the integral as only one term). Therefore we 
have VB = VA + d V  = 21.96 mV. 

~ Numerical integration with a spreadsheet 

Indicate how to use a spreadsheet to compute  VB - VA. 

Solution: Equation (5.14) requires/~ all along a path from A to B. First break 
up the path into a large number N of small steps dsi = 2~idsi (e.g., N -  100, and 
1 < i < 100), the first of which begins on A, and the last of which ends on B. 
These numbers go into column A of the spreadsheet. Then determine (perhaps 
by employing elves), for each element i of the path, the x-, y-, and z-components 
of dsi = 2~idsi, or dsi and the three values for ~i. To be specific, let us do the latter. 
Then, in column B put dsi, and in columns C to E put the three components of 
~i. In addition, for each element i, determine the three components of El, which 
are put into columns F to H. Column I contains - E i  �9 ~i, and column J contains 
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Table 5.1 Spreadsheet for calculation of potential difference 

c o E F 6 i 
7[ 7 [ : [ [  

i dsi Six Si x Siz Eix Eiy Eiz #, �9 ~ - -#  �9 ~ds 
1 1.0 x 10 -3 -0.6 0.64 -0.48 3 - 4  5 -0.676 0.676 x 10 -3 

dVi - - # , i "  sidsi. The sum over column J then yields VB -- VA. (See Table 5.1, 
where the entry is taken from Example 5.5.) We should also repeat the calculation 
with a finer partition of the path length, to check on convergence. 

If we know the positions of all the charges, we can compute E along the path 
from A to B, rather than having to measure it. 

5,3,3 Electrical Potential  Due to a Uniform Electric Field 

Consider a region of space in which there is a uniform electric field E - -E:9.  
See Figure 5.6. 

Such an electric field can be produced in an infinite variety of ways. One is 
to have a sheet of positive charge above the region; another is to have a sheet 
of negative charge below the region. In (5.14), with VA = 0 corresponding to 
y' = O, and VB = V corresponding to y' = y, we have VB -- VA ~ A V = V. With 
d J  = ~,dy', (5.14) becomes 

f0 y f0 y A v -  v -  - ( - E S , ) .  ( p d y ' )  - ~ d y '  - E y .  (uniform electric field) 

(5.18) 

/ 
V=Ey  

/ 
V=O" 

E= Ey 

y = 0  

Figure 5.6 Two equipotentials 
for a region where the electric 
field is uniform. 

This is very like the case of a uniform gravita- 
tional field. By (5.18), moving toward the re- 
gion of higher electrical potential (larger y) is 
opposite to the electric field. This is true in gen- 
eral, as follows from (5.17). For E - 104 N/C  
and y - .002 m, (5.18) gives V = 20 V. (If we 
had taken VA = --5 V, then (5.18) would give 
VB -- V = 15 V.) The equipotentials here cor- 
respond to constant values of y; they are planes 
that  are perpendicular to the electric field. 

5.4 

5.4.1 

Some Applications of Electrical Potential 

Electrical Conductors Are Equipotentials 

An immediate application of the definition of electrical potential can be made to 
the properties of electrical conductors in equilibrium. Consider a penny (made 
of copper, a good conductor) that  is in equilbrium, and let the point A on its 
surface be at 5 V relative to ground. What  can be said about the voltage at any 
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other+point B of the penny, either on the surface or in the interior? Because 
/~ - 0 within the material of the conductor, by taking a path that goes through 
the material from A to B, (5.14) implies that VB - VA - 0, so VB - VA-  5 V. 
That is, the entire volume of the penny (including its surface) has the same 
potential. Thus the surface of the penny is an equipotential, at 5 V. Indeed, in 
equilibrium, the entire volume of an electrical conductor has the same potential 
as the surface. Moreover, if the conductor has a cavity, and there are no charges 
within the cavity, then the potential within the cavity is the same as at the 
surface. 

.Energy Conservation Using Electrical Potential Energy 

Although potential is an abstract concept, energy is more concrete; hence, if 
there is a need to make electrical potential less abstract, (5.8) can be used to 
obtain electrical potential energy. 

For a particle of charge q acted on only by electrical forces, conservation of 
energy takes the form: 

. iJii J ii!i!  iiiiiiiii`iiii. !i.ii.ii{. .iii iii!ii!iiiiiii  ii .iiiiii.i.i{  i ii.i    iiii iiiiii.ii . . ii{.ii i i  ii  iiii!{ ii i}iiii}i.i!i! iiii iiii i iiiii i i! }i.i! {.!i.ii   i ii  i i!iiiii iiii.iiiiii !  

iiiiiiiiiiii!!i !iiii!ii!iiiiiiiiiiiiiiiii!iiiiiiiiiiii !iil ii!iiiiiii!ii!iiiiiiiiiii! iiiiiiiiii!iii!iiiiiii!!ii ililiiiiii! •iiiiiii!ii!i•!!iiii•iiiiiiiiiiiiiiii•iiiiiiiii•iiiii••iiii!•••!•ii•iiiiii!ii•iii iiiiiiiiii    Niiii  a  N!! iiiiiiiiii i i  i 
where V is the electrical potential, and q V is the electrical potential energy. 

To be specific, consider two conductors of arbitrary shape (e.g., two alu- 
minum, paint-sprayed rubber ducks; see Figure 5.7), connected by a 12-volt 
battery, so VB = VA + 12 V. Each of these conducting ducks is an equipotential. 
An electron initially at rest near the duck connected to the negative terminal (A) 
will move toward the duck connected to the positive terminal (B). To calculate 
its velocity on hitting the positive side, employ (5.19) in the form 

1 2 1 m v  2 + qVB -~mvA + q VA-- -~ (5.20) 

Figure 5.7 An electron moving between two 
conductors held at different electrical potentials 
by a 12 V battery; the large plate is positive, the 
small plate is negative. 
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By setting vA=O, V A - V B = - 1 2 V ,  q = - e = - l . 6 x 1 0  -19C, m = 9 . 1 x  
10 -3~ kg, (5.20) yields that vB - v/2e(VB - V A ) / m -  2.05 x 106 m/s. The en- 
ergy method cannot predict how long it takes to cross from A to B. 

Correspondingly, measurement of the change in kinetic energy of a charged 
particle in going from A to B permits deduction of the change in its electrical 
potential energy and in its electrical potential. 

~ Charged dust attracted to a charged duster 

A piece of dust with charge Q- -  - 8 x 10 -9 C and mass M -  0.04 g is at 
rest at point ,4_ It is attracted to a charged duster, and when it hits the duster 
at point B, it is moving with a speed of 50 cm/s. Determine the voltage 
difference V A -  liB. 

Solution: Using (5.20), with VA = 0 and q -+ Q, we find that Q V A -  �89 2 + 
QVB. Thus 

m 2 VA--VB=7-QvB= 0.04 x 10 -3 kg 
(2)(-8 x 10 -9 C) 

(0.5 m/sec) 2 - -625 V. 

Note that the negative charge Q should be attracted to a position (B) with a 
more positive potential than where it starts (A). Indeed, B has a higher potential 
than A by 625 V. 

5~4o3 A Voltage Electrometer 

Section 2.4 discussed a charge electrometer, where from measuring a repulsive 
electrical force the charge can be deduced. We now discuss a 19th-century voltage 
electrometer, similar to that used by Kelvin, where from measuring an attractive 
electrical force the voltage can be deduced. Modern voltage electrometers do 
not have such a transparent construction. 

Consider two conductors initially at voltages V1 and �89 where V2 > 111. Also 
consider two conducting disks of radius R and area A - 7 r  R 2, concentric with 
each other at small separation d << R. On connecting the conductors to the disks, 
as in Figure 5.8, the disks obtain equal and opposite charges, with positive charge 
at the higher-voltage plate. If the conductors are large enough, the disks do not 
draw off much charge. Hence the voltages and charges of the disks will be V1 

Figure 5.8 A voltage electrometer to measure voltage 
differences between two conductors A and B. The 
conducting disks must take up only a small amount of 
the charge on either conductor, and thus must be 
relatively small compared to the conductors. 
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and - Q ,  and �89 and Q. (The disks in Figure 5.8 are comparable in dimension 
to the conductors to which they are connected, and thus actually would draw 
off a relatively large amount of charge. How much charge goes to each disks is 
related to the subject of capacitance, to be taken up in the next chapter.) 

By measuring the force of attraction between the disk-shaped plates, and 
neglecting edge effects (so there will be a uniform electric field of magnitude E 
between the plates), we can deduce their voltage difference V2 - II1. 

Here's how it is done. In terms of the charge density ~ = Q/A  on the pos- 
itive plate, the total electric field has magnitude double that from one of the 
plates. Thus, use of (3.27) gives E = 2(2zrk~) = 4rckQ/A. Then, from (3.27) 
with y = d, 

4rrkd 
z x V-  E d -  ~ Q .  (5.21) 

The force magnitude F - I/~l on the positive plate is the product of its charge 
Q and the electric field magnitude E_ - 2Jr kcr due to the negative plate. Then, 
using (5.21), 

F -  Q E _ -  Q ( 2 J r k ~ ) -  2Jr kQ2 = (A V) 2 A. (5.22) 
A 8Jrkd 2 

On measuring F and A, use of (5.22) yields A V. For A = 4 cm 2 and d = 0.7 mm, 
A V = 150 V gives F = 1.444 x 10 -8 N. The sensitivity can be increased signifi- 
cantly if d can be made very small. 

For more general plate geometries F = c~(A V) ? applies, but the proportion- 
ality constant ~ typically cannot be calculated easily. On the other hand, if F and 
A V both can be measured by some other means, this proportionality factor can 
be deduced, and thus the voltage electrometer can be calibrated. For example, if 
F = 54 nN when AV = 98 V, then ~ = F / ( A V )  2 = 5.62 x 10  -12 N / V  2. A later 
measurement of F that gives F = 23 nN then corresponds to A V = 63.4 V. 

5~ Equipotential Surfaces and Electric Fields 

The direction of/~ defines the local normal to a surface. By (5.14), for d~' along 
that surface (i.e., perpendicular to E), the potential does not change. Hence, such 
a surface is an equipotential. See Figure 5.1, which depicts, of the two directions 
perpendicular to E, only the one in the plane; the other perpendicular direction 
is normal to the page. 

5.5.I Equipotentials from Electric Fields 

For a sheet of charge the equipotentials are planes, since a plane is traced out 
by moving in the two directions perpendicular to the normal to the sheet. See 
Figure 5.9(a). For a line charge the equipotentials are cylinders, since a cylinder is 
traced out by moving in the two directions perpendicular to the radius vector. See 
Figure 5.9(b). For a point charge the equipotentials are spheres, since a sphere 
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Figure 5.9 Electrical potentials and field lines" 
(a) for uniform electric field; (b) for cylindrical 
symmetry. 

is traced out by moving in the 
two directions perpendicular to 
the radius vector. In these figures, 
the equipotentials have been 
drawn with thick shaded lines, 
and the field lines have been 
given arrows. 

If there is a preexisting equi- 
potential, and a thin, neutral con- 
ductor has the same shape and 
position of that equipotential, 
then the thin conductor does not 
disturb the potential. This is be- 
cause charge rearranges on the 

thin conductor so that the field lines enter negative charges on one side and 
leave equal and opposite positive charges on the other side. Thus any of the 
equipotentials in Figure 5.9(a) and Figure 5.9(b) could correspond to thin con- 
ductors in the shape of a plane or a cylinder, respectively. 

Here are two simple examples of field lines and equipotentials for a dis- 
crete number of charges: the dipole pair +q (whose field lines were given in 
Figure 3.19a) shown in Figure 5.10(a), and the two equal charges q (whose 
field lines were given in Figure 3.20) shown in Figure 5.10(b). In order to avoid 
clutter in these and some figures to follow, not all field lines have been given 
arrows. 

5.5.2 Electric Field Lines from Equipotentials 

It is also of interest to show the field lines and equipotentials for the interior 
of a conducting cylinder of square cross-section, whose sides are at different 
potentials. (Note: In a technical sense, a cylinder can have any cross-section at 
all, but each cross-section must be the same.) In that way, we can get a feeling 
for the surface charge density, both in sign and magnitude. See Figure 5.11 for 
three examples. In each case the field lines are normal to the conducting surfaces, 

Figure 5.10 Electrical potentials and field lines. (a) Equal and opposite charges. 
(b) Equal charges. 
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Figure 5.11 Electrical potentials and field lines for 
geometries with symmetry along the axis normal to 
the page. The conductors are depicted as the sides 
of a square, with gaps separating regions of different 
potential. Field lines originate on positive charge 
and terminate on negative charge, and point from 
regions of high potential to regions of low 
potential. 

and point from positions of higher potential to positions of lower potential. A 
higher density of field lines implies a higher field magnitude I/~ I. 

Figure 5.12(a), shows the field lines and equipotentials near the edges of two 
plates with equal and opposite voltages. 

Finally, Figures 5.12(b) and 5.12(c) show two sets of field lines and equipo- 
tentials for the same geometry. However, the plate voltage differences in Figure 
5.12(c) are five times those for Figure 5.12(b). By ]E] ~ AV/As ,  the associated 
electric fields are five times those for Figure 5.12(b). Note that, in Figure 5.12(b), 
the electric field strength grows on moving from point d to point a because the 
voltage difference is fixed at 5 V but the plate separations As decrease on moving 
from field line d to field line a. 

5.5~3 Maxwell's Trick: Obtaining Surface Charge 
for Conductors with Special Shapes 

In general, it is extremely difficult to obtain the charge distribution on the sur- 
faces of a given a set of conductors. Maxwell found a useful trick to design 
conductor shapes for which the charge distribution can be determined. 
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Figure 5.12 Electrical potentials and field lines for 
geometries with symmetry along the axis normal to the 
page. (a) Field lines and equipotentials near the edges of 
two plates with equal and opposite voltages. Parts 
(b) and (c) are related to Figure 5.11 (c). 

Figure 5.13 Electrical potentials 
and field lines for conductors with 
equal and opposite charge. The 
actual surfaces chosen correspond 
to equipotentials taken from 
Figure 5.10(a). 

First, choose a set of point charges, 
and draw a set of equipotentials for those 
charges, using the theory developed in this 
chapter. Let us use the dipole equipoten- 
tials of Figure 5.10(a) as an example. Next, 
arbitrarily choose two equipotentials, and 
then make real conductors in their shapes, 
giving them charges equal to the sum of 
the point charges they are to enclose. Now 
remove the point charges. For example, 
Figure 5.13 shows two equipotentials, one 
surrounding the positive and the other sur- 
rounding the negative of the dipole. Here is 
how to find the charge density at any point 
on the surface of one of the real conduc- 
tors. From the original point charges find 
the electric field at that point; this will 
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equal the electric field iou t just outside the conductor. Then the surface charge 
is obtained from (4.23) of the previous chapter, 

E out" h 
Cs - 4;rk ' (5.23) 

where fi is the outward normal to the conductor. 
As described in Section 4.11, this trick was employed by Kelvin for the specific 

case of two point charges +q and their midplane at V -  0, but apparently it 
was first stated in full generality by Maxwell. Note that for an individual point 
charge the field lines are normal to it. Thus a point charge may be thought of as 
an infinitesimal conducting sphere. 

5.8 Point Charges: Electrical Potential Energy 
and Electrical Potential 

Individual point charges lie at the heart of the action-at-a-distance viewpoint. We 
will study the case of a single charge, and then use the principle of superposition 
to obtain the general result. 

5.6.1 Potential Due to a Single Point Charge 

Consider a point charge Q at the origin. See Figure 5.14. Let V -  0 at infinity, 
taken as the point A in (5.14), and let V~ - V at the arbitrary position ~, taken 
as the point B in (5.14). Then V~ - V ~ -  V - 0  = V(~). To avoid integrating 
from ec to r, switch the limits of integration and include a sign change. Then 
(5.14) becomes V~ - VA-- f d  E . d~, w i t h / ~ -  (kQ/r2)f and d g - f d r ,  so 

l ~ 1 - 1 1 ~  kQ 
- k Q  ~ dr - kQ. ~ = ~ .  Qa t  origin 

r r r 

(5.24) 

For Q at r0, we have 

i N i i  ii i i !i !i i!i 

The equipotentials are concentric spheres centered about r0. For example, if 
k Q -  10 V-m (corresponding to Q -  1.1 x 10 .9 C), the concentric sphere with 
R 0 -  .01 m is an equipotential at V -  1000 V. 

Qat origin 

T 

Point B to A, at infinity 

Figure 5.14 Point charge Q at the origin, 
and points A (at infinity) and B, for use in 
calculation of the electrical potential due to 
a point charge. 
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Let Q > 0, so E = I~EI -- kQ/r  2. Many students notice that if V = 0  at infinity (V~ =0),  
then (5.24) yields V = Er for the case of the point charge. This is so similar to (5.18) 
for the uniform electric field that they are tempted to conclude that such a relationship 
holds in general. It doesn't. For every other situation we consider, this equation will 
not hold. For example, if there are two charges Q separated by a distance 2a, the 
electric field at their midpoint is zero. See Figure 5.15(a). However, the voltage at their 
midpoint, if V~ = 0 is 

kQ 2kQ v = k Q + .  = 
a a a 

Clearly, nothing like V = Er holds in this case. Likewise, if one of the charges is - Q ,  
the voltage at their midpoint is 

k(-Q) V =  kQ + =0 ,  
a a 

but the electric field is nonzero. See Figure 5.15(b). Again, nothing like V = Er holds. 
As we will see, ~E and V are related in all cases, but only for the cases of a sheet charge 
and a single point charge can the relationship appear as simple as V = E r or V = E d. 

Ve0, E=O V=0, Ee0  

(a) (b) 

Figure 5.15 Geometries for calculation of electrical 
potential. (a) Two equal source charges Q1. (b) Two equal 
and opposite source charges + Q .  

5.6~2 Potential Energy of Two Point Charges 

Except for the absence of a minus sign, (5.24) is much like the corresponding 
gravitational case Vg - - G M / r  for a point source M. Note that a positive charge 
produces a positive electrical potential, and a negative charge produces a negative 
electrical potential. The direction toward higher potential (either toward the 
positive charge or away from the negative charge) is opposite the direction of 
the electric field (radially outward for the positive charge, and radially inward 
for the negative charge), as expected from (5.17). 

Combining (5.8) and (5.24) for q in the presence of the potential due to Q 
immediately leads to 

:q.= 

According to (5.26), if two like charges are brought together, the energy increases 
(U > 0), and if two unlike charges are brought together, the energy decreases 
( c<  o). 
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E n e r g y  an a hydrogen atom of electron in 

Let the electron (q = - e )  and proton (q - e) be at a distance of 10 - l~ m, 
which is a characteristic atomic dimension. Find (a) the potential that the 
proton produces at the site of the electron, and (b) the electrical potential 
energy of the electron. 

Solution: (a) The potential that the proton produces at the site of the electron 
is given by V = k e / r -  14.4 V. Thus, the volt is a unit of electrical potential 
that is also characteristic of the electrical potential in the atom. (b) Using this 
V and (5.8), or by (5.26), the electrical potential energy of the electron (which 
is the energy required to take the electron infinitely far away from the proton) 
is ( - e ) V = - 2 . 3 0  • 10 -19 J = - 1 4 . 4  eV. Here we use the energy unit of the 
eV = 1.6 x 10 -19 C - V -  1.6 x 10 -19 J. The eV is a unit of energy that is charac- 
teristic of electrical potential energies in the atom. Since the electrical potential 
energy is zero when the electron and proton are infinitely far apart, the electron 
and proton "prefer" to be together, where the electrical potential energy is lower, 
than to be apart. 

~ Energy of two protons in a 4He nucleus 

Let the protons be at a distance of 10 -15 m, which is a characteristic nuclear 
dimension. Find (a) the potential that one proton produces at the site of the 
other, and (b) the energy the system would gain if the protons were separated. 

Solution: (a) V = ke / r  = 1.44 x 106 V. This is conveniently expressed in terms 
of megavolts = MV = 106 V, a characteristic value associated with nuclei, as 
1.44 MV. (b) Using this V and (5.8), or by (5.26), the electrical potential en- 
ergy (i.e., the energy that the system would gain if they were to be separated) 
is e V=  2.30 x 10 -13 J = 1.44 MeV, using the energy unit of the MeV = 106 eV. 
The MeV is characteristic of nuclear energies. The positive electrical potential 
energy means that the protons would "prefer" not to be together, on the basis 
of the electrical potential energy alone. They are held together by an attractive 
nuclear interaction that overcomes the positive electrical potential energy. 

5~176 Potential Energy of Many Electric Charges 

For two electric charges ql and q2, separated by r12 - ] r l  - r 2 ] ,  the electrical 
energy U of (5.26) generalizes to 

ka 
U - .-.1 q2 

- ~ ,  r12 - J r 1  r21. (5.27) 
r12 

This is the energy we would  have to provide in order to bring the charges from 
infinity to this separation. The electrical energy compu ted  as the sum over each 
charge of its charge t imes the potential  due to others gives 

tkq2) 2kqlq2 ql ~ + q2 
r12 r~2 / r12 
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which is twice the correct answer. Hence, to obtain the total electrical energy 
in general, we must perform this sum, and then divide by two. This avoids what 
is called double counting. For the general case, sum over all charges qi and qj 
with separation rij, making sure not to include the infinite self-interaction cor- 
responding to i = j. Thus, 

1 ~ kqiqj 
U - - ~ . .  rij rij - ]ri - rj ]. (5.28) 

For two charges, where i and j can only take on the values i = 1, j = 2 and 
i = 2, j = 1, (5.28) reproduces (5.27). 

~ Energy of a Square of NaCI 

Except in the atomic nucleus, matter is basically held together by electri- 
cal energy. Consider ordinary table salt, NaC1, where an atom of Na has 

N a  

a 

1 

)cl 

C1 ()Na 

Figure 5.16 Part of a salt 
crystal (NaC1). The Na + ions, 
which have lost an electron, 
have a smaller outer shell of 
orbitals. The CI- ions, which 
have gained an electron, have 
a larger outer shell of orbitals. 

11 electrons and 11 protons, and an atom of 
C1 has 19 electrons and 19 protons. Let us 
estimate this electrical energy for a square of 
NaC1. 

In chemistry, it is well known that atoms 
are particularly stable if they contain a num- 
ber of electrons that is one of the closed shell 
values of 2, 10, 18, 36, 54, and 84. For a 
crystal of NaC1, Na gives up an electron to 
C1 so that Na + has 10 electrons and C1- has 
18 electrons, both of these closed shell values. 
For Na + the 10 electrons are outnumbered by 
the 11 protons of the nucleus, so they com- 
press inward to form a compact closed shell 
ion; hence the Na + are drawn as small spheres 
in Figure 5.16. For C1- the 18 electrons out- 
number the 17 protons of the nucleus, so they 
expand outward to form an extended closed 
shell ion; hence the C1- are drawn as large 

spheres in Figure 5.16. (From x-ray scattering off NaC1, it has been deduced 
that the ionic radii a r e  R N a  § ~ 0.095 nm and Rcl+ = O. 181 nm.) 

The closed shell values come about when one applies the rules of quan- 
tum mechanics to study the motion of electrons--subject only to electri- 
cal forcesmin atoms. Within atoms, although the laws describing electron 
motion differ from the laws of ordinary mechanics, electricity still provides 
the interactions that drive electron motion. 

We will find the electrical potential at the site of one Na + ion, and employ it 
to compute the average electrical energy per ion. Since there are two CI- ions 
with charge - e  a distance a away, and one Na + ion with charge e a distance 
x/2a away, by summation over (5.24) the electrical potential at the site of the 
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Na + ion is 

VN~+ 2 k(-e)  he . . . . .  + - ~ .  (5.29) 
a ~/2a 

By (5.8), the electrical potential energy of the Na +, with charge q = e, is thus 

UN~+--qVN~+-- k e 2 ( 2 - - - ~ ) a "  (5.30) 

Each Na + ion has the same electrical potential energy, which is the same as 
for each CI- ion. To avoid double counting, the energy per ion is obtained by 
dividing UNa+ by two. Thus, 

1 ke2(2 - 1 ) 
U/ou--~UNa+-- 2a ~ " 

The total energy U is four times Uion. Applying (5.28) and doing the sum over 
all 12 terms with i 7~ j gives the same U = 4U/o,. 

Taking a = 10 -1~ m and e -  1.6 x 10 -19 C yields Oion ~-, -1 .49  x 10 -18 J. 
In units of the electron-volt, or eV, this is -9 .3  eV. A negative potential energy 
means that the ions "prefer" this configuration to being separated from one an- 
other at infinity. A typical value for the binding energy of an ionic crystal is a 
few eV. 

5~ Electrical Potential Is Path Independent 

We now prove that the electrical potential difference between any two points 
has the same value for all paths between the two points. This implies that the 
electrical potential is uniquely defined. Thus, on taking a charge q around any 
closed path, the electrical force does no work on q. 

First, consider two paths between points A and B, as in Figure 5.17(a). To 
be specific, let the source of electric field be a point charge Q, at respective 

B B 

A d~_ A 
(a) (b) (c) 

Figure 5.17 Electrical potential between two points A and B is path 
independent. (a) Two paths from A to B. (b) For the case of a single 
source charge (not shown), decomposition of displacement ds' into parts 
along the radial direction and normal to the radial direction. (c) The 
voltage change on going from A to B along 1, and then from B to A along 
2, is zero. This is equivalent to saying that the electric circulation 
F E = f E �9 d~ along such a closed path is zero. 
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distances rA and rB from A and B. Since Q makes an electric field that points 
radially outward, by (5.14) displacements d~" normal to the radial direction cause 
no change in potential. More explicitly, writing the displacement dg in terms of 
components fdr along f and d~'• normal to f, f-d~'• = 0. See Figure 5.17(b). 
Thus, for either path, 

VB - VA -- -- (~) . (~dr + dg• 

- - k Q  dr + O =  k r = 

rA 

k Q  k Q  

rB rA 
(5.31) 

Although each path has a different set of f at intermediate steps of the integra- 
tion, the result is the same for each path. This proves that, for a point charge Q 
as source, the electrical potential is path independent. 

Now we invoke the principle of superposition: since the electrical potential 
is path independent for one point charge, it must be path independent if it is the 
sum of the potentials of many point charges. Therefore the electrical potential 
is path independent in general. 

Another way to state this result is to consider what is called the circulation 
F~ of E around a closed path. It is defined by 

f dFE 
r~ - T s  dS, (5.32) 

where the circulation per unit length dF~/ds is defined as 

dFE 

ds 
-- E �9 9, (5.33) 

with ~ the tangent vector. In (5.32), the circle around the integral sign denotes 
that the path is closed. Comparison of (5.17) with (5.33) shows that 

dF~ dV  

ds ds " 
(5.34) 

Water swirling down a sink has both fluid circulation and fluid flux. Water 
swirling about a glass has only a fluid circulation. Water at rest has neither. 

In computing the circulation around a path, we may think of the path as 
beginning at A, reaching B along path 1, and then returning to A along path 2. 
See Figure 5.17(c). Because of (5.34), (5.14) yields -(VB - VA)I for the first part 
of the path, and --(VA- VB)2 for the second part of the path. Because V~ - VA 
is path independent, (5.32) and (5.34) yield 

rE - - - - ( l i b -  VA)I - (V,4- VB)2 = - - ( V B -  VA)I + ( V B -  VA)2-  O. (5.35) 

That is, the circulation of any electric field due to static electric charges is zero. This 
explains the last field-line rule in Chapter 3: the field lines due to static electric 
charges do not close on themselves. If they did, then for a path along the field lines 
dF~/ds would always be positive, and thus Fe for this path would be positive. 
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Figure 5.18 Geometry for a closed path, to be used with an electric 
field with nonzero circulation. Such an electric field cannot be 
produced by static electric charge. 

There are many vectors besides E due to electrostatics for which the circula- 
tion can be nonzero over certain paths: (]) a force F that is frictional in nature; 
(2) the magnetic field (whose symbol is B) surrounding a wire that carries elec- 
tric current, if the integral is over a path that encloses the wire; (3) the electric 
field E induced by a time-varying magnetic field (to be discussed in Chapter 1 2). 
An example of such an E field is given in Figure 5.1 8. This has a field line that 
closes on itself, and because electric current flows along field lines, this can cause 
electric currents to circulate. It has a nonzero circulation and does not correspond 
to a uniquely defined electrical potential. 

~ An E that cannot be due to electric charges at rest 

With C a constant having units of V/m 2, let 

- C~ x i f )  - C~ x (xYc + yS~ + z~) - C(x57 - y~), so I/]1 - C J x  2 + y2. 

Relative to the circle in Figure 5.1 8, this points along the tangent. Take d~ 
to circulate counterclockwise, which is along E. Compute the circulation for 
that circle (taking it to have radius a and to be centered at the origin). 

Solution: By (5.33), 

d F e / d s  - E, . d - ~ -  IE, lds cosO~ = Cv/x  2 § y2ds - Cads, 

SO 

F e - f ( d F e / d s ) d s = C f ( a ) d s = C a f d s = C a ( 2 ; r a )  = C(2zra2). 

Since the circulation is nonzero, this/~ cannot be due to electric charges at rest. 

5.8 Calculating V from 

Here are a few more examples (besides the uniform electric field and the point 
charge) that use the field viewpoint to determine V from E via (5.1 4). As dis- 
cussed in Example 5.2, b7 can be obtained by the methods of Chapter 3 (either 
via measurement or calculation) or, when there is enough symmetry, by the 
methods of Chapter 4. Thus, this section brings together concepts from more 
than one chapter. 

With this field viewpoint, initially the charges are in place, producing an 
electric field/] everywhere, and the observer is at A_ The observer then moves 
to B, integrating over - E  �9 d~ to obtain the change in potential on going from A 
to B. 
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(a) (b) 

Figure 5.19 (a) Ex = - 2 x .  (b) V ( x )  - x 2, with V(0) - 0. 

~ A  problem one in dimension 

Let E point only along the x-axis, with Ex - - 2 x .  See Figure 5.19(a). (An 
electric field that  varies linearly in a region of space is produced by a slab of 
constant charge density/9 and is relevant to depletion layers in semiconduc- 
tors, as discussed in Section 4.11 .) Let V(0) = 0 at x = O. Find V ( x ) .  

Solut ion:  Take B to correspond to x, and A to correspond to x = O. Using d~" = 
Ycdx, (5.14) yields 

/o x /o x V ( x )  - V(O) - - E x d x  = 2 x d x  - x 2. 

Since V(0) = O, this gives V ( x )  = x 2. See Figure 5.19(b). The equipotentials are 
planes normal to the x-axis. 

~ Ring of charge 

Consider a charge Q that  is uniformly distributed over a ring of radius a that 
is centered at the origin, its normal along the x-axis. See Figure 5.20. Find V 
along its axis, using (5.14). (To find V off the axis requires either advanced 
mathematical  methods or numerical methods as discussed earlier.) 

Solut ion:  In Chapter 3,/~ was determined for a restated version of this problem. 
There the axis was z, and the charge was given in terms of the uniform charge 
per unit length ;~ as Q=)~(2rra) along the x-axis. See (3.29). Here is a brief 
review of the calculation. Recall that a charge dq produces an electric field d/~ = 
( kdq / r2 )~  of magnitude I d/~l - k d q / r  2. On the x-axis, the distance r - (a 2 + 
x 2) ]/2 is constant, and the x-component of the unit vector along the observer 

Q 

x 

dq / r= (a2 +x2) 1/2 

Figure 5.20 Ring of charge, for use in calculating the 
potential as a sum over the potential d V  contributed 
by each bit of charge dq. 
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is (r)x = cos0 = x / r ,  also a constant. Hence, by symmetry, the only nonzero 
component of the electric field is given by 

f f fkdq Ex = dEx - IdEl(~)x = - 7 -  cos0 = 7y dq = r3 . (s.36) 

Because there is a finite amount of charge (unlike the case of a uniformly 
charged infinite sheet), we may set V = 0 at infinity (point A) without running 
into mathematical difficulties. Then the potential along the x-axis at x (point B) 
is given by 

s v ( ~ )  - voo = V ( x )  - - ~ . d ~  

fx fx - ~ .  ffcdx) = E~dx = (a 2 + x2)3/2 dx. (5 .37)  

This integral is done by using r 2 = a 2 + x 2. Then 2rdr = 2xdx,  or xdx  = rdr, so 
(5.37) becomes 

V ( x ) -  fr ~176 d r =  f r ~ 1 7 6 1 7 6 1 7 6  r = r- . r - v / a 2 + x 2  (5.38) 

Note that from (5.38) alone we cannot draw surfaces of fixed potential, or equipo- 
tentials, because we have V only on the x-axis, not on a surface. 

Concentr ic  shells with and cylindrical equal 
opposite charge 

Consider two infinite, concentric cylindrical shells of radii, a < b, with charge 
per unit length )~ on the inner cylinder and charge per unit length - ~  on the 
outer cylinder. Find the potential difference between the cylinders. 

Solution: To find the electric field between the cylinders, apply Gauss's law with 
a Gaussian surface that is a concentric cylinder of length L and radius r. See 
Figure 5.21. For a < r < b, 

ErAflu x = Er(2zrrL) = (4rrk)Qenc = (4Jrk))~L, 

Figure 5.21 Finite section for two concentric cylindrical 
shells, with charge 4-X. 
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s o  Er = 2 k k / r ,  and/~ = Err. Since the positively charged inner shell should be 
at the higher potential, in applying (5.14), take B to correspond to r -- a and A 
to correspond to r = b. Then, with d~ - f dr,  

i a fa l I V(a)  - V(b)  = - E . d~ = (Err')" ~dr = dr  = 2k)dnr = 2k)dn-.  
t" a a 

(5.39) 

Since/~ is radially outward, the equipotential surfaces V -  const ,  which are nor- 
mal to/~, are concentric cylinders. More generally, V(a)  - V ( r )  = 2 k k l n ( r / a ) .  

Note that ground has not been specified. It could be on either cylindrical shell. 
Since Qenc = )~L - kL = 0 for a concentric Gaussian surface that is outside the 
outer shell, the electric field is zero outside the outer shell. Therefore the outer 
shell is at the same potential as infinity, or V ( b ) =  V(cx~). If there were only a 
single cylindrical shell, the voltage difference between it and infinity would be 
infinite, due to the infinite amount of net electric charge. 

This example is very comprehensive: it starts with electric charge (Chapters 1 
and 2), moves to electric field (Chapter 3, which it evaluates (because of the high 
degree of symmetry) by Gauss's law (Chapter 4), and then considers and evaluates 
a potential difference (Chapter 5). 

~ Spherical ball 

The previous chapter  showed that, for any charge distribution with spherical 
symmetry, Gauss's law applied to a concentric spherical Gaussian surface 
yields (4.15), E r - - k Q e n c / r  2. Consider a ball of radius A, with a uniform 
volume density of charge Q. See Figure 5.22. Let Voo-  O. Find V ( r )  for 
(a) r > a, and (b) r < a. (c) Show that  V(0) = 1.5 V ( a ) .  

So lu t i on :  (a) Outside the ball (r > a), the electric field is the same as for a 
point charge. On setting V~ = O, the result (5.24), V ( r ) =  k Q / r ,  applies. (b) 
For r < a, however, the electric field is less than for a point charge because Qenc 
is proportional to the volume of a sphere of radius r :  Qenc/Q--r3/a 3. Thus 
Qenc "-- Q ( r / a )  3, so Er ~ kQenc / r  2 - k Q r / a  3. See Figure 5.23(a). Then, with 
d~ = ~dr, 

l r  l r  kQr . 
V ( r )  - V (a )  - - (Err')" ~dr = - - - j - a r  

_k___Qlr 2 r 
a 3 2 

a 

k Q r  2 - a 2 

a 3 2 
(r < a) (5.40) 

Figure 5.22 Uniform ball of charge. 
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r < a  r > a  

Point\ i . . . . . .  ~ r'oln'c, Dall, 
- ' ~  : and shell 

Shell a r 

/ ' < a  / ' > a  

Point[ 
\ / I Point, ball, 

B~ll ~( , and shell 

Shell/ ' , ~  
I 

(a) (b) 

Figure 5.23 Comparison between point charge, uniformly charged ball, 
and shell of charge. (a) Electric field, which is radial. (b) Electric 
potential. 

Since V(a) = kQ/a ,  this becomes 

k Q r  2 - a 2 3 k Q  k Q  r 2 
V(r) = V(a) a3 2 = 2 a a 2a 2" (r < a)  

See Figure 5.23(b). The equipotentials are spheres. 
Note that V(O)= 1.5V(a). If V ( a ) -  100 V, then V(O)-  150 V. 

(5.41) 

• Spherical shell 

Now consider that the charge Q is on a spherical shell of radius a, which is 
how charge would distribute on a conductor of outer radius a (and arbitrary 
number and shape for the inner cavities). Let V~ - O. Find V(r) for (a) r > a, 
and (b) r < a. 

Solution: (a) For r > a, the electric field is like that of a point charge, just as for 
the ball of charge. Hence, outside the shell and on the shell the potential is the 
same as that for a point charge: V = k Q / r .  (b) For r < a, the electric field is zero 
so that the electric potential does not change on moving from the surface of the 
shell to the interior. Hence the potential within the shell takes the same value as 
on the outer surface, k Q / a .  See Figure 5.23(a) and Figure 5.23(b). 

V as a Sum o v e r  Point  Charges  (Act ion-at-a-Distance 
Viewpoint) 

The action-at-a-distance viewpoint, as indicated by the quotation from Maxwell 
at the beginning of the chapter, involves a sum over the effects of individual 
point charges. This is equivalent to starting with the charges at infinity and the 
observer at F. Then the charges are moved in, one by one, from infinity, and the 
observer adds up each of their contributions to obtain the total potential at F. 

5,9~I General Case with a Spreadsheet 

Consider the potential V at observation position F due to a set of point charges 
qi at positions Fi. Let ~ i  qi be finite so that V~ may be set to zero. To find V(F), 
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s u m  over  (5 .24)  to  ob t a in  

If t h e  cha rge  is c o n t i n u o u s l y  d i s t r i bu t ed ,  w i t h  dq at ~ ', t h e n  an in tegra l  m u s t  be  
p e r f o r m e d  over  t h e  c o n t r i b u t i o n s  d V -  kdq/r d u e  to  each  e l e m e n t  of  cha rge  
dq" 

j . . . . . .  : ?  : : :: : : / ~ : ~ i :  : : i  :~:? 15 :i(:Ti:::i:::i:::::::i ~, 

�9 �9 �9 �9 �9 �9 �9 �9 " k d q  ~ ~ - ,  �9 ~ ~ ~ i: ~ i~5~,,i~,iii,,i~i:~iii~i~ :,~,si,~iiii~i~,~ii~,i~:~ ~ ~ ~5~:~i~i~i~i~i~i~i~i~i~:~iii~ii!~iii~i~i~i~!~i~i~i~i~i~!ii~i~!i~iii~i~i~i 
V ( F ) =  ~ ,  . R = ~ '  r .  ~:~. 

. . . . . . .  . . . . . . . . .  . . . . . .  . . . . . . . . . . . . . . . . . . . .  : .................................................................. . . . . . . .  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  . . . . . . .  �9 . . . . . . . . . . .  . . . . . . . . . . .  

. . . .  (~!ectr ica!  p o t e n t i ~  o f  con t i  s c h ~  ~ s  

If t h e  in tegra l  c a n n o t  be  p e r f o r m e d  analyt ical ly,  it  can  be  p e r f o r m e d  us ing  a 
s p r e a d s h e e t  ( and  p e r h a p s  s o m e  elves) .  Jus t  as in t h e  p r e v i o u s  chap te r ,  first b r e a k  

up  t h e  cha rge  d i s t r i b u t i o n  in to  a 
large n u m b e r  of  t i ny  pieces.  See 
F igure  5 .24.  C o l u m n  A of  t h e  
s p r e a d s h e e t  in Table  5.2 serves to  
label  t h e  pieces.  For  e ach  e l e m e n t  
i, d e t e r m i n e  dqi ( p u t  th is  in col- 
u m n  B) and  t h e  t h r e e  c o m p o n e n t s  
of  its m i d p o i n t  ~ '  - ~i ( p u t  th is  in 
c o l u m n s  C to  E). W i t h  t h e  t h r e e  
c o m p o n e n t s  of  t h e  o b s e r v a t i o n  po-  

Figure 5.24 Geomet ry  for numerical  s i t ion ~ s t o r e d  e l sewhere ,  c o m p u t e  
computa t ion  of potential  as a sum over t h e  t h r e e  c o m p o n e n t s  of  t h e  vec-  
dV/for  each charge dqi. t o r  ] ~ i  - ~ i  - ~ ( p u t  th is  in c o l u m n s  

F to  H) .  N e x t  c o m p u t e  Ri - IR i l ,  
w h i c h  is p u t  in c o l u m n  I. Finally, c o m p u t e  kdqi/Ri, w h i c h  is p u t  in c o l u m n  J. 
T h e  s u m  over  c o l u m n  J t h e n  yie lds  V(~).  As  a c h e c k  on c o n v e r g e n c e ,  r e p e a t  t h e  
ca l cu l a t ion  w i t h  a la rger  n u m b e r  of  points .  Th i s  p r o c e d u r e  is m o r e  c o m p l e x  t h a n  
ou r  ear l ie r  scalar  ca l cu l a t i on  for  cha rge  (Sec t ion  1.9), b e c a u s e  t h e  a n s w e r  n o w  
d e p e n d s  on t h e  pos i t i on  of  t h e  observer .  

• Ring of charge 

See Figure 5.20. For a ring of total  charge Q~ and radius a, use the  act ion-at-  
a-dis tance v i ewpo in t  to find V along the  x-axis. 

Table 5.2 Spreadsheet  for calculation of potential  

:: :i:~i:i:: :! i:~i:::::~i!:i~ !i~/i::~ :~i :i~i:::!:: ~::: :::i:: i:~::::i ::::: ~:::i~:: ::ii :::: ill ::i if: :~:ii ~:i: ::i:~i i:ii:: ::ii ::i:i~ iii:: i~i::ii~ iiilii ii i~iiiii iiii~i iiiii:~ii!i:i i~ii~iii:ii~:iii i~ii:iil iii iii!ii!ii iiii!i ilii~ iil iii ~i iii ii!i:i iiii~ii ii~i iiiiiii ii ii~iiiiiii :: ~i:: iiiiill iiiiiiiiiiiiiii!ii iii iiii!ii!iill ill i! ~iiii iiiiiiil ili!iiiiiiiiiiil ilil iiii iii!i iiiii!iiii!iiii iiiiiiii iiii!i!iiiii!ii!!i i!i:i! !iiiii!i iil iiiiiiiii iil ~i~i~i~ii~i~i~!i~i~i:~i~ii~!~iiiiiiiiiii~ii~ii~i~i~ii~ii~ii~ ii:ii:~il :!iiiiiiiiii iili iii ~iilil ii~i i~iii~iiii:!i:i ::ii~ iliii ii~i i~ili~:!i:iiii ilii! iiiiii:ii i~:i~i:ii! ~iii iiiiiill ~iii:!ii:i iii:ii:ii~ii~ii~i~i:i:ii ii:~ii~i:i: iiiii~iiill i~i~ ~iii iiii~:iiiii~iii~i i!~ii iil i~i~ i:iiiill ~:ii i::ii::iii iii:~iiiiiii i i ii:iiiii:iii~i~ i i iilil I ii:i~ iliii~ I iii~ii 

i dqi r~x r'iy r-'iz ~Rix ~Riy ~Riz Ri kdqi/Ri 
1 1.0 x 10 -3 - 0 . 6  0.64 - 0 . 4 8  3 - 4  5 - 0 . 6 7 6  0.676 x 10 -3 
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I I 

I - - ~  

I r 

Y~ 0 

i (l/2)cosO 
2q 0 

Figure 5.25 Electric dipole, for computation of its electrical 
potential. 

Solution: By (5.43), 

V(x) = d V =  -kdq = - dq - - r = v/a 2 + x 2 (5.44) 
r r r " 

This is the same as (5.38), obtained by the field method, which began with E, 
and integrated to obtain V. 

~ Electric Dipole 

Consider an electric dipole consisting of two charges +q, symmetrically 
placed on the y-axis so that  the origin is at their midpoint,  and separated 
by a distance l, as in Figure 5.25. The charges are located at +(l/2)3), so 
the dipole m o m e n t  } has magnitude p = ql, and points from - q  to +q, so 
~ ) -  qlSe. Let the observer be at ~, which makes an angle 0 to the y-axis, 
so ~-3) - cos 0. Find the potential  V. 

Solution: The potential for two charges is obtained by simple addition, summing 
over (5.24) for each point charge with ground taken to be at infinity. With R+ = 

- ( i )( / /2):9 -- ~ T (//2)3), (5.24) yields 

V =  kq kq _- kq(R_ - R+). (5.45) 
R+ R_ R+R_ 

From Figure 5.25, if r >> l, then R+ ~ r q: ( l /2)cos0.  Hence 

R+R_ ~ [r - (l/2) cos0][r + (l/2) cos0] ~ r 2 - (l cos0)2/4 ~ r 2, 

and R_ - R+ ~ l cos 0. We then have 

kql cos O kql~ . 5 1 k [ 2  . ~ ( l ) 
= = - -+ 0 (5.46) 

g - +  r2 r 2 r 3 " r 

Note that V - 0 on the midplane, as well as at infinity. By fixing the value of the 
potential, equipotentials can be obtained for both (5.45) and (5.46). Integrating 
over E along some path to find V, using (5.14), is much too difficult in the present 
case because there is no path along which E is not complex. 

5o10 Calculating E from V 

Equat ion  (5.14) shows h o w  to c o m p u t e  the  potent ia l  difference b e t w e e n  two  
points  A and B if the  electric field is known  along some pa th  b e t w e e n  those  
points. Conversely, if the  potent ia l  is known,  we can find the  c o m p o n e n t  of the  
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E ~ e / B  

d V = V82 V,q - 2 E " ds 

Figure 5.26 Electric field in region between two nearby 
points A and B, for numerical computation of potential 
difference. 

electric field along this path. To see this, rewrite (5.17) as 

-. d V  (5.47) 
E .~ - - d--)-" 

Thus, to find the componen t  of /~  along the (arbitrary) direction $, we mus t  
know how the potential  varies in that  direction. See Figure 5.26. The m a x i m u m  
value o f - d V / d s  is obtained when  ~ is along E. 

~ Point charge 

Show that, at a distance r from a point charge q, Er -- k q / r  2. 

Solution: Here we have V - k Q / r ,  so with $ = ~, (5.47) gives 

Er -- E . ~" = d V  _ d k Q _  k Q  (5.48) 
dr dr r r 2 '  

as expected. Also note that a sphere of radius r is an equipotential so that moving 
along the sphere gives no change in potential, and therefore no component of the 
electric field in the tangential directions. 

• Ring of charge 

Both (5.38) and (5.44) give 

V(x) kQ - ~ ,  r - v/x 2 + a  2 (5.49) 
r 

for a ring of uniform charge distribution. Find Ex on the x-axis. 

Solution: Employ (5.47) with $ = )? and ds = dx. Then 

Ex = E . 2 -  d V  (5.50) 
d x "  

Use of (5.49) in (5.50) then yields 

Ex = - k Q d  (x2 + a2)-l/2 = - k Q ( - 1 ) ( x 2  + a2)-3/2(2x) = kQxr3 . (5.51) 

This is the same result as (5.36). Since V is not known off the x-axis, we cannot 
determine Ey or Ez by this method. 

Sometimes, E or V can be de termined at a point  bu t  not  in the vicinity of tha t  
point. Consider the center of a uniformly charged circular arc, a partial circle. 
Al though/~  can be de termined readily at the center of the partial circle, (5.14) 
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cannot be used to compute  V at the center because E is not known along a path 
from the center to infinity. Likewise, although V can be determined readily at 

- +  

the center of the partial circle, (5.47) cannot be used to compute  E at the center 
because V is not known near the center of the partial circle. 

A more formal way to express the electric field in cartesian components  is 
by a generalization of (5.50). When  all the components  are included, we must  
replace the derivative by the partial derivative. Then 

a v _  _ axV, a v _  _ a v, 
ax ay 

Ez - E . s - a v __ Oz V. (5.52) 
Oz 

Another  way to write this is 

# a v  av _av 
. . . . . .  ( 5 . 5 3 )  

ax Oy az 

is called the gradient operator. To repeat, the minus sign tells us that  E points 
from places of higher voltage to places of lower voltage. 

~ From V to _ff to Q enc (Chapters 1-5 in a nutshell) 

Now return to Example 5.4, where Joan was given V(x) = 2x 3 (where V is in 
V and x is in m), and she wanted to know E at x - 1 m. See Figure 5.2 7 (a). 
We told her that E pointed along -)~, and that I/~1 ~ 6.02 V/re. Now she 
wants (a) /~ exactly. Moreover, she wants to know (lo) how much electric 
charge is within (i.e., enclosed by) a rectangular slab of cross-section 1 m 2 
that has opposite faces at 0.9 m and 1.1 m, and area 1 mx  1 m x0.2 m. 

Solution: (a) By (5.52) or (5.53), since V has no y or z dependence, Ey = 
0 -  Ez exactly. Moreover, Ex =-Ox(2X 3) - - 6 x  2. See Figure 5.27(b). Hence 
Ex - - 6  V/m at x = 1 m. This points to the left, in agreement with our earlier 
conclusion from the direction pointing from higher to lower potential. Moreover, 
it is very close to our earlier estimate of I EI ~ 6.02 V/m. (b) To find the charge 
enclosed by the slab, Gauss's law requires the flux through its six sides. The flux 
through four of the sides is zero because E is normal to those sides. For the 
x - 0 . 9  m side, E~ - - 6 x  2 yields E~ = -4.86 V/m, so E points along -5.  Since 
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the normal also is along -)~, flux is leaving, of amount 

IE~lAflux = (4.86 V/m)(1 m 2) = 4 .86V-m.  

For the x = 1.1 m side, Ex = - 6 x  2 yields Ex = -7.26V/m. Since the normal is 
along )~, flux is entering, of amount 

IExlAflux = (7.26 V/m)(1 m 2) = 7 .26V-m. 

The net flux is 2.4 V-m entering, which counts as negative, so ~ = 
-2.4 V - m  - 4nkQenc. Then Qenc-  -2.12 • 10 -11 C. 

Hence, from a knowledge of the potential, we have found the charge enclosed 
by a specific Gaussian surface. This can be done in general although the calcu- 
lations will be difficult for a complicated surface. This problem is very compre- 
hensive: it starts with voltage (Chapter 5), goes back to electric field (Chapter 3), 
and then uses Gauss's law (Chapter 4) to determine electric charge (Chapters 1 
and 2). You can't get much more comprehensive than this. 

5.I I Connecting Two Conductors, Charge Redistribution, 
and the "Power of Points" 

Section 5.4 established that  electrical conductors are equipotential surfaces. 
Thus, if two conductors are connected to each other, charge will flow one way 
or another, redistributing itself over the surface of each until the two conduc- 
tors come to the same potential. With this in mind, let us connect two distant 
conductors by a wire so thin that  it does not take up a significant amount  of the 

charge from the two conductors. See Figure 5.28. If the initial charges are Q~0) 
and Q~0), and the final charges are Q1 and Q2, then by charge conservation, 
discussed in Chapter  1, the sum of the final charges equals the sum of the initial 
charges, 

QlO)+ Q~O)_ Q1 + Q2. (5.54) 

This gives one condition on the two unknowns Q1 and Q2. Initially, the two con- 
(0) (0) ductors need not have the same potential, so typically V 1 r V 2 . 

The second condition we would not have known until the present chapter. 
Here it is: as long as they are connected, the two conductors (and the wire between 
them) are a single conductor, and thus they are at the same potential. Hence, the 
second condition on the two unknowns is that  the potentials of the two con- 
ductors satisfy V1 = V2. If the conductors are far apart, and the connecting wire 
is very thin, we can neglect the effects of the conductors on each other, or the 
effect of the wire (which will take up only a negligible amount  of charge). M1 
we need is the effect of each conductor on itself. If the conductors are spheres 

Figure 5.28 Two well-separated conducting spheres, 
connected by a thin conducting wire (which takes up 
negligible charge). 
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with radii R1 and R2, then V1 - �89 means that 

kQ1 kQ2 
= ~ .  ( s . s 5 )  

R1 R2 

Hence, the larger object has the larger charge. We say that it has a larger ca- 
pacitance. By (5.55), Q1 (Q2) is proportional to Ra (R2), so the capacitance 
is proportional to the radius R, not the surface area ( ~ R  z) or the volume 
(-~R3). 

• Connecting two well-separated conducting spheres 

Let two well-separated conducting spheres have R1 - 8 cm and R2 = 2 cm. 
Before the connection let Q1 = 10 x 10 -9 C and Q2 = 0. Find the final 
charges and potentials after they have been connected by a fine wire. 

Solution: Note that before the connection I11 = kQ1/R1 = 1125 V and V2 = 0. 
By (5.55), after the two spheres make electrical contact, they have Q'I/Q'2 = 
R1/R2 = 4. This gives the four-to-one split of Q~ = 8 x 10 -9 C and Q~ = 2 x 
10 -9 C, which sums up to the original total charge. It leads to the common 
potential of kQ'l / R1 = kQ~ / R2 = 900 V. Notice that the final potential is not the 
average of the initial potentials (although it does lie between the initial potentials). 
Moreover, the final charge is not equally shared; the conductor with the larger 
capacitance gets more charge. 

Since E1 - kQ1/R 2, or E1 R1 - kQ1/R1, and similarly EzR2 - kQ2/R2, we 
have E1R1 = E2R2, or 

const 
~ - ~ .  (5.56) 

R1 

Equation (5.56) says that the smaller the radius, the larger the electric field. 
Hence, the pointier the place on the surface, the larger the electric field at the 
surface, and the larger the local charge density. If the electric field at the surface 
exceeds the dielectric strength Ed, there can be electrical breakdown in the air 
(sparking). (That is, the air is "strong enough" to sustain an electric field of magni- 
tude up to Ed without breaking down; more on this in Chapter 6.) This explains 
Franklin's observation, discussed in Section 1.4, of the "power of points" to charge and 
discharge. 

Caution must be used in generalizing (5.56) to surfaces of arbitrary shape. A 
charged hollow conductor with a needle sticking out of its inner surface and a 
smooth outer surface will have zero electric field just outside the needle and a 
finite electric field just outside the smooth surface. 

We are now prepared to begin the study of circuit elements, from which 
electric circuits are constructed. The first circuit element that we shall study is 
the capacitor, so named because it has the capacity to store electric charge. All 
the ideas from Chapters 1 to 5 will be necessary to study capacitance, and to 
determine the behavior of capacitors in electric circuits. 
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5,12 Outside a Nonuni form Conductor, E Can Have 
a Parallel Component  

So far we have only considered conductors whose surfaces are perfectly uni- 
form. Real conductors are not perfectly uniform because they consist of atoms, 
and the arrangement of atoms along the surface may not be uniform. Many 
"tin" cans that hold acidic fruits (e.g., pineapple), are coated inside with regions 
of zinc. These surfaces have a mottled appearance. (Steel poles that support 
street signs and stop signs are also coated with zinc, and display such patchy 
regions.) These are regions where different crystal faces are exposed. Thus the 
surface is not uniform; this has consequences for the electric field outside the 
crystal. 

According to which crystal surface is exposed, the number of surface atoms 
can vary. In part because of this, the properties of different types of surfaces 
are different. One of the differing properties is the electrical energy it takes for 
the highest-energy electron in the crystal to escape from within the crystal to 
a c m  or more outside the crystal. This is called the work function W, and it is 
in part a measure of voltage change on crossing the surface. W is related to the 
ionization energy (the energy it takes to remove an electron from a single atom). 
For example, atomic cesium (Cs) has a small ionization energy, and in crystalline 
form Cs has a small work function. Work functions are characteristically on the 

order of a volt. If a conductor is given a 
potential that greatly exceeds a volt (e.g., 
100 V), then the conductor will be nearly 
an equipotential. In that case, the elec- 
tric field is nearly normal to the surface of 
the conductor, as discussed in the previous 
chapter. 

To see how the work function can vary 
along a surface, note that at each surface the 

Figure 5.29 Surface of a conductor, atoms make slight adjustments. This causes 
where the dipole layer has a slightly different charge distributions and 
thickness d that corresponds to an dipole moments at the surface. One can 
atomic dimension of on the order think of the region near the surface as two 
of 10 -l~ m. In reality, the charges plates with equal and opposite charge densi- 
:ka are smeared out rather than 
being located precisely on planes, ties ier, with separation d. See Figure 5.29. 

Applying (5.18) with V -+ A V and y -+ d, 
the voltage difference is then A V =  Ed, 

where adding the electric fields of the two sheets gives the interior electric field 
E = 2zrk~ + 2ztka -- 4zrka. Thus, with p = Qd the dipole moment, and A the 
area, 

~ d  P A V -  E d -  4rckad = 4rrk - 4rrk-~. (5.57) 

That is, the voltage difference A V across the interface is proportional to the 
dipole moment per unit area p/A. If A V is not the same all along the surface, 
then there must be a variation in the voltage and in the dipole moment per 
unit area as we move along the surface. Therefore, by (5.53), there must be a 



5.12 Parallel Component 217 

5.t2ol 

5o12.2 

Figure 5.30 Surface of a 
conductor with a nonuniform 
surface. The dipole layer voltage 
across A is greater than across B 
so that just outside the surface 
there must be field lines that 
point from A to B. The region 
labeled "interior" is not precisely 
defined, nor is the surface 
region. 

component of electric field along the surface. 
The dipole layer picture should not be taken 
too literally; the values of d and ~ cannot be 
precisely specified although p/A and A V can. 

To be more specific, consider that there are 

adjacent surface structures A and B, with work 
functions corresponding to voltages of 4 and 3 
volts. See Figure 5.30. Starting at a point P, well 
inside the crystal, and moving to PA just above 
A, there is a voltage gain of 4 V; starting at P 
and moving to PB just above B, there is a volt- 
age gain of 3 V. Hence there must be an electric 
field E outside the surface and pointing from 
the region of higher potential (A) to the region 
of lower potential (B). When there are many 
"patches" with different work functions, the po- 
tential smoothes out when we move away from 
the surface a distance on the order of a few 
times the characteristic size of the patches. 

Resolving an Apparent Paradox 

At first sight, we might expect that if, due to a nonuniform work function, there 
is a component of electric field along the surface, there will also be a component 
of the electric current along the surface. To understand why this need not be so, 
we must think in terms of electron orbitals. Orbitals are characterized by their 
overall energy, not by the local value of the electric field or electrical potential. 
An orbital's total energy is part electrical and part kinetic, and for that orbital 
the sum of these two takes the same value everywhere. Thus, when the electrical 
energy goes up, the kinetic energy goes down. It is possible to have an orbital with 
no current flow along the surface if an orbital does not correspond to a current- 
carrying state. This is no less paradoxical than what happens in a hydrogen atom, 
where the same balancing occurs, and there is no current flow in the radial 
direction. 

In some situations, the electron orbitals are characterized by tangential cur- 
rent flow, with a net angular momentum. Recently, it has been found that, for 
small rings of conductor, on the order of 10 -7 m in size, the electron orbitals 
can be characterized by their angular momentum about the ring. This may have 
applications for future electronic devices. 

Scanning Tunneling Microscopy 

In the 1980s, a powerful technique became available to examine the surfaces 
of conducting objects. It is called scanning tunneling microscopy, or STM, and it 
was developed by Gerd Binnig and Heinrich Rohrer, for which they received the 
1986 Nobel Prize. In this method, a small conducting tip (perhaps consisting of 
only an atom or two) is brought near a surface, and a voltage difference between 
the tip of the probe and the surface causes electrons to "tunnel" across from an 
orbital on the tip to an orbital on the surface (or vice versa). (Tunneling is a 
wave phenomenon whereby particles "jump" from one orbital to another.) By 
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Figure 5.31 Scanning tunneling microscopy (STM) for a 
GaAs surface with two As vacancies. (Courtesy of M. 
Weimer, Texas A&M University.) 

scanning over the surface, it is possible to make a map of the surface structure on 
a scale as small as 2 x 10 - l~ m. Binnig has remarked that STM "has changed our 
emotional relationship with atoms." See Figure 5.31, which shows two arsenic 
(As) vacancies on a gallium arsenide (GaAs) surface. 

STM provides a microscopically localized probe of the work function of a 
surface. A less microscopic method to study the work function is photoemission: 
if light of a high enough frequency shines on a surface, then electrons are emitted 
from that surface; the onset frequency is related to the work function. Photo- 
emission occurs over a much larger region of the surface than STM, and thus 
gives an average of the work function for the surface. (The photoelectric effect 
was discovered in 1887 by Hertz in the course of his studies of electromagnetic 
radiation, which we will discuss in Chapter 15. Einstein received the Nobel Prize 
in 1921 for his explanation of the photoelectric effect.) 

,,~A:,~Sdentist and Rel igion 
The famed Nobel Prize-winning physicist, Richard Feynman, was visiting a laboratory 
where he saw STM scans for the first time. Accompanying him was one of his former 
students, who assaulted their host with a variety of technical questions about the voltage 
difference between the STM tip and the surface, the size of the tip, its distance to the 
surface, and so on. Feynman stopped him short: "Phil, would you please stop asking 
these questions. Can't you see I'm having a religious experience? Those are atoms I'm 
looking at." 

Problems 

5-2.1 Estimate the weight of a 58 kg person on 
the moon. 

5-2.2 An artificial satellite is in earth orbit with 
nearest and farthest distances to the earth of 

1500 km and 4500 km. At the nearest distance 
from the earth, its velocity is 2.73 x 105 m/s. 
Find its velocity at its farthest distance from the 
earth. 
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5-3.1 (a) How much work must be done to move 
5 nC from V = 5 V to V = 9 V? (b) Repeat for a 
- 5  nC charge from V = 5 V to V = 9 V. (c) What  
is the significance of the sign of the work? 

5 -3 .2  You perform 20 mJ of work to move 
8 nC from point A, with VA = 20 V, to point B. 
Find VB. 

5 -3 .3  For V depending only on x and for x = 
1 ,2 ,3  cm the voltages are V = 2 4 , 2 6 , 2 8 . 4  V. 
Estimate the electric field at x = 1.5, 2.0, 2.5 cm. 

5 - 3 . 4  A local value of the earth's fair-weather field 
is 120 V/m, and points downward. What  is the volt- 
age difference between the head and toes of a 2 m 
high person, and which is at the higher voltage? 

5-3.5 At ~p = (0.21, 0.43, 0.58) m, the electric 
field is/~ --- (0.25, -0.47,  0.94) V/m. At the nearby 
point Fe,' - (0.22, 0.42, 0.56) m, the voltage is 
Vp, = 2.76 V. Estimate the voltage Ve at P. 

5 -3 .6  Consider two infinite sheets, one on z -- a 
with charge density r and one on z = - a  with 
charge density - ~ .  Let V = 0 on the positive plate. 
Find (a) the voltage on the negative plate, (b) the 
voltage at z --. ~ ,  (c) the voltage at z --. -cx~. (d) Is 
the voltage at infinity unique in this case? 

5-4 .1  A proton with energy 2 MeV moves directly 
toward a gold nucleus (q = 79e). If the nucleus is 
fixed in place, at what distance does the proton stop? 

5-4.2 A lightning bolt transfers charge 20 C across 
a voltage difference of 1.2 x 108 V. (a) How much 
energy is transfered? (b) How much ice at 273 K 
would this melt? (c) How much ice at 273 K would 
this vaporize? (d) How high would this energy pro- 
pel a 5-ton elephant? 

5-4.3 An electron moving along y has an initial 
velocity of 2.8 x 106 m/s. After traveling 4 cm, 
its velocity is 4.5 x 106 m/s. (a) Find the poten- 
tial difference between the starting point and the 
end point. Which has the higher potential? (b) If 
the field is uniform, how large is it, and in what 
direction? 

5-4.4 Consider a point charge q near the center of 
a uniformly charged ring of radius a and charge 
in the xy-plane. See Figure 5.32. It starts from rest 
slightly off-center and is constrained to move along 
the ring axis. (a) Using symbols, find its velocity v at 
large distances. (b) If q = 8 x 10 -14 C, Q =  6 #C, 
and a = 2 cm, evaluate v numerically. 

Z 

% 

Figure 5.32 Problem 5-4.4. 

5.4.5 A particle of charge q = - 2 . 4  x 10 -9 C 
starts from rest in a uniform upward-directed E 
field. See Figure 5.33. After moving 8 cm (in which 
direction?), it has kinetic energy 4.8 x 10 -s J. Find 
(a) the work done by the electric force, (b) the 
change in electrical potential (is the starting point 
at a higher or lower potential than the end point?), 
and (c) ]EI. 

q o - ~  

Figure 5.33 Problem 5-4.5. 

5-4.6 A sphere of mass m = 4.5 g and charge 
q = 2.6 x 10 - 1 2  C hangs by a 5 cm long thread. It 
hangs between two conducting sheets with charges 

and - r  which produce a horizontal field that 
causes the thread to make a 20~ angle to the ver- 
tical. See Figure 5.34. Find (a) ]El, (b) ~. Relative 
to the vertical, find (c) the increase in gravitational 
energy; (d) the decrease in electrical energy; and 
(e) the decrease in electrical potential. 

Figure 5.34 Problem 5-4.6. 

5-4 .7  A 9 V electronics battery maintains two 
metallic plates at - 3  V and 6 V. An electron at 
rest just outside one plate accelerates and hits the 
other plate. (a) Which plate does it hit, and how fast 
is it moving? (b) How much work was done on it? 
(c) What is its change in electrical potential energy? 
(d) What is its change in electrical potential? 

5 - 4 . 8  A Na + ion at A is subject to an electrical 
force of 8 x 10 -15 N, caused by a negatively charged 
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plate at B that is 2 cm away. (a) Find VA- liB. (b) 
How fast will the ion be moving if it hits the plate? 

5-4.9 An electron beam of 5 x 10 is electrons/sec, 
each with energy 40 keV, is incident on a 100 g tar- 
get of tungsten. If the target's temperature rises at 
the rate of 5~ find the percentage of energy 
that is absorbed by the target. (The specific heat of 
tungsten is 134 J/kg-K.) 

5-4.10 When special relativity is accounted for, 
the kinetic energy of a particle of mass m is given 
by K =  mc2[(1/v/1 - ( v / c )  2) - 1], where c is the 
velocity of light. (a) Use K to find the velocity v 
of an electron accelerated from rest through 2 V 
and 2000 V. 03) Compare with the v's found us- 
ing K = (1/2)mv 2. The "special" in special relativity 
means "restricted," because the theory is restricted 
to inertial flames. In general relativity, the theory 
applies to any flame of reference, even that of a 
rock bouncing down the side of a mountain. 

5-4.11 Two plates of area 16 cm 2 and separa- 
tion 2 cm have a 0.14 N force of attraction. Find 
(a) their voltage difference, (b) their charge, and 
(c) their charge density. 

5-4.12 Two plates of area 45 cm 2 and separation 
3 cm have a voltage difference of 1108 V. Find 
(a) their force of attraction, (b) their charge, and 
(c) their charge density. 

5-5.1 In Figure 5.11 (a), change the plates at 0 V 
to 10 V. Sketch the field lines, and sketch a few more 
equipotentials. Where is the field the largest? The 
smallest? 

5 -5 .2  In Figure 5.11 (b), change the plates at 5 V 
and - 5  V to 50 V and - 5 0  V. Sketch the field lines, 
and sketch a few more equipotentials. Where is the 
field the largest? The smallest? 

5 -5 .3  In Figure 5.11 (c), change the plates at 5 V 
and - 5  V to 50 V and - 5 0  V. Sketch the field lines, 
and sketch a few more equipotentials. Where is the 
field the largest? The smallest? 

5 -5 .4  Sketch some equipotential surfaces for the 
vicinity of a living tree (whose water content makes 
it a good conductor). Model the tree as a vertical 
rod, and consider the earth to be a good conductor. 

5 -5 .5  Consider a point charge Q > 0, in the pres- 
ence of grounded conductors. (a) Show that the 
surface charge density CXs is negative on all conduc- 
tors. You may think of infinity as a large sphere at 
zero potential. Hint: Field lines cannot connect two 

conductors at the same potential. (b) The closer Q 
is to the conductors, the larger the fraction of its 
field lines that terminate on them, and therefore 
the larger the amount of charge on them. Find the 
magnitude of the maximum total amount of charge 
on them. 

5 -5 .6  (a) Find the potential at a point that is a dis- 
tance 1.5a above the positive charge in a horizontal 
dipole pair +q separated by 2a. See Figure 3.11 (a). 
(b) Find the electric field at that point. (c) Use 
Maxwell's trick of replacing a charge by its sur- 
rounding equipotential to find the equipotential at 
that point, and the normal to the equipotential 
at that point. (d) Find the necessary charge density 
at that point. 

5 -5 .7  Consider Maxwell's trick for finding the 
shapes of conductors that will produce known 
equipotentials. (a) What equipotential shapes does 
it give for one charge? (b) Will it work, in principle, 
for three charges? (c) Assume that, in the presence 
of two conductors with respective charges ql and 
q2, you know the equipotentials. If the charges are 
changed to ql and 2q2, does this change the shape 
of the equipotentials? (d) If the charges are changed 
to 2ql and 2q2, does this change the shape of the 
equipotentials relative to the case of ql and q2 ? 

5 -5 .8  Consider an infinite conducting sheet that 
is normal to the page and passes through the x-axis. 
Bend the sheet about the z-axis so that it becomes 
a wedge of angle ~, where ~ = zr corresponds to 
the original sheet. Now give the sheet a charge. 
(a) Draw the field lines for ~ < rr and for ~ > rr. 
(b) Show that ]/~] is small (large) at the corner for 
wedge angle ~ > Jr (~ < 7r). 

5 -5 .9  If two equipotentials cross (this does 
occur), what does that say about the electric field at 
the crossing point? Hint: Consider two charges ql = 
q2 = q separated by 2a, as in Figure 5.10(b). The 
equipotentials with V > 2kq/a either surround ql 
or q2. The equipotentials with V < 2kq/a surround 
both charges. The equipotential for V = 2kq/a is 
more complex (and not drawn in Figure 5.10b). 

5-5.111 Consider a point charge Q >  0 and a 
grounded sphere of radius a at a distance r > a. 
Estimate the charge q on the sphere. Note that 
Q + q '  > 0. 

5-6.1 A 2.8 nC charge is at the origin and a 
-3 .6  nC charge is on the x-axis at x = 4 cm. Find 
the potential on the y-axis at y = 5 cm. 
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5-6.2 (a) Find the charges needed to bring two 
conducting balls, of radii 0.5 cm and 0.5 m, to a 
potential of 2000 V relative to infinity. (19) Contact 
with which is more likely to be dangerous? Why? 

5 -6 .3  Find the amount of work needed to assem- 
ble a square of side a with charges q at the vertices. 

5 - 6 . 4  Find the amount of work needed to place 
equal charges q at three corners of a square of 
side a. 

5-6.5 In the quark model, a proton consists of two 
"up" (u) quarks, each of charge (2/3)e, and a "down" 
(d) quark, of charge - (1 /3 )e .  If they form a triangle 
of side a = 10 -15 m, find (a) the potential at one of 
the up quarks due to the other two quarks, (lo) the 
potential at the down quark due to the up quarks, 
and (3) the total energy of all the quarks. 

5-6.6 Sparking can occur when the electric field 
exceeds the dielectric strength Ed, which depends 
upon the material. For dry air, Ed = 3 x 106 V/m. 
Sparking associated with dust grains that charge up 
when they collide with one another or with the 
walls of their container are sometimes responsible 
for electrical explosions. (a) To what potential must 
the surface of a spherical dust grain of 0.04 mm ra- 
dius be raised in order to produce such a field at the 
surface? (b) To what charge, and how many elec- 
trons, does this correspond? 

5-6.7 (a) Take V~ = 0. For two point charges q 
along the x-axis, separated by a, find the position 
where E = 0 but V r 0. (b) Can you change V~ so 
that both/~ = 0 and V -  07 

5-6.8 (a) Take V~ = 0. For two charges +q along 
the x2axis , separated by a, find the position where 
/~ r 0 but V = 0. (b) Can you change V~ so that 
b o t h E = O a n d V  O? 

5 -6 .9  A point charge Q at the origin produces a 
voltage. The voltage difference between points A 
and B, at x = 1 cm and x = 2 cm, is 250 V. Find Q. 

5-6.10 A long rod of uniform charge density )~, 
passing through the origin, normal to the xy-plane, 
produces a voltage. The voltage difference between 
points A and B, at x = 1 cm and x = 2 cm, is 250 V. 
Find 4. 

5-6.11 A large sheet of uniform charge density 
a < 0, passing through the origin, normal to the 
x-axis, produces a voltage. The voltage difference 
between points A and B, at x = 1 cm and x = 2 cm, 
is 250 V. Find a. 

5-6.12 Two fixed charges Q and - Q are sepa- 
rated by 2a along the x-axis. A charge q with mass 
m is released at rest at the midpoint. (a) Find the 
change in electrical potential and electrical poten- 
tial energy when it has moved 3/4 of the way to 
- ~ .  (19) Find its final speed. 

5 - 6 . 1 3  In a NaC1 lattice, each Na + has six near- 
est neighbors of C1-. If one (small) Na + sits at 
(0, 0, 0), then the (large) C1- sit at (a/2, 0, 0), 
(-a/2, O, 0), (0, a/2, 0), (0, -a/2, 0), (0, O, a/2), 
and (0, O , - a /2 ) ,  where a = 5.63 x 10 -l~ m. The 
next nearest neighbors are Na +, four (labeled a) in 
the x = 0 plane at (0, a/2, a/2), (0, -a/2, -a/2), 
(0, a/2,-a/2),  and ( 0 , - a / 2 ,  a/2), four (labeled 
b) in the y = 0 plane at (a/2, O, a/2, ), (-a/2, O, 
-a/2), (a/2, O,-a/2), (-a/2, O, a/2), and four 
(labeled c) in the z = 0 plane at (a/2, a/2, 0), 
(-a/2, -a/2, 0), (a/2, -a/2, 0), (-a/2, a/2, 0). 
Find the potential at the site of the Na + at 
the origin, due to these 18 other charges. See 
Figure 5.35. 

Na. a 
C1 o o c ~  .c 

. c  ~ c y / T  .c .~ '  a x 

Figure 5.35 Problem 5-6.13. 

5-7.1 Let/~ = (ax + b)~. (a) Find the circulation 
/~ �9 d~ for a circuit that goes clockwise around the 

square (0, 0), (0, d), (d, d), (d, 0). See Figure 5.36. 
(b) Is this what is to be expected for electrostatics? 
(c) If so, what is V(x, y ) -  V(0)? 

Figure 5.36 Problem 5-7.1. 

5-7.2 Let/~ = (ax + b)j, where a and b are con- 
stants. (a) Find the circulation ~/~.  d~ for a circuit 
that goes clockwise around the square (0, 0), (0, d), 
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(d, d), (d, 0). See Figure 5.36. (b) Is this what is 
to be expected for electrostatics? (c) If so, what is 
V(x, y) - v(0)? 

5 - 7 . 3  Let /~ = ~ x i f )  = ~ x (x)? + y ~  + z~) = x ~  - 
y)~. Consider a square of side b in the first quad- 
rant, with one corner at the origin, called A_ Let 
B = (b, b, O) be the diagonally opposite corner. See 

B -* - .  

Figure 5.37. Compute - f A  E. ds for two paths. 
(a) First take a path that goes along the x-axis 
to (b, O, O) and then goes along the y-axis to B. 
(b) First take a path that goes along the y-axis to 
(0, b, O) and then goes along the x-axis to B. (c) 
From these two calculations, determine the circula- 
tion computed for a clockwise circuit around this 
square. (d) Can this E be due to fixed electric 
charge? 

B 

t , v  

Figure 5.37 Problem 5-7.3. 

5-7.4 On a circle of radius a, centered in the xy- 
plane, let the electric field point tangentially, w i t h  

the counterclockwise tangent. Compute J E �9 d~ 
going counterclockwise for the following two fields: 
(a) E - E00 sin 0, (b)/~ = E00 sin 2 0. 

5-8 .1  (a) For a finite conducting cylinder with 
charge Q > 0, in equilibrium, is the potential higher 
at the surface or the center? (b) Repeat for a finite 
cylinder with charge Q > 0 and a uniform density of 
charge (this can be a conductor out of equilibrium, 
or an insulator either in or out of equilibrium). 

5 -8 .2  A conducting sphere of radius 0.5 m is at 
V = 2400 V. Find its charge and the voltage at 2 m 
from the center of the sphere. Take V~ = 0. 

5 -8 .3  Two equal and opposite line charges are 
normal to the page, intersecting it along the 
x-axis at x - - 1 0  cm ( - )0  and at x - 10 cm (~). 
V(5 cm, 0) - V(O, 0) is 40 V. Find )~. 

5 - 8 . 4  Let/~ = Ar2~ for a situation with spherical 
symmetry, where A is a constant. Find V(r), with 
V(0) = 0. Describe the equipotential surfaces. 

5 -8 .5  Let/~ = Ar2~ " for a situation with cylindri- 

cal symmetry, where A is a constant. Find V(r), 
with V(0) = 0. Describe the equipotential surfaces. 

5-8.6 Let /~ = Ax2)? for a situation with planar 
symmetry, where A is a constant. Find V(x), with 
V(0) = 0. Describe the equipotential surfaces. 

5 -8 .7  Find the potential on the axis of a disk of 
radius a and uniform charge density ~. Use the elec- 
tric field from Chapter 3. 

5 - 8 . 8  Consider two concentric spherical shells. 
The outer has radius b and charge Qb, and the inner 
has radius a and charge Qa. Take V(a) = 0. Find the 
potential V(r) for r < a, a < r < b, and r > b. 

5-9.1 A ring of radius R is centered at the origin 
of the xy-plane, where we take 3? to be upward. 
The ring has a uniform distribution of charge 2 Q 
over the upper two-thirds of its circumference, and 
a uniform distribution of charge - Q o v e r  the lower 
one-third of its circumference. See Figure 5.38. 
(a) Find V at z, along the axis of the ring, if V~ = 0. 
(b) Find Ez at z. (c) Do the answers change if the 
charge on the ring is rearranged? (d) What  about Ex 
and Ey under rearrangement? 

y 

X 

Figure 5 .38 Prob lem 5-9 .1 .  

5-9 .2  Sketch some equipotentials and field lines 
for two parallel line charges X and -3X normal to 
the page, separated by l along the x-axis. 

5 -9 .3  Sketch some equipotentials and field lines 
for two parallel line charges )~ and 2)~ normal to the 
page, separated by I along the x-axis. 

5-9.4 An insulating rod lies between (0, 0, 0) and 
( - l ,  0, 0). It has a charge density ;~ = ax, where a is 
a constant. (a) Find the total charge Q. (b) Find the 
potential V(x) for x > 0 if V~ = 0. (c) Check that 
the potential approaches that of a point charge Q 
at large x. 

5-9.5 An insulating rod lies between ( - l /2 ,  O, O) 
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and (l/2, 0, 0). It has a charge density ~ = ax, where 
a is a constant. (a) Find the total charge Q. (b) Find 
the potential V(x, O, O) for x > l/2 if Voo = 0. (c) 
Show that for this distribution the dipole moment  
points along ~ and has magnitude p = al3/12. (Use 

= f ~dq, with dq = )~ds.) (d) Show that, at large 
x, the potential from part (b) is given by kp/x  2. 

5 - 9 . 6  Find the potential a distance z along the axis 
of an annulus (inner radius a, outer radius b) with 
uniform charge density ~. See Figure 5.39. 

Figure 5.39 Problem 5-9.6. 

5-9.7 (a) A spherical shell of radius b has charge 
- Q .  If V = 0 at infinity, find V within the shell. 
(b) A smaller shell of radius a = 0.1b, and with 
charge q, is placed concentric within the larger shell. 
If q = 0.01 Q,  find V(a), and show that it is nega- 
tive. (c) For what range of values of q will V(a) be 
positive? 

5-9.8 Refer to Example 5.17 and Figure 5.25. 
Starting from/~+ = ~ - (t/2):9, show that R+ ~ r - 
(l/2) cos 0 for r >> l, where cos 0 = ~. 3). 

5-10.1 Let V(x) = 3 + 2x + 5x 2, where V is in 
volts for x in m. (a) Find V at x = 1.9 m and 
x = 2.1 m. (b) Estimate E at x = 2 m. (c) Calculate 
E exactly. 

5 - 1 0 . 2  Let V ( x ) =  x 3, where V is in volts for x 
i n m .  (a) F i n d V a t x = l . 9 m a n d x = 2 . 1  m. (b) 
Estimate E at x = 2 m. (c) Calculate E exactly. 

5 - 1 0 . 3  Consider a line of charge Q uniformly dis- 
tributed from ( - l ,  0, 0) to (0, 0, 0). (a) Find the po- 
tential V at (x, 0, 0), for x > 0. (b) From V, find Ex. 
(c) Compare with the result of a direct calculation 
of Ex. 

5 - 1 0 . 4  Consider a line of charge Q uniformly dis- 
tributed from ( - l ,  0, 0) to (0, 0, 0). (a) Find the po- 
tential V at (x, y, 0). (b) From V, find Ex and Ey. 

5 - 1 0 . 5  From the dipole potential V = k}  . ~/r 3, 
show that the electric field due to a dipole at the 
origin is given by 

k [3f f .  ~)~ - ~] (5.58) 

Hint: Consider Ex, and so on, and then vectorize. 

5-111.6 (a) Review (3.42) and use it with the result 
of the previous problem to show that the electrical 
energy of interaction between two dipoles 131 and 
}2 is 

k 
O--" ~-~[Pl" ]~2 -- 3(pl"  /~)(P2" /~)]. (5.59) 

(b) Evaluate this when the dipoles point parallel to 
one another, for both the upper and lower pair in 
Figure 5.40. (c) Which pair has the lower energy? 
How does this compare with what  you would ex- 
pect from "opposites attract, likes repel"? 

a 

Figure 5.40 Problem 5-10.6(b). 

5-10.7 In spherical coordinates, let V = 5r 4 for 
r in m and V in V. (a) Find V at r = 0.9 m and 
r = 1.1 m. (b) Estimate/~ at r = 1 m. (c) Calculate 

exactly, at all r and for r = 1. 

5-10.8 Let r = ~ / x  2 -+- a 2. (a) Show that dr/dx = 
x/r .  (b) If V = V(r), use the chain rule of dif- 
ferentiation to show that E~ = - d V / d x =  
- (dV/dr) (dr /dx) .  (c) For a ring of charge, with 
potential V =  kq/r, show that along the x-axis 
Ex = (kQ/r2)(x/r)  = kQx / r  3, as in (5.51). 

5 - 1 0 . 9  Let V = 2 x y -  4x 2 - 5y 2. Find E. 

5 - 1 0 . 1 0  Let V -  2x + 5x 2 - 5x 3. (a) Find E. 
(b) Find the electric flux leaving a unit cube in the 
first octant. Does this correspond to the presence of 
electric charge? 

5-10.11 The space between the (positive) 
i!i~L .............. anode and the (negative) cathode in a vac- 

uum tube diode develops a nonuniform charge 
distribution with planar symmetry. This causes a 
voltage V(x) = Cx 4/3, with V = 0 at the cathode 
(x = 0), and V =  V~ at the anode (x = d). See 
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Figure 5.41, where the darker the region the higher 
the charge density. (a) Find Ex at any x. (b) If 
Va = 200 V and d = 2 cm, find E~ at x /d  = O, 0.25, 
0.5, 0.75, and 1.0. (c) Find the charge per unit vol- 
ume as a function of x. See problem 4-G.3. 

Figure 5.41 Problem 5-10.11. 

.......... :;iii~:iiii~ii~i I .... 5-10.12 For charge that is injected into an 
~':::i:i: ...... insulator, the voltage profile is V(x) = Cx 3/z, 

where charge is injected at x = 0 and collected at 
x = d. (a) Find Ex at any x. (b) If V ( d ) =  500 V 
and d = 1.4 cm, find Ex at x/d  =0,  0.25, 0.5, 0.75, 
and 1.0. (c) Find the charge per unit volume at any 
x between 0 and d. See problem 4-G.3. 

5 -11 .1  Two metal spheres of radii 2 cm and 
4 cm are mounted on insulating stands and are far 
from each other. They are given charges of 14 nC 
and - 5  nC, respectively. (a) Find their potentials. 
(b) Find the electric fields at their surfaces. They 
now are connected by a very thin wire, so that 
charge can transfer. (c) Find their new charges and 
potentials. (d) Find the new electric fields at their 
surfaces. 

5 - 1 1 . 2  Let a conductor with charge q be brought 
from far away to the interior of a Faraday ice pail. 
On contacting the interior, it transfers its charge q. 
The charge on the exterior of the pail then changes 
by q. On the other hand, if q were placed directly 
in contact with the exterior, not all the charge would 
be transferred. What  limitation (other than spark- 
ing) prevents us from building up an infinite amount 
of charge on the ice pail by repeatedly bringing 
up charge to the interior? Hint: Think force or 
energy. 

5 - 1 1 . 3  If electrons are transferred to the interior 
of a conductor, do they go to the outer surface of 
the conductor? Discuss. 

5-11.4 Why does sparking tend to occur at sharp 
edges of electrical conductors? What  about noncon- 
ductors? 

5 - 1 1 . 5  Two charged metal spheres of radii R and 
10R are far from each other, but are connected by a 
very thin wire. Compare their total charge, charge 
per unit area, electric potential, and electric field. 

5-11.6 Two charged metal spheres of radii 2 cm 
and 20 cm are far from each other, but are con- 
nected by a very thin wire. The smaller one is at 
2 V. Find their total charge, charge per unit area, 
electric potential, and electric field. 

......... ~!!!iiiii:i,i,.~i 5-11.7 Consider two distant spheres that 
:~'~:!i:'i~ are fixed in place. When in electrical con- 

tact via a fine wire, they share charge in a 1-to- 
10 ratio. There is a distant 100 V voltage source. 
Initially, both spheres are isolated and uncharged. 
Consider the following sequence of steps: (1) Con- 
nect the smaller sphere to the voltage source; (2) 
disconnect it from the voltage source; (3) connect 
the two spheres with a fine wire; (4) disconnect 
the fine wire. (a) Find the potential of the larger 
sphere. (b) Find the potential of the larger sphere 
if the sequence is repeated an infinite number of 
times. (This can be found by a simple physical ar- 
gument rather than by explicit calculation.) (c) Find 
the potential on the larger sphere if the sequence is 
repeated n times and verify that it approaches the 
correct value for large n. 

5 -12 .1  A conducting surface has a grain bound- 
ary separating two surface regions, one with work 
function 2.2 V and the other with 1.5 V. Estimate 
the electric field at 200 nm above the boundary. 
Hint: What is the field if the surface regions have 
the same work function? How can you construct a 
quantity with units of electric field from the infor- 
mation given? 

5 - 1 2 . 2  The electric field near a grain bound~ 
ary, when the object as a whole is uncharged, is 
4300 N/C. What surface charge density could pro- 
duce such a field? 

5 - 1 2 . 3  In an STM experiment, a voltage dif- 
ference o f - 0 . 4 5  V is measured by an STM tip 
0.034 nm away from the surface. Estimate the mag- 
nitude of the electric field near the tip. 

5 - 1 2 . 4  Water droplets in the atmosphere con- 
dense around small aerosol particles that contain 
molecules that dissolve in the water. Hence the 
water contains numerous ions, which make it rel- 
atively conducting. (a) If a spherical droplet of ra- 
dius 0.2 mm picks up a charge - 5 0  pC, what is 
the potential at its surface? (b) At its interior? (c) If 
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two such droplets combine, what is the new surface 
potential? 

5-G.1 A dipole has magnitude p = 8.0 nC-m. 
Consider two points separated by 8 crn, with A at a 
30 ~ angle to the dipole axis and B on the dipole axis. 
(a) Find VA - VB. A frictionless tube connects these 
two points. (b) If a dust particle with m = 5 mg and 
q = 6 nC starts at rest from one point and is con- 
strained to move along the tube, how fast will it 
be moving when it reaches the other point. (c) At 
which point does it start? 

5-G.2 Within an uncharged conducting spherical 
shell, a charge q is suspended off-center by an insu- 
lating string, which deflects 1 cm to the side. Find 
the deflection (a) if the shell is placed within an 
external field, (b) if the shell is given a charge Q. 

5 -G.3  How would you eliminate stray electric 
fields from a given region of space? 

5 -G .4  Consider two conducting co-axial rings of 
radii a with equal and opposite charges +q. Their 
centers are at +h/2 along the z-axis, h is to be ad- 
justed to make a very uniform field in the vicinity 
of the midpoint between the rings. See Figure 5.42. 
Consider V along the z-axis. (a) Show that at x = 0 
all the even derivatives of V(0, 0, z) are zero. (b) 
Find the value of h/a that makes the third deriva- 
tive go to zero. 

h/2 ! / ~ a  ~ 2q x 

Figure 5.42 Problem 5-G.4. 

5-G.5  Discuss the analogy of an equipotential 
map to a topographic map (height of the earth plot- 
ted in two coordinates). How rapidly does the po- 
tential change at "cliffs"? On "mesas"? 

....... %. 5-G.6 Consider a two-dimensional sit- 
.................... uation with V(x, y) = Asin qxexp(-ky) ,  

where A is in V, and q and k are in m -1 . (a )Com- 
pute the electric field. (b) Find the electric flux 
through a cube oflength 2rcq -1 that is in the first oc- 
tant and has one corner at the origin. (c) Show that 
there is no charge within the cube if q = k. Equiv- 

alently, if the potential V has negative curvature 
(sin qx) in one direction, and there is no charge in 
the region described by V, then V has positive cur- 
vature in the other direction (exp(ky) or exp(-ky)) .  
In practice, this usually implies that if a periodic- 
ity occurs in one direction, then decay occurs in 
the other direction. This idea generalizes to three 
dimensions. 

5-G.7 An insulating disk of radius a is centered at 
the origin with its normal along the x-axis. It is given 
a charge density ~ = Br. (a) Find its total charge Q. 
(b) Find its potential V(x). (c) Verify that V(x) has 
the expected behavior at large x. 

5-G.8 In a depletion layer at the surface of a semi- 
conductor, the charge density fi is finite out to a 
distance w from the surface, beyond which it goes 
to zero. Let V = 0 at the surface x = 0. See Fig- 
ure 5.43 for the charge density, where the nor- 
mal is along x. (a) Find Ex(x). (b) Find V(x). (See 
Section 4.11.4.) 

Figure 5.43 Problem 5-G.8. 

5-G.9 An insulating Lucite slab of thickness 
12 mm is irradiated uniformly by an electron beam 
of current density 0.12 mA/m 2 for 2 seconds. All 
the charge remains on the Lucite, trapped with an 
approximately uniform free charge density over a 
2 mm thickness in the middle of the slab. Take 
K = 3.2 for Lucite. (a) Find the free charge density 
and the induced charge density in the middle of 
the slab. (b) Find the/~ field and voltage within the 
charged region. (Take V = 0 at the center of the 
slab.) (c) Find the /~  field and the voltage within 
the uncharged region. (d) Find the induced charge 
density on the outer surfaces. 

5-G.10 An alpha particle (q - 2e) is incident on 
a gold nucleus (q = 79e), and would pass by it at 
a distance b (the impact parameter) of 10 -13 m 
if not for the electrical force. (Recall that ?.atom "~" 
10 -l~ m and rnucleu s ~, 10 -is m, so ratom ~ ?'nucleus, 
and thus near the nucleus the rest of the atom can 
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be neglected.) Find the distance of closest approach 
if the alpha particle has kinetic energy 8 MeV. 
Hint: Use conservation laws. 

5-G.11 CO2, a linear molecule, is neutral and 
has no permanent electric dipole moment. Let the 
C, with charge 2q, be at the origin (O, O, 0), and 
the O's, each with charge -q ,  be on the y-axis, a 
distance a above and below the C, at (0, +a, 0). 
See Figure 5.44. (a) With V = 0 at infinity, find 
V at x along the x-axis. (lo) With q = e and a = 
1.2 x 10 -1~ m, evaluate this for x = 5 x 10 -15 m, 
x = 5 x  10 -13 m, a n d x = 5 x  10 -11 m. (c) How 
does V vary with distance at large x? 

2q 

~ 2 q ~  

2q 

Figure 5.44 Problem 5-G.11. 

5-G.12 Equal and opposite charges + Qare on the 
y-axis at +a  from the origin. (a) Find the potential 
at x along the x-axis. (lo) Find Ex along the x-axis by 
using V(x). (c) Find Ex along the x-axis by adding 
up the individual/~ fields. 

5-G. 13 Equal charges + Qare on the y-axis at +a  
from the origin. (a) Find the potential at x along 
the x-axis. (13) Find Ex along the x-axis by using 
V(x). (c) Find E x along the x-axis by adding up the 
individual E fields. 

5 - G . 1 4  (a) Show that the energy needed to as- 
semble a spherical shell of radius R and total charge 
Q by bringing the charge in from infinity bit by bit is 
U = kQ2/2R. Hint: Integrate over dQ' fromOto Q 
using dU= dQ'(V), where V =  kQ'/R. (b) Show 
that the pressure needed to keep the sphere from 
expanding is P = kQ2/2R 2. Hint: Relate a change 
in electrical energy to the radial component of the 
electric force. 

5 - G . 1 5  Find the potential V(x) on the axis of a 
uniformly charged disk of radius a and charge den- 
sity ~, by two methods. Take V(0) = 0. 

5-G.16 (a) For a quarter-miler who runs in a 
straight line rightward along the x-axis, compute 
f ds and f d~'. (b) For a quarter-miler who runs 
around a track, ending at the starting point, com- 
pute f ds and f d~, and their magnitudes. 

5-G.17 Let V(x, y, z) = Voexp(-x2/a2). (a) Find 
/~. (b) Find Qenc for a Gaussian surface that is a 
parallelopiped extending from x = 0 to x = b, and 
of area A normal to x. (c) Find the charge density 
p(x). 

5 - G . 1 8  Let V(r)= Voexp(-r/a) in cylindrical co- 
ordinates. (a) Find Er. (b) Find Qenc for a Gaussian 
surface that is a concentric cylinder of radius b and 
length L. (c) Find the charge density p(r). 

5 - G . 1 9  Let V(r) = Voexp(-r/a) in spherical co- 
ordinates. (a) Find Er. (b) Find Qenc for a Gaus- 
sian surface that is a concentric sphere of radius b. 
(c) Find the charge density p(r). 

5 - G . 2 0  Consider a line (not necessarily straight) 
going from A to B. The average value of E along 
the tangential direction ~, or E-~, is f ~ / ~ .  
~ds/f2 ds, where f2ds  is the total path length 
from A to B. For E = - A x ) ~ + A y 3 ?  with A =  
10 V/m 2 and x in m, find/~ �9 ~ for (0, 0) to (1, 2). 

5 -G.21  The discussion of NaC1 was a bit of a 
swindle because it didn't discuss the interaction 
energy U' that keeps the charges from collapsing 
to a point. (U' represents the repulsion of differ- 
ent atomic shells of electrons, a more advanced 
topic than electrostatics.) For two charges e and 
-e ,  consider the energies Uel =-ke2/r  and U'= 
ake2/[a(r/a)l~], where a is a length and ~ and fi 
are dimensionless constants. (a) For what range of 
values for ~ can Uel + U' have a minimum at a fi- 
nite value of r/a? (b) Find that value, and the total 
energy for that value. 

5 - G . 2 2  Superionic conductors are alkali halide- 
like crystals (Na is an alkali, C1 is a halogen) that 
are insulators at ordinary temperatures but, when 
the temperature is raised above a certain value, 
suddenly become good electrical conductors. X-ray 
scattering, which can identify the atoms in the crys- 
tal, shows that one of the chemical constituents in 
the lattice melts at that point and can roam rel- 
atively freely around the lattice of the remaining 
atoms. Which is more likely to melt, the alkali or 
the halogen, and why? 



"I wish to inform you of a new but terrible experiment, which I advise you on no account 
personally to attempt . . . .  From the [charged and insulated] gun barrel hung a brass wire, 
the end of which entered a glass jar, which was partly full of water . . . .  This jar I held 
in my right hand, while with my left I attempted to draw sparks from the gun barrel. 
Suddenly I received in my right hand a shock of such violence that my whole body was 
shaken as if by a lightning stroke . . . .  In a word, I believed I was done for." 

~Peter Van Musschenbroeck (1746) 

Chapter 6 

Capacitance 

Chapter Overview 

Section 6.2 discusses single-plate capacitors, and Section 6.3 discusses two-plate ca- 
pacitors, with equal and opposite charges, showing why they are so much more 
effective than single-plate capacitors. Section 6.4 considers capacitors in circuits, both 
in parallel and in series, as well as in more complicated arrangements. Section 6.5 
shows how the capacitance is increased if a polarizable material fills the region be- 
tween the two capacitor plates. This decreases the magnitude of the electric field 
within the material, by a factor called the dielectric constant. The combination of ge- 
ometry and dielectric constant is responsible for the large capacitance of the Leyden 
jar (and thus the dramatic effects observed by Musschenbroek) and of the recently 
developed electrolytic capacitors. Section 6.6 considers the electrical energy stored by 
a capacitor, and Section 6.7 relates electrical energy and electrical force. Section 6.8 
introduces the coefficients of potential to discuss the general problem where two 
charged conducting objects do not necessarily have equal and opposite charges. Sec- 
tion 6.9 discusses the dielectric properties and electrical discharge properties of dilute 
gases, including a discussion of plasma globes and fluorescent tubes. Section 6.10 
presents Maxwell's elaboration of Faraday's concept of flux tubes, which are under 
tension and exert pressure upon one another, i 

6.1 Introduction 

The preceding description of the discovery of the Leyden jar illustrates one of 
the two major uses of capacitors: the rapid and powerful discharge of a reservoir 
of electric charge, such as in a heart defibrillator. The other major use is also as 
a charge reservoir, but one where a small and controllable discharge at a nearly 
fixed voltage is desired: the RAM (random access memory) of computers uses the 
state of storage of microscopic capacitors (charged or discharged) to represent 
O's and 1 's. Every electronic device, from computers to wristwatches, uses large 
numbers of capacitors for both of these purposes. 

Capacitance is a measure of the capacity of conducting bodies to store 
charge. Two earlier examples ~ see Figure 1.10 (where charged Leyden jars are 
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228 Chapter 6 ~ Capacitance 

] HI I �84 

The Leyden jar was the first two-plate capacitor. One plate was the water in the jar, 
electrically connected to the gun barrel, which served as a reservoir of charge. The 
other plate was Van Musschenbroeck's right hand, electrically connected to ground, 
which served as another reservoir of charge. From these reservoirs, charges of opposite 
sign went to the parts of each plate adjacent to the glass of the jar. On touching his 
left hand to the gun barrel, there was a pathway through his body for discharge from 
one plate to the other, and hence the shock. See Figure 6.1. Because the Leyden jar 
was so effective as a charge storage device, it was considered to be a condensor of 
electric charge. This name is still used to describe the capacitors associated with the 
ignition systems of gas-powered lawnmowers and pre-electronic ignition automobiles. 

Figure 6.1 The discovery of the Leyden jar: the first 
two-plate capacitor. A charge source (not shown) brings 
charge to the cannon, then along the brass wire to the 
water in the glass jar, and then to the interior surface of 
the glass jar. Charge is repelled from the exterior surface 
of the glass jar, through the person's body, and to ground. 

connected) and Figure 5.26 (where charged spheres are connected) ~ can be 
analyzed in terms of capacitance. 

6~ Self-Capacitance of an Isolated Conductor 

Let us consider charge storage by an isolated conductor of arbitrary but fixed 
shape. As discussed in Chapter 4, in equilibrium any net charge on a solid con- 
ductor goes to its outer surface. Let the conductor have charge Q > 0, and be 
far from any other objects. Then electric field lines point outward from the ob- 
ject, leading to infinity. (Far from the object, the lines appear to come from a 
point charge Q.) Since field lines point from higher to lower voltage, the voltage 
V~ at infinity is lower than the voltage V of the conductor. Take V~ = 0, so 
V > O .  

Let us measure Q with a charge electrometer, as in Section 2.4 (there are 
other ways, but this is good enough in principle), and let us measure V with a 
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V 

t 

Linear dimension 

(a) (b) 

Figure 6.2 Charge Q and potential V relative to infinity 
are measureable quantities. (a) V is proportional to Q. 
(b) Their ratio, the capacitance C = Q/V, is proportional 
to the characteristic geometric length of the object. 

voltage electrometer, as in Section 5.4 (again, there are other ways to measure 
A V). Now plot the curve of Q versus V. 

Volta, in the early 1780s did just this, but he employed the angular displace- 
ment of a straw electrometer instead of V, and the number of turns of a frictional 
electrification device instead of Q. The curve he found was a straight line. Its 
slope is known as the self-capacitance C: 

The unit of capacitance, with units of C/V, is called the farad (F), after Michael 
Faraday, who studied material-dependent effects on capacitance (discussed in 
Section 6.5). The greater the charge Q, for a given voltage V relative to ground, 
the greater the capacity to store charge. In the form Q = CV, it has been called 
Voha's law. See Figure 6.2(a). 

• Measuring self-capacitance 

Consider an isolated object that is too complex for its self-capacitance to 
be computed: an aluminum paint-sprayed rubber duck. See Figure 6.3(a). 

Figure 6.3 Capacitance: (a) An isolated conductor resting 
on an insulating surface. (lo) A spherical capacitor: a 
conducting sphere of radius a and charge Q. 
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(Rather than having the duck sit on an insulator, close to ground, for better 
electrical isolation it could be hung from the ceiling by an insulating string.) 
Let the duck be given a charge Q = 6 • 10 -11 C, and let a measurement of 
its voltage relative to a distant point yield V = 20 V. (a) Find its capacitance. 
(b) If it is now connected to a source of charge (i.e., a charge reservoir) at 
fixed voltage V = 8 V, find the charge Q' on the capacitor, and the change in 
the amount of charge on the reservoir. 

Solution: (a) Equation (6.1) gives C - Q~ V = 6 x 10 -11C/20V = 3 x 10 -12 F, 
or 3 pF (pF = 10 -12 F=picofarad). (b) For V=20V,  Q = CV gives Q ' =  
2.4 x 10-11 C. Since the charge on the capacitor has decreased, by charge conser- 
vation it has supplied Qres ~ ( 6 -  2.4) • 10 -11 C = 3.6 • 10 -11 C to the charge 
reservoir. 

Here is another question. If our conductor (e.g., the duck) is scaled up pro- 
portionally in all three dimensions by a factor of two, how does that affect C?. 
The answer is it doubles. As will be shown shortly, C scales linearly with the linear 
dimension of the object; not with the surface area (linear dimension squared) nor 
with the volume (linear dimension cubed). See Figure 6.2(b). 

~ Capacitance of a larger-volume duck 

Let the duck of the previous example expand in volume by a factor of five, 
while still maintaining its same proportions. (a) Find its new capacitance C'. 
(b) If V = 8 V before the increase in volume, and if the duck is electrically 
isolated during expansion, find the new voltage V'. 

Solution: (a) Since the volume (which varies as the cube of the linear dimension) 
is larger by a factor of five, the linear dimension is larger by 51/3 = 1.71. Hence 
the capacitance is now C ' =  (1.71)(3 pF) = 5.13 pF. (b) For V =  8 V, Q' = 
2.4 • 10 -11 C, from the previous example. On expansion, Q' = Q but the new 
voltage is V' = Q ' / C ' =  4.68 V. 

6o2~1 

We now consider an example showing that  Q versus V has a constant slope, 
and that  this slope, C, varies with the linear dimension of the object. 

Theory of Isolated Spherical Capacitor 

Consider a solid conducting sphere, of radius a, which is given a charge Q.  
See Figure 6.3(b). By symmetry, Q is distributed uniformly over the surface. 
As discussed in Section 5.8, for r > a, it produces the same electric field and 
potential as a point charge, V(r)  - k Q / r ,  and V~ - 0; and for r < a its potential 

In addition to the possibility of confusing voltage V with volts (V), we now have the 
possibility of confusing capacitance C (italicized) with coulombs C (not italicized). A 
larger alphabet--such as that used by the Chinese language--might cure this difficulty. 
Blame written language, which is a product of the human mind, not science, over which 
we have less control. 
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Multimeters, which can be purchased at electronics stores and discount stores, measure 
a voltage difference in proportion to the current that it causes. This works if the voltage 
is maintained by some electrical power source. However, if the voltage is due to a small 
and nonreplenishable charge source, such as a capacitor, the voltage will fall rapidly as 
the charge is drawn off in the process of producing the current. This leads to either 
of two results: if the initial voltage is relatively low, no reading at all; if the voltage 
is relatively high, a blown fuse because of the large initial current flow through the 
multimeter. To measure voltage in this case, a modern electrometer is used. Unlike the 
original devices (e.g., calibrated leaf electroscopes), modern electrometers are "active" 
devices that sense the charge Q on the input side, but use an internal power source to 
cause, on the output side, current flow in proportion to Q. 

takes on the constant value V(r) - k Q/a.  Thus 

That is, (6.2) indeed satisfies the rule of Figure 6.2(a), that C, the slope of 
Q versus V, is independent of V or Q. Moreover, (6.2) satisfies the rule of 
Figure 6.2(b), that C scales with the linear dimension of the object, in this case 
its radius. Without saying it, we effectively used the equivalent of (6.2) at the 
end of the last chapter, where we considered two distant conducting spheres. 

~ T w o  unusual capacitors 
(a) Find the capacitance of an 18th-century cannon, approximated by a sphere 
of radius 0.5 m. (b) Find the capacitance of a sphere the size of the earth. 

Solution: (a) By (6.2), C = a/k = 5.56 x 10 -1~ F = 55.6 pF. (b) The earth has 
radius 6.37 x 106 m, so (6.2)yields C = 7.08 x 1 0  - 4  F. 

6~ Why Q~ V Is Independent of Q; Why C Scales with 
the Linear Dimension 

The potential of a capacitor can be determined by summing up the potential due 
to all its charges, thought of as point charges. Since, for V~ - O, V - NikQi/Ri, 
for this sum, doubling each Qi m e a n s  doubling V. Hence Q~ V is a constant, 
independent of Q. 

Moreover, doubling the linear dimension of the capacitor means doubling 
each Ri, and thus halving V. As a consequence, C -  Q~ V doubles. Hence, if 
an aluminized rubber-duck baby has capacitance C, then an aluminized rubber- 
duck mother that is doubled in each direction has capacitance 2 C. Equivalently, 
if equal charges are put on two objects, one being a scaled-up version of the other, 
the voltage will be higher on the smaller object. This scaling with the dimension 
of the object is a consequence of the fact that the force law for electricity is an 
inverse square, which leads to V = k Q / r  for a point charge Q. Capacitance is a 
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useful quantity because it is a function of the geometry and the material of the 
capacitor, not of its charge or voltage. 

~ T w o  well-separated spheres 
Two spheres with radii, rA = R and rB = 2R are very distant from each other. 
Each is given the same charge Q. (a) If VB = 200 V, find VA. (b) If, in addition, 
r B - 4 cm, find Q and CB. 

Solution: (a) By (6.1), C -- Q~ V for any isolated conductor at potential V rela- 
tive to infinity; by (6.2), C - a~ k for a sphere of radius a. Combining these two 
gives Q~ V - a~ k, so Q - Va/k .  Applied to spheres A and B, with QA -- QB, 
this yields 

VA r A VB r B 
- or VA rA - VBrB. 

k k ' 

Hence 

VA= V/3 (r~-~A) -- V/3 ( 2 ~ )  - 2V/3 = 400 V. 

Even without knowing QA or rA, we have found VA. (b) C =  a / k  gives 
CB - 2(.04m)/[9 x 109 N-m2/C 2] - 4.44 x 10 -12 E Then Q -  Q B  - CB VB - 

8.89 x 10 -l~ C. This is a typical static electric charge. 

6.3 Two-Plate Capacitors 

For a general two-plate capacitor, let us give to the two conducting plates (which 
can have arbitrary shape) equal and opposite charges •  and then measure 
the voltage difference A V - -  V1 - �89 between the plates. Here V1 is associated 
with Q and �89 is associated with - Q ,  so that  A V > 0. See Figure 6.4. We now 
define the capacitance to be 
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For the same reasons as in the previous section, C - Q / A  V is independent  
of Q or A V, and it scales with the linear dimension of the system, by which we 
mean we must  scale both the plates and their separation. 

Figure 6 .4  Two conductors with equal and opposite 
charge 4-Q and voltage difference A V. In isolation 
from other conductors and charge, this constitutes a 
two-plate capacitor. 
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Keep in mind that capacitor plates are made of conducting material, which in equi- 
librium have lots of negatively charged conduction electrons (the ones that can move 
freely about the conductor), and an equal and opposite amount of charge from es- 
sentially immobile positive ions. A capacitor plate containing 0.01 of a mole has about 
6 x 1021 atoms. If the plate is made of copper, with two conduction electrons per atom, 
that means 2e = 3.2 x 10 -19 C of negative charge per atom that can move freely. Mul- 
tiplying by 6 x 10 21, for the plate as a whole there is -1920 C of charge from the 
conduction electrons, and 1920 C of charge from the positive ions. Usually, a capac- 
itor will be given no more than a fraction of a coulomb of charge. If the capacitor is 
given a charge of Q =0.001 C, then the positive plate will have (0.001 - 1920) C of 
charge from electrons (and +1920 C of charge from positive ions) for a net charge of 
0.001 C, and the negative plate will have (-0.001 - 1920) C of charge from electrons 
(and +1920 C of charge from positive ions) for a net charge of -0.001 C. 

6.3~1 Parallel-Plate Capacitor 

Consider two parallel plates, each of area A, separated by d, and given equal and 
opposite charges • Q. Neglecting end effects, the charge densities on the plates 
have the uniform values + a -  +Q/A_ See Figure 6.5. Each plate produces a 
uniform field of magnitude 2:rcka, and since the fields of the two plates add in 
the region between the plates (/~ points from the positive to the negative plate), 
E - 4rcka, as in (3.36). Then the voltage takes the simple form A V -- Ed, as in 
(5.18). Hence 
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For comparison, let A -  4rra 2, as for a sphere of radius a. Then (6.4) yields C - 
4zra2/4rrkd - (a/k)(a/d) ,  giving a factor (a/d) relative to the capacitance (a/k) 
[compare Equation (6.2)] of the sphere. This factor of a/d can be made very 
large. It is one reason that two-plate capacitors can have much larger capacitances 
than one-plate capacitors. 

Figure 6.5 Parallel-plate capacitor of plate area A 
and plate separation d. 
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~ A  two-plate capacitor 

Consider a parallel-plate capacitor with circular plates of radius a -- 1.0 m, 
and plate separation d = 2 x 10 -4 m. (a) Find its capacitance. (b) What  radius 
would a sphere need to have the same capacitance? 

Solution: (a) The plate area is A = z r a  2 - -  3 . 1 4  m 2. Then, with d = 2 x 10 -4 m, 
(6.4) gives 

3.14 m 2 
C = = 1.39 x 10 -7 F. 

[(4zr)(9 x 109 N-m2/C2)(2 x 10 -4 m)] 

(This is smaller than what we can easily obtain with commercial capacitors, 
but it is much larger than for a sphere of radius a = 0.5 m.) (b) To achieve 
an equivalent capacitance on a spherical capacitor, (6.2) gives C = a/k, so 
a = kC = (9 x 10 9 N-m2/C2)(1.39 x 10 -7 F ) =  1250 m! 

6.3.2 Concentric Spherical Two-Plate Capacitor 

Let the outer  radius be b and the inner radius be a. Place Q on the inner 
sphere and - Q  on the outer  sphere. See Figure 6.6(a). 

This situation has spherical symmetry, so E - (kQenc/r2) la o f  ( 4 . 1 5 )  applies. 
For a < r < b, Qenc- Q, s o  E - (kQ/r2) i  for a < r < b. Thus 

fb a -~ 
A V - -  V ( a ) -  V ( b ) - -  E.  d~ 

b b ._ I b ( 1  1 ) _ k Q ( b - a )  
-- fa k T ~ r ' r d r -  I ~ d r -  kQ  = - k Q  - ~ - -  ab " 

r a a 

Hence 

C = Q = ab (concentric spherical capacitor) (6.5) 
A V k(b - a)" 

-2 

(a) (6) 

Figure 6.6 Two-plate capacitors: (a) Spherical 
capacitor with inner radius a and outer radius b. 
(b) Long cylindrical capacitor with inner radius a 
and outer radius b. 
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Applying this to the earth, with a ~ b - 6.4 x 10 ~ m and b - a ~ 5 x 10 4 m 
(about the distance to the ionosphere, which neutralizes the charge of the 
earth), (6.5) yields C - 4 . 5 3  x 10 -2 F, much  larger than the 7.08 • 10-4F of 
Example 6.3(b). 

~ T w o  checks 
(a) Show that, when the separation b -  a = d between the two spheres is 
small compared with a or b, the capacitance is that of two parallel plates 
of area A = 4Jra 2. (b) Show that, when b -~ ~ ,  the capacitance is that of an 
isolated spherical capacitor of radius a. 

Solution: (a) As a -+ b, with b - a = d, C = ab/k(b  - a) -~ a2/kd  = A/4zckd, 
as in (6.4) for a parallel-plate capacitor. (b) As b-+ e~, C = a b / k ( b -  a) 
ab/kb  = a~ k, just as in (6.2) for the single sphere of radius a. 

6~176 Concentric Cylindrical Two-Plate Capacitor 

Let the outer radius be b, the inner radius be a, and the length l of each be so 
long (l >> a, b) that  end effects can be neglected. Place charge per unit  length 
)~ on r = a and -)~ on r = b. See Figure 6.6(b). We have already obtained the 
voltage difference between two such cylinders in (5.39) of the previous chapter, 
but  the derivation bears repeating. 

This situation has cylindrical symmetry, so/~ - (2k)~n~/r)# of (4.19) applies. 
For a < r < b, ~,enc = )~, SO E = (2k)~/r)# for a < r < b. Thus 

a z b ( _ ~ )  
A V -  V(a )  - V(b)  - - Z  ~ "  d~ - # .  # dr 

_ Z b ( 2 ! _ _ ~ ) d r - ( 2 k X ) l n ( r ) ]  I - 2k)dn b. 

Hence 

C -  Q = l (concentric cylindrical capacitor) (6.6) 
AV 2kln (~)" 

Taking b = 3 m m  and a - - 0 . 2  m m  (approximate values for the co-axial ca- 
ble of commercial  cable companies) yields a capacitance per unit length C/I  - 
2.05 x 10 -11 F/m. A 100 m length of such cable has C = 2.05 x 10 -9 F, so to 
produce A V - 2 V requires Q~ - CA V - 4.10 x 10 -9 C. 

6.4 Capacitors in Circuits 

Equation (6.4) says that  doubling the area of a capacitor doubles the capacitance 
because twice as much  charge can be stored at the same voltage. This can be 
done with two identical capacitors C in parallel, each with the same voltage 
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r /Q 
c c -r -?Q 

(a) (b) 

Figure 6.7 Capacitors in circuits. (a) Two identical 
capacitors in parallel. They have the same potential 
difference. (b) Two identical capacitors in series. They 
have the same charge. 

difference A V. See Figure 6.7 (a). Thus two capacitors in parallel should have a 
larger equivalent capacitance than either by itself. 

Equation (6.4) also says that doubling the plate separation d halves the ca- 
pacitance because the voltage doubles with the same amount of charge. This can 
be done with two identical capacitors in series, each with the same charge Q. 
See Figure 6.7 (b). Thus two capacitors in series should have a smaller equivalent 
capacitance than either by itself. 

With this background, let us now consider capacitors in series and in parallel. 
We will later consider more general cases. 

6~4~1 Capacitors in Parallel 

When capacitors are wired together in parallel, they have common upper ter- 
minals and common lower terminals. Thus, to place one capacitor in paral- 
lel with another, we must make two connections, one for each terminal. See 
Figure 6.8. Moreover, two new connections are needed to place a second ca- 
pacitor in parallel with one that is already in a circuit. They are represented 
schematically like an end view of a parallel-plate capacitor. For purposes of argu- 
ment, assume a reservoir of charge at a fixed voltage A V, to which capacitors C1 
and (22 can be connected. Our goal is to determine the equivalent capacitance C 

C1 C2 V I 
V2 ~ 

+l 
v 

Q=Q1 + Q  2 

_~~-Q= -Q1 - Q2 

Figure 6.8 Two capacitors in parallel. They have the 
same potential difference. The equivalent capacitor has 
the same potential difference and an equivalent charge 
equal to the sum of the individual charges. 
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of these capacitors in parallel. (The resulting value of C is independent of how 
the voltage difference is produced.) To find C, we use two essential principles: 
(1) charge conservation, established in Chapter 1, and (2) the path independence 
of the voltage, established in Chapter 5. 

First, because the electrical potential is independent of path, capacitors (21 
and C2 in parallel with each other each have the same voltage difference as their 
combined equivalent capacitor: A V1 = A �89 -- A V. Second, by charge conserva- 
tion the charge Q given to the composite capacitor distributes itself to become 
charges Q1 and Q2 on the individual capacitors: Q = Q1 + Q2. (For ideal ca- 
pacitors, the charges on opposite plates are equal and opposite, to produce zero 
external electric field, thus assuring no current flow in the external system.) Since 
Q1 = C1AV1 = C1AVand Q2 = C2AV2 = C2 AV, 

Q = Q1 + Q2 = ((71 + C2)AV. (6.7) 

That is, at fixed total charge Q, capacitors in parallel share the charge. By the 
definition (6.3) of capacitance, C = Q/AV,  (6.7) then leads to 

........... i ! iTi  !ii!J!iiiiYiii .................  Jiii iil  iii! ................. i .................................................................................................................................................................. ...... 

More generally, for many capacitors in parallel, C = C1 + C2 + . . . .  

• Connecting and two charged cross-connecting 
capacitors in parallel 

Let (71 - 3  #F and C 2 -  6 /,F initially be isolated with Q(1 ~  8 #C and 
Q(~)-  10 #C. Label the plates of C1 as a and a', and those of C2 as b 
and b'. Let them first be connected positive to positive (a to b) and nega- 
tive to negative (a' to b'). After they come to equilibrium, let them next 
be connected positive to negative (a to b') and negative to positive (b to 
a'); the left of Figure 6.9 shows this just before the connections are com- 
pleted. (This cross-connection is like that on going from Figure 1.10(b) to 
Figure 1.10(c). It is also related to the connecting of two spheres, as in 
Figure 5.26.) (a) Find the initial voltage differences across each capacitor. 
(b) Find, after the connection is made, the charge on each capacitor, and the 
voltage differences across each capacitor. (c) Find, after the cross-connection 

 VTT Q1 Q2 tll = AV 2 ~ Q =  Q1 - Q2 

-Q1 a' Q -  -Q1 + Q2 

Figure 6.9 Connecting two charged capacitors, positive plate to negative and 
negative to positive. After equilibration, each pair of plates has the same 
potential. By charge conservation, the equivalent capacitor has an equivalent 
charge equal to the sum of the individual charges. 
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is made, the charge on each capacitor, and the voltage differences across each 
capacitor. 

Solution: (a) From the initial charges and capacitances, the initial voltages are 
A Vl(0) = Q(0),/C1 = 2.67 V and A V2 (~ = Q(~)/Ca - 1 .67 V. (b) On making the 
connection, charge will transfer (i.e., charge conservation applies) until the 
voltage differences become the same. On making the connection, the capac- 
itors are in parallel, with net capacitance given by (6.8), or C - C 1  + (22 = 
3/zF + 6 #F = 9 #F. They have total charge Q = Q(1 ~ + Q(~) = 8 # c + l 0 #C = 
18 /~C. Thus, after connecting them, their common voltage difference is 
A V1 - A V2 = A V = Q~  C = 18/~C/9/~F - 2 V. They then have charges Q1 = 
(21A V1 = (3/~F)(2 V) = 6 #C and Q2 = C1A V2 = (6 #F)(2 V) = 12 #C, which 
sums to 18/~C, as expected. (c) On making the cross-connection, charge will 
transfer (i.e., charge conservation applies) until the voltage differences become 
the same. Now, however, the total charge is Q' - Q1 - Q 2  = 6/x c - 12 #C - 
-6 /~C.  (The negative means that the plates a and b' are negatively charged.) 
Again, the capacitors are connected in parallel (even though different plates are 
now in parallel). Hence, their common voltage difference is A V 1' - A V~ = A V' = 

Q ' / C  = - 6  /~C/9 /~F = - 0 . 6 6 7  V. They then have charges Q1 = C1AV1 = 
(3/~F)(-0.667 V) = - 2 / ~ C  and Q2 - C1A 1/2 = (6/xF)(-0.667 V) - -4 /xC,  
which sums to -6/~C,  as expected. Note the importance of charge conservation 
on both connection and reconnection. 

Since the system goes to these states spontaneously after the connections 
and cross-connections are made, the energy of the final state must be less than 
the energy of the initial state. We will see this after we study energy storage by 
capacitors. (Recall that, on releasing a ball, it spontaneously falls under gravity, 
since it has more gravitational potential energy in its "initial" position than in its 
"final" position.) 

~ O n  inventing your own rules 

Many students like to invent their own rules for what happens on connecting 
capacitors--average the charges or average the voltages m but this violates 
a well-known fact, adapted from gorillas to capacitors. In a cage with 50 
bananas, how many bananas does a 500-pound gorilla eat for lunch? 

Solution: It depends on whether it is alone, or if there is a 1000-pound gorilla in 
the same cage. For gorillas, the larger the stomach capacity of the gorilla, the larger 
the number of bananas it has for lunch; for capacitors, the larger the electrical 
capacity, the larger the amount of charge it holds for a given voltage difference. 
For C1 ~ (22, averaging the charge clearly satisfies charge conservation but gives 
A V 1' ~ A V~, which makes the voltage path-dependent. Similarly, averaging over 
the voltage differences gives A V 1' = A V~ but violates charge conservation. 

6.4.2 Capacitors in Series 

In contrast  to the case of two capacitors in parallel, where  two pairs of plates 
are connected,  for two capacitors (21 and (22 in series only a single pair of plates 
is connected.  Initially, there  is no charge on the plate of either capacitor. See 
the  lef tmost  par t  of Figure 6.10. For purposes of argument ,  assume a reservoir 
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C~ (22 Ci C2 C 

v~ + zxv2-~'l Q~ = Q2 = Q 

Figure 6.10 Two capacitors in series. They have the same charge. The equivalent 
capacitor has the same charge and an equivalent voltage equal to the sum of the 
individual voltages. 

of charge at a fixed voltage A V, to which one end of each of the capacitors C1 
and (72 is connected. Our goal is to determine the equivalent capacitance C of 
these capacitors in series. (The resulting value of C is independent of how the 
voltage difference is produced.) As for capacitors in parallel, we use the two 
principles of charge conservation and of the path independence of the electrical 
potential. 

On connecting the voltage source, let its positive side put charge Q1 on the 
outer plate of Ca, and let its negative side put charge - Q 2  on the outer plate 
of (72. For ideal capacitors, as we assume here, the plates of each capacitor have 
equal and opposite charge, to produce zero external electric field, thus assuring 
no current flow in the external system. Thus, as illustrated in the leftmost part 
of Figure 6. l 0, the plates of C1 and (22 have charges + Q1 and + Q2. 

Application of charge conservation to the originally neutral region connect- 
ing the two capacitors yields Q~onne~t = 0 -  Q 2 -  Q]. Hence Qi  - Q2; the 
charges on adjacent plates must be equal and opposite. Call this common value 
Q. Then A Va - Q a / Q  - Q/Ca and A V2 - Q2/C2 - Q/C2. Application ofthe 
path independence of the electrical potential, both to the equivalent capaci- 
tor subject to A V and by summing the voltages across the series of capacitors, 
yields 

(1 ,) 
AV--AV +A�89 . (6.9) 

That is, at fixed total voltage difference A V, capacitors in series "share" the volt- 
age difference. By the definition of capacitance, (6.3), written as 1 / C -  A V / Q ,  
(6.9) leads to 

More generally, for many capacitors in series, C -1 - C~ -1 + C2 -~ + . . . .  

Floating" voltage Leyden jar and the 

After the Leyden jar was discovered, many tried to reproduce the result, 
but were unsuccessful because they stood on an insulator, such as a cake of 
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wax. (They weren't stupid; it had become customary to perform electrical 
measurements on an insulator, in order to keep the charge from escaping.) 
This meant that, instead of their body serving as a wire connected to ground, 
their feet were serving as a plate of a feet-wax-ground combination (capac- 
itor C1), their hand was serving as one plate of the Leyden jar (capacitor 
C2), and their body was like the wire connecting the two plates of these 
capacitors in series. Since (6.4) shows that a relatively large separation (as 
between feet and ground) gives a relatively small capacitance, take the feet- 
wax-ground capacitance to be C1 = 10 -11 F, and the Leyden jar to have the 
much larger capacitance of C2 = 10 -9 F. Further assume that the electro- 
static machine produced A V = 1010 V on the cannon, relative to ground. 
Find the total capacitance of the system and the voltage change across each 
of the capacitors. 

Solution: By (6.10), for capacitors in series, C = 0.99 • 10 -11 F, so that Q = 
CA V = 10 -8 C. Since Q] = Q2 = Q, we obtain A ~ = Q/C1 = 1000 V and 
A V2 = Q~ c2 = 10 V. They sum to the expected value of 1010 V. In this case, 
the Leyden jar has only 10 V across it, as opposed to the 1010 V it would have 
for someone standing on ground. That explains the inability of the other experi- 
menters to charge up the Leyden jar enough to cause a shock. The voltage of the 
experimenter has "floated up" to 1000 V, very close to the 1010 V of the inside 
of the Leyden jar. 

Note that the capacitor with the larger capacitance requires a larger charge 
to produce the same voltage as the smaller capacitor. Because capacitors in series 
have the same charge, this means that the voltage across the larger capacitance 
(here, the glass of the Leyden jar) is much less than across the smaller capacitance 
(here, the block of wax between feet and ground). 

From the left-hand side of Figure 6.8, two capacitors in parallel have two distinct pieces 
of conductor, having net charges 0 and -Q. (The two connected conductors on top 
behave like one piece, and similarly for the two connected conductors on the bot- 
tom.) On the other hand, from the middle of Figure 6.10, two capacitors in series have 
three distinct pieces of conductor, with net charges O, O, and -0 .  If you understand 
the distinction between parallel and series, then you should be able to convince your- 
self that three conductors in parallel can be analyzed in terms of only two distinct 
pieces of conductor, whereas three conductors in series can be analyzed in terms of 
four distinct pieces of conductor (what are their charges?). (To treat two capacitors in 
series, with charge on the middle conductor, we must use the methods discussed in 
Section 6.8.) 

6.4.3 Combinations of  Series and Parallel Circuits 

We can produce a wide variety of circuits by combining parallel and series cir- 
cuits. For example, Figure 6.11 shows a complicated-looking circuit that can 
be reduced to parallel and series circuits. In this way, the overall capacitance can 
be obtained. However, a complete description of the circuit involves obtaining 
the charges and voltages for each capacitor, given, for example, the voltage across 
the system as a whole. 
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Figure 6.11 Combinations of series and parallel circuits. 
Parallel and series capacitors are replaced by equivalent 
capacitance until there is only a single equivalent 
capacitance. Not all circuits can be analyzed in this way. 

~ A  combination of three capacitors 

In Figure 6.12(a), there are three capacitors. Let C1 = 3 #F, C2 = 6 #F, and 
(23 = 1 /xF. (21 and (22 are in series with each other, and (23 is in parallel to 
them. Find their equivalent capacitance, Ceff. 

Solution: To find the equivalent capacitance of this combination, add (21 and C2 
in series, to get the equivalent capacitance on the left, Co, as in Figure 6.12(b). 
Then add Cc and C3 in parallel to obtain C, as in Figure 6.1 2(c). Thus, if C1 = 3/zF 
and C2 = 6/zF, then by (6.10), 1 / CL = 1/3/xF + 1/6 #F = 1/2/zF, so CL = 2 lzF. 
Then, by (6.8), C = CL + C3 = 2 lzF + 1 #F = 3 #E  

~ Detailed study of Example 6.9 

In the previous example, let the voltage difference across (21 be 6 V, and let 
its common end with C3 be at ground. Find the charge on each capacitor, and 
the voltage at the other end of C3. 

Solution: Clearly, Q1 = C1A V1 = (3 /zF)(6 V) = 18 #C. Then QL = Q2 = 
Q1 = 18/zC. Hence A V2 = Q2/C2 = 3 V. Thus, the voltage drop across the 
series combination of C1 and (72 is, by (6.9), 6V + 3 V = 9 V. This must be 
the same as the voltage drop A V3 across (23. Thus Q3 = C3AV3 = 9 /zC, so 
QL + Q3 = 27 #C, in agreement with Q = CA V = 27 htC. 

c2 

c1 

~+ 

Q2 
-Q2 Q3 

Q1 -Q3 
-Q1 

(~ + 

(a) 

QL Q3 
C 3 e L  ~ ~ C3 C e f f  I 

Figure 6.12 Combination of capacitors. 

-QL -Q3 

+ 

Q ~  

Q ~  

(c) 
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The analysis of Example 6.1 0 assumes that one capacitor cannot affect an- 
other. That is true for ideal two-plate capacitors that produce no external electric 
fields. However, a wire in a laboratory can charge up, producing an electric field, 
and that electric field can produce an electrical potential that can affect other 
wires in the laboratory. Typically, we want to eliminate such nuisance effects. In 
a more complex analysis, with the wire considered to be a third conductor, from 
measurements of the coefficients of potential (see Section 6.8) the influence of 
the wire can be estimated. 

Although the response of a conductor to a voltage seems to be reflected 
only in its net charge, keep in mind that there is a full charge distribution over 
each conductor, even the connecting wires, and this is an infinitely large set of 
numbers. Clearly, it can be a very complicated problem to work out the entire 
charge distribution although in principle it can be measured experimentally. 

6.4.4 More Complex Circuits 

Although we can produce a wide variety of circuits by the preceding procedure of 
combining parallel and series circuits, there are more general circuits. Pictured in 
Figure 6.1 3(a) is a bridge circuit. To obtain the capacitance of this combination, 
we must assign voltages to each junction and charges to each capacitor, and 
then repeatedly use Q~ = CA V. Because a similar analysis will be performed 
for resistors, in Chapter 8, we will not go into such complexity at this time. 
Consider, however, the case where the voltages at the midpoints, without the 
bridge capacitor, are the same, so A 1/5 = O. Since Q5 = CsA Vs = O, the bridge 
capacitor C5 does not charge up, so it is not an active part of the circuit. 

~ T h e  bridge condition 
Disconnecting one end of the bridge capacitor yields the simplified circuit 
in Figure 6.13(b), which can be analyzed in terms of series and parallel 
capacitors. The left arm has (2] and (23 in series, so 1/CL = 1/C,1 + 1/C3, 

I ] I 
c3 c4 c3 

C 5 ,, 

l 
I 

I 
I 
I 

C2 C1 

(a) (b) 

- -c4 

' C 2  

Figure 6.13 Circuits with multiple capacitors. (a) Bridge 
circuit, which cannot be reduced in terms of equivalent 
resistances. (b) Circuit that can be reduced in terms of 
equivalent resistances. 



6.5 Dielectrics 243 

and the right arm has C2 and C4 in series, so 1/Ca = 1/C2 + 1/C4. (Hence 
the total capacitance, if we wanted it, is C = CL + CR.) For a total voltage 
A V across the system, with the (21 and (22 connection at the low voltage end, 
the voltages across (21 and C2 are 

A ~ - Q,~/C~ - ( C'~A V)  - zx V[ 
Cl (Cl + C 3 )  ' 

I ~ ] A � 8 9  - Q R / G  - A V  ( G  + Ca) " 

If A Vs = 0, then the two midpoints are at the same potential, or A 171 -- A �89 
so (23 / ((21 + C3) - C4 / (C2 + Ca). This leads to the bridge condition, 

G G = . (bridge condition) (6.11) 
G c4 

Let C1 and C2 be known, let C4 be unknown, and let (23 be variable. When 
C3 is varied until the voltage difference A V5 across the bridge is zero, the 
unknown Ca can be determined from (6.11). 

6.5 

6~5 I"~ 

Dielectrics 

One reason that the Leyden jar, a two-plate capacitor, worked so well was that 
it had a better geometry for storing charge. A second reason was that for a given 
charge Q the glass between its surfaces increased the capacitance by decreasing 
the voltage difference A V between the plates. The amount by which the voltage 
difference decreased is a measure of what is called the dielectric constant, or rela- 
tive permittivity K of the glass. The quantity e = Ke0 is known as the permittivity, 
thus explaining why e0 is known as the permittivity of free space. 

K is a material property, independent of geometry. See Table 6.1, which gives 
the dielectric constant K and the dielectric strength Ed, the field above which spark- 
ing~electrical breakdown~occurs. We first discuss how to measure K, and then 
show how it affects the capacitance. In measuring Ed, it should be recognized 
that breakdown in a capacitor occurs at the position where the field is largest. 

Determining the Dielectric Constant 

Let a parallel-plate capacitor, with area A and separation d, have plates with 
charge density +or, so the electric field magnitude E0 = 43rkcr. (We neglect edge 
effects.) Now introduce a slab of dielectric (e.g., wood or glass) that  just fits into 
the capacitor. Its molecules become polarized. See Figure 6.14, which includes 
a representation of some polarized molecules (not drawn to scale). 

Table 6.1 Dielectric properties (at standard temperature and pressure) 

Dielectric constant K 1.0059 80 4-6 3.5 2-3.5 5.5 330 2.8 2.3 
Dielectric strength Ed (106 V/m) 3 - -  9 16 30 150 8 20 10 
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Figure 6.14 Capacitor filled with dielectric, including 
polarization charges :ka' on the outer surfaces of the 
dielectric and source charges :t:a on the inner surfaces 
of the conducting plates. A gap is drawn between 
conductor and dielectric, but even if there is none, the 
polarization charge (intimately associated with 
molecules of the dielectric) cannot escape to the 
conductor, or vice versa. 

There will be no net charge within the dielectric, but its surfaces develop po- 
larization charges q:a' opposite the plate charge •  Because a and - a '  produce 
opposing electric fields, the electric field within the dielectric decreases. Within 
the dielectric the field magnitude is now 

E - 4rcko - 4 r c k c r ' -  Eo ( 
c~') 

1 - - -  , E 0  - 4rr k a .  ( 6 . 1 2 )  
o" 

Equation (6.12) may be rewritten as 

E E o  

K 

!i i �84 ~ ~ ~ i,~il,i/i~O i~iii~ ~ ~ } ~ ? ~ ~ % ~ } ~ S ~  

(field,with ~ e ! e ~ c )  ....... ~il;!i~i 

where K is the material-dependent dielectric constant. For real materials, K > 1. 
The more polarizable the material, the larger the value of K. 

Comparison of (6.13) and (6.12) yields 

1 (T f 

- =  1 - - - .  ( 6 . 1 4 )  
K (T 

Here is one way to measure K directly. If the plates have a fixed charge, then 
the voltage difference without the dielectric is 

A Vo = Eod. (6.15) 

For the same charge on the plates, but with the dielectric between the plates, 

Eod 
A V - -  Ed  - ~ ,  (6.16) 

so that the voltage will decrease by a factor of K. 
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~ Determining ~ by measuring voltage 

Let a parallel-plate capacitor in air have voltage difference 20 V. After a 
dielectric is slid between the plates of the capacitor, the voltage difference is 
4 V. Find the dielectric constant K, and the ratio of the charge induced on the 
dielectric surfaces to the charge on the plates of the capacitor. 

Solution: Equation (6.16) yields K = A % / A  V= 5. Equation (6.14) yields ~'/c~ = 
0.8 so that the charge induced on the dielectric surfaces is 80% of charge on the 
capacitor plates. 

6~5~2 Effect of  Dielectric on Capacitance 

What  effect does the dielectric have upon the capacitance? By C = Q ~  A V, with 
fixed Q but A V in the denominator decreased by the factor K, the capacitance C 
increases from its value Co in air (Kair ~ 1) by the factor K. This is true for parallel- 
plate, cylindrical, and spherical capacitors, provided that the region between the 
plates is completely filled with a single type of dielectric. Thus 

For K - 5, this gives an increase by a factor of five in the capacitance. The geo- 
metrical effects associated with two-plate versus one-plate capacitors can easily 
yield an additional factor of ten. Together, they can lead to an overall capacitance 
increase by a factor of 50 in going from a one-plate to a two-plate capacitor. This 
explains the power of the Leyden jar relative to previous methods of charge 
storage. 

• Determining ~ by measuring charge 

Faraday studied the effects of certain dielectrics by using two identical spher- 
ical capacitors, one with an air gap and the other filled with, for example, 
molten sulfur or paraffin, which cooled and hardened. The plates of the two 
capacitors were connected, and thus they had the same potential difference. 
By measuring the charge that flowed to each capacitor, the dielectric con- 
stant could be determined. Let the initial charge, for the empty capacitor, be 
Q0 = 1.5 x 10 -8 C, and let the final charge, where the capacitor is filled with 
dielectric, be Q = 6 x 10 -8 C. Find the dielectric constant. 

Solution: Q = CA V = K CoA V and Q0 = C0A V, so Q = K Q0. For our Q and 
Q0, this gives K = 4. 

Two geometrically different capacitors with the same charge and voltage difference are 
macroscopically identical. However, they are not microscopically identical when placed 
in a circuit. For example, the charge distributions on the plates will differ. Moreover, 
changing the leads to the plates changes the charge distribution on the leads and on 
the plates. 
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6.5.3 
[OJ ~ l  Vlol  il~._l l 

Electrolytic Capacitors and Supercapacitors 

A major advance in capacitor design was the introduction of electrolytic capaci- 
tors, which have a very thin layer of dielectric separating the two plates of the 
capacitor. (Thus, unlike Figure 6.14, there would be no air gaps.) There are at 
least two basic schemes. 

In one scheme, the electrodes (in Figure 6.14, the capacitor plates) are asym- 
metric. The special electrolyte between them normally is conducting, but when 
a voltage is applied in the proper direction, an insulating oxide layer of very 
small thickness d (on the order of 10 -9 m) is deposited. If the electrical leads 
are connected the wrong way, the oxide layer for such a capacitor is removed 
by electrolytic decomposition, leading to breakdown of the capacitor. Such ca- 
pacitors only can be given positive voltage on one side, and for that reason the 
electrodes are clearly distinguished. 

In another scheme, the electrodes are identical. When a voltage is applied, 
the positive ions from the electrolyte are attracted to the negative electrode. 
If the voltage is less than a threshold value on the order of a volt (depending upon 
the electrode and the ions), positive ions press against, but do not react with, the 
negative electrode. The charge on the electrode and the nearby opposite charge 
in the electrolyte behave like a capacitor with a very small plate separation. A 
similar effect with negative ions occurs at the other electrode. Too large a voltage 
causes a chemical reaction at the electrode-electrolyte interface, thus passing 
charge through the electrolyte, and making the capacitor ineffective at storing 
additional charge. By using carbon particles as the electrodes, it has been pos- 
sible to achieve very large effective areas, thus increasing the capacitance even 
further. 

Electrolytic capacitors with C = 1 #F are now commonly available. Even 
larger capacitances are becoming available. There is talk of capacitors of such large 
capacitance ("supercapacitors") that, for some applications, they might store 
enough electrical energy to replace batteries. (A simple application would be to 
maintain the power in a clock driven by ac power, when the power temporarily 
goes out.) 

6.5.4 
. . . . .  

Biological Capacitors: The Cell Membrane 

Living organisms use electricity in many ways. One use is to provide electrical 
signals within a cell and between different cells. Even when cells are in their 
resting state, they are electrically nontrivial because (according to the cell and 
the organism) the voltage within the cell is lower than outside the cell by some 
50 mV to 150 inV. 

The cellular membrane, or cell wall, separates the exterior and the interior 
of biological cells. The individual components of this membrane are amphi- 
pathic molecules, which means that their two ends are very different. The 
head is a polar molecule, having a permanent electric dipole moment. As a 
consequence the head group is attracted to water (thus it is called hydrophilic, 
or water loving). The tail group consists of two long fatty acids, called lipids, 
and avoids water (thus it is called hydrophobic, or water fearing). See Figure 
6.15. 
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Figure 6.15 Details of a biological cell wall, composed 
of a lipid bilayer, which separates the cell interior (cytoplasm) 
from the cell exterior (extracellular space). The wall is 
composed of two layers of amphipathic molecules, their 
hydrophic ends in contact; the homophilic ends are in contact 
with the cytoplasm and extracellular space. 

Such molecules spontaneously self-assemble: throw many in water and 
they form pairs that go tail to tail; then the pairs go side by side to form a lipid 
bilayer~the basis of the cellular membrane. By this means the hydrophilic heads 
are in contact with the water, and the hydrophobic lipid tails are shielded from 
the water. 

Because cell membranes all have nearly the same thickness d (6-10 nm) and 
the same dielectric constant (K ~ 3, appropriate to fats and oils), cell membranes 
all have about the same capacitance per unit area, or specific capacitance Cm. Since 
membranes are relatively thin compared to their area, we may use (6.4) with 
(6.17) to obtain 

C /4 
C~ m A -  4rrkd" (specific capacitance) (6.18) 

For K - 3 and d - 6 nm, (6.18) gives Cm ~ 0.5/zF/cm 2, about a factor of two 
smaller than typical experimental values. The characteristic voltage difference 
A V = 100 mV across a typical cell wall separation of d ~- 10 nm corresponds to 
an electric field of E = A V / d -  107 V/m. This exceeds Ed for air ~. (See Table 
6.1.) However, Ed for lipids is much larger than this. 

For a nearly spherical cell, from a knowledge of its radius a (giving surface 
area A -- 4Jra 2) and Cm, we can estimate its capacitance C - Cm,4_ (Spherical cell 
radii can range from 1-1  O0 #m.) For a nearly cylindrical cell, from a knowledge 
of its radius a (giving perimeter p - 2~a) and Cm, we can estimate its capaci- 
tance per unit length Cmp. (Cylindrical cells, such as nerve axons, the telephone 
wires of the nervous system, have radii that vary from 1 to 250 #m; the largest is 
the giant squid axon, whose size has made it a veritable bioelectrical playground.) 
Figure 6.16 is a schematic of a spherical cell, including negative charges associated 
with large molecules within the cytoplasm (cell interior), positive ions that cancel 
the charges on the large molecules, negative ions that go to the inside of the cell 
wall, and an equal number of positive ions that go to the outside of the cell wall. 
Not depicted are the vast but equal numbers of positive and negative ions that 
are dispersed throughout the volume of the cell. 
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Figure 6.16 Biological cell, with a 
characteristic negatively charged protein 
inside, and ions in its immediate vicinity to 
"screen" its electric field. At the cell wall, there 
are additional ions on both sides, leading to a 
voltage difference across the cell wall. This 
voltage difference is instrumental in the 
operation of certain large proteins within the 
cell walls, which serve as ion channels, ion 
pumps, and ion exchangers, making the 
human body serve as a huge and complex 
electrical machine. 

The cellular membrane is not 
a rigid object, for the molecules 
on either surface (compare Figure 
6.15) can diffuse about that sur- 
face. Moreover, the cellular mem- 
brane also contains proteins that 
serve as selective ion channels (for 
passive flow of ions into and out 
of the ce l l~ th ink  of these as ion- 
selective resistors), selective ion 
pumps (for active flow of ions 
into and out of the ce l l~ th ink  of 
these as ion-selective voltaic cells), 
and other structures. (K +, Na +, 
CI-, and Ca 2+ are the most impor- 
tant ions.) The relatively slow ion 
pumps, and some of the ion chan- 
nels (over 57 varieties) are always 
operating. However, some of the 
ion channels can be switched on 
suddenly by a change in voltage or 
ionic concentration. This causes a 
rapid flow of ions into or out of the 
cell, leading to effects that make 

the larger organism (a collection of cells) operate effectively as a whole. Thus 
your body contains, effectively, a vast number of capacitors that charge and dis- 
charge between the cellular and intracellular electrolytes. The beating of your 
heart is driven by a muscular response set off by this cellular charge and dis- 
charge. You are an electrical machine! 

6.6 

6.6.1 

Electrical Energy 

Energy Storage by a Capacitor 

We now consider the energy U it takes to charge up a capacitor. See Figure 6.17. 
Take U = 0 for charge Q -  0. Clearly the capacitor would discharge spon- 
taneously if the plates were connected, so we expect that U > 0 for Q ~ 0. 
Starting from the configuration where the capacitor is uncharged, successively 
take small charges dQ' from one plate and put it on the other. At any in- 
stant, the charge on the positive plate is Q', so the voltage gain of dQ' is 
A V - Q ' / C .  Since positive charge d Q' is moved to a plate that already has 
positive charge Q', this must increase the electrical energy. By (5.8), or U - q V, 

- Q ' ~ _  

 dQ' Figure 6.17 Charge transfer dQ' from one capacitor plate to another, 
used to determine the energy to charge a capacitor. 
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with (U, q, V) ~ (dU, d Q', A V), the increase dU in electrical energy is 

Q, dQ, 
dU - d Q ' ( A  V) - ~ .  (6.19) 

This can be integrated immediately, with U = 0 for Q = 0, to yield U = 
Q'2/2cIQ, or 

iiiiiiiiii•iiiiiiiiiiiiiii•!i•iiiiiiiiiiiiiiiiiiiiiii•iiiiiiiii•iiii••iiii•iiiii• ii i!! 

iiii~i~i~iiiiiii'~iiiiiiiii!iii;~iiiiiiiiiiiiiii;~i~iiiiiiiiiiiiiii ii i 

Another way to obtain (6.20) is to use U = QA V, where the average voltage 
difference A V at which the charge is transferred is A V = ( Q / 2  C). With Q = 
CA V, (6.20) may also be written as 

U -- QA V U -- V)-------~z . C ( A  (6.2]) 
2 ' 2 

These results also hold for a single-plate capacitor, where Q is brought in from 
infinity. 

~ A  capacitor's energy storage 

For a 20/zF capacitor, let A V = 240 V. Find Q and U. 

Solution: Equation (6.3) yields Q = CA V = 4800 ~tC. Equation (6.21) then 
gives U = QA V/2 = 0.576000 J. If we try to use this energy to lift a live 2 kg 
duck by the height h, U = mgh yields h = 14.6 mm. (Greater height might be 
attained by discharging the capacitor through the duck, but only if the duck 
provides energy of its own.) 

6.6.2 Energy Is Minimized by zl V~ = ~ V2 for Capadtors 
in Parallel 

Consider two capacitors initially at different potentials. On connecting their 
upper plates together, and their lower plates together, thus permitting charge 
transfer, charge is transferred until they reach equilibrium with A Vi = A �89 See 
Figure 6.18. 

In making this adjustment, the total charge on each set of connected plates 
(e.g., the connected upper plates) does not change. We expect that such a spon- 
taneously reached situation is a min imum of the energy. Let us see if that  is 
indeed the case. The total electrical energy is given by 

0 2 
U -  t """ �9 (6.22) 

2 Q  2C2 

C1 

dQ1 = -dQ2 

Q] Q2 

-Q1 -Q2 
C2 

Figure 6.18 Charge transfer from one capacitor to another, 
used to study energy minimization when two capacitors are 
brought into electrical contact. 
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6.6.3 

At fixed total charge, Q = Q1 + ~2-~  constant, so d Q1 = - d Q 2 .  The differ- 
ential of U is then 

dU - O-"l d + ~2~2 d Q2 - (~1C1 Q,2)C2 dQ1.  (6.23) 

From (6.23), the energy is minimized when dU/dQ,1 = O. This corresponds to 
Q1/C1 = Q,2/C2, or A V1 = A V2, as expected. 

Energy Density for a Capacitor 

Let's apply (6.21) to a parallel-plate capacitor containing material of dielectric 
constant K. Successively placing (6.4), (6.17), and (6.16) into (6.21) yields 

1 KA (AV)  ~ -  Ad  E ~ _ K A d E 2  (6.24) 
U -  ~ 4~rkd - 8Jrk K ~nk " 

The electrical energy per unit volume u~, also known as the electrical energy 
density, is given by the electrical energy U divided by the volume Ad. Using 
(6.24), this becomes 

U 2 
u~ = - ; - i = r E ~ , .  ( e l e c t r i c ~ e n ~  d e ~ ~ :  ~ ~  

, ~ a  6zre 

This result is true in general. Recall that E is the field within the dielectric itself. 

~ Electric field within a capacitor 

Consider a dielectric with K = 4. To achieve uE - 2 x 108 J/m 3, a value that 
is characteristic of energy storage in a voltaic cell, what must E be? 

Solution: Equation (6.25) yields E-(8zrku~/K) 1/2, so here E =3.38 x 
109 V/m. This exceeds Ed for most materials. Supercapacitors must withstand 
such a large E. For air at atmospheric pressure, with K ~ 1 and Ed ~ 3 x 106 V/m, 
(6.25) gives only uE = 39.8 J/m 3. 

• Energy capacitance spherical capacitor calculation of of 

We will verify that (6.25) holds more generally, by reconsidering the single- 
plate spherical capacitor. In this case, E = k Q / r  2 forr > a, and for a spherical 
shell of radius r and thickness dr the volume element is d~2 = 4Jrr2dr. (Since 
V means voltage, we must use another symbol for volume.) How much energy 
is required to charge the capacitor? 

Solution: By (6.25) with K - 1 (an air gap), and with d U -  u~d~2, 

u -  f u aV - / u (azrr2) dr - L ~ (kQ/r2)2 (4zrr2) 

_ k Q  d r  _ k Q  

Ja 2 r 2 2a 

Using (6.26) in (6.20) yields C -  Q2/2U - a/k, in agreement with (6.2). 

(6.26) 
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6~176 Spontaneous Charge Transfer Causes a Decrease 
in Electrical Energy 

W h e n  two conductors  at different potentials are connected, charge flows be- 
tween t h e m  until  their  potentials are equalized. Since this occurs spontaneously, 
the total electrical potential  energy mus t  decrease in this process. The energy 
goes into heating up the system, due to drag forces on the charge tha t  passes 
through the wire connecting the two conductors. Such resistive heating will be 
discussed in detail in the next  chapter. 

~ Energy loss on connecting two capacitors 

How much energy is lost on connecting and cross-connecting the capacitors 
in Example 6.7? 

Solution: Example 6.7 has C~ = 3 ~tF and C2 = 6/xF, and initial charges Q(0) = 
8/xC and Q(2 ~ - 10 #C. Thus the initial energy is (Q(1~ + (Q(~))2/2C2 = 
19/zJ. After connection, Q1 - 6 / z C  and Q2 = 12 #C. Thus after connection the 
energy is Q2/2 C1 + Q2/2 C2 = 18/xJ. After cross-connection, Q~ = 2 #C and 
Q~ - 4 #C. Thus the energy after cross-connection is Q'I 2/2 C1 + Q~2/2 C2 = 
2/zJ. As expected, the system loses energy at each step. 

E ~ ~ ~ ~  Energy loss on connecting two spheres 

Let two spheres with radii rl - 0.5 m and r2 - 1 m, and charges Q1 - 0 and 
Q1 - 10 -9 C, be very far apart. What  is the change in energy of the system af- 
ter the spheres are connected, and how much charge is transfered to sphere 1 ? 

Solution: By (6.2), C1 - r l / k -  5.56 x 10 -11Fand C2 = r 2 / k -  1.11 x 10-1~ F. 
For Q1 = 0 and Q2 - 10 -9 C, they have an initial total energy of U1 + U2 = 
0 + Q2/2 C2 - 4 . 5  x 10 -9 J. When they are connected, charge transfers across 
them until they have the same voltage, so they may be thought of as be- 
ing in parallel. Hence C = C1 + C2 - 1.67 x 10 -l~ F. They have a net charge 
Q ' -  Q1 + Q2 = 10 -9 C, so after the connection they now have energy U' = 
Q'?/2 C -  3.0 x 10 -9 J. Thus, as expected, the system has lost energy. Note that 
A V' - Q'/C - 6 V, so that Q'I = C1A V'I = C1A V' = 3.33 x 10 -l~ C, which is 
the amount of charge transferred by the connection. 

6.7 Force and Energy 

From Chapter  5, if a charge q in an electric field/~ is displaced by d~', then the 
change in its electrical energy dUq is given by the negative of the electrical work  
dW, or 

dUq - - d W -  - q  E . d~. 

Summing  over many charges qi, the total electrical energy change is given by 

d U  - - F  . d~, F - E qi El. (6.27) 
i 
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Here /~ is the total electrical force. We will use (6.27) to study a number of 
different situations. 

6.7.1 Direct Calculation of Attractive Force between Plates 
of Parallel-Plate Capacitor 

The force of attraction between the plates of a parallel-plate capacitor was given 
in the previous chapter, when we discussed the force electrometer. The result is 
sufficiently important, of itself and as a check for our calculation by the energy 
method, that it doesn't hurt to repeat this trivial calculation. 

Consider a capacitor of area A whose plate separation d is much less than the 
characteristic width of the capacitor. For simplicity, consider a capacitor with an 
air gap, so we take K - 1. The force magnitude F - 1/~1 on the positive plate is 
the product of its charge Q with the electric field magnitude E = 2zrka of the 
other, where a = Q / A .  Thus 

F = Q E -  Q(2zrka) - 
2 n k Q  ? 

A 
(6.28) 

6.7.2 Energy Calculation of Attractive Force between Two 
Capacitor Plates: Fixed Charge 

F will now be obtained by calculating the energy change when the upper plate 
position changes from d to d + ~d. (Since d d  is a terrible notation, here we will 
denote small changes in any quantity, such as d, by ~d.) With C = A / 4 r c k d ,  this 
leads to ~C= ((~C/,~d)(~d = - ( A / 4 z r d 2 ) , ~ d .  For a capacitor in isolation, the charge 
is fixed. Thus, with U = Q2/2 c and (6.4), at fixed Q the differential of U is 

~U - - - 2  - 4rckd  2 2 - Q2.__~_(~d. (fixed charge) 

(6.29) 

Thus, at fixed Q ,  a increase in d causes an increase in U. Clearly, the system will 
want to spontaneously con t rac t~an  attractive electrical force Fy. Explicitly, at 
fixed Q, and from (6.27) with d~" = :9~d, 

(~ UI Q -- - F f i d .  (6.30) 

Comparison of (6.29) and (6.30) yields Fy - -F ,  with the same F as in (6.28). 
The negative sign in Fy means that the force is downward, corresponding to 
attraction. 

6.7.3 Energy Calculation of Attractive Force between Two 
Capacitor Plates: Fixed Potential 

Let our capacitor be in parallel with a second capacitor of much larger capaci- 
tance so that even if the second capacitor transfers charge, its potential remains 
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essentially unchanged. (We can think of the second capacitor as a reservoir 
at fixed potential.) F will now be obtained by calculating the energy change 
when the upper plate position changes from d to d + (~d, but we now must in- 
clude the energy of the second capacitor. See Figure 6.18. Again we employ 
(6.20) for the energy, but there are now two independent variations. On the one 
hand, we change the capacitance C by ~ C on changing the plate separation, as in 
(6.29); on the other hand we permit charge transfer ~Q~ = -~Q2,  as in (6.23). 
The differential of U is the sum, or 

, : s u - -  c, Q2|\ ~Q1. (fixed voltage) (6.31) 
C2 / 

Since we are in equilibrium, the second term is zero because A 171 -- Q1/C1 - 
A V2 = Q2/C2.  Hence the coefficient of ~Q1 cancels; only the first term survives. 
However, this is the same as (6.29) for the isolated capacitor, so it leads to the 
same force as for the isolated capacitor. Thus, as expected, the force of attraction 
between the plates of a capacitor does not depend on the circuit to which it 
belongs. Another way of describing the topic of this section is to say that we 
have calculated the force between the plates at fixed voltage. 

6~7o4 Att ract ion  o f  a Dielectr ic into a Capacitor 

We now apply (6.27) to find the total electrical force/~ on a slab of dielectric that 
is partially inserted into the plates of a parallel-plate capacitor. See Figure 6.19. 

Because this problem is related to the 
amber effect, we expect the slab to be 
attracted inward. A direct calculation, 
involving a sum of forces over all parts 
of the capacitor, including the fringing 
field region, would be quite difficult. 
However, as long as the slab edge isn't 
near either edge of the capacitor, we 
can obtain F by energy considerations. 

Figure 6.19 Dielectric plate partially In that case, the total energy change 
inserted into a parallel-plate capacitor. In 
the interior region, there is a large field on moving the slab by a small amount 
but negligible field gradient. In the involves, effectively, only a transfer of 
exterior region, both field and field material from the region within the ca- 
gradient are negligible. In the fringe pacitor to the region outside the ca- 
region, both field and field gradient are pacitor. The energy in the difficult-to- 
nonnegligible. By the amber effect, calculate-with fringing field region is 
forces act only in the fringe region to the same in both cases, so it does not 
attract the dielectric into the capacitor, contribute to (6.27). 
Nevertheless, an energy calculation that To be specific, let the capacitor have 
neglects the fringe region permits that thickness d and area A - Lt, where L 
attractive force to be calculated. is into the page and l is horizontal. Let 

air fill an a r e a  A a i  r ~ L ( l -  x), and let 
the dielectric fill an a r e a  A d i e l  - -  Lx.  Thus an increase in x corresponds to the di- 
electric moving inward. See Figure 6.19. Assume that, within the capacitor, the 
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field lines go directly from the positive to the negative plate. This is a consistant 
assumption because then, by Gauss's law there is no charge at the air-dielectric 
boundary, and therefore no charge that tends to bend the field lines. 

Treat this as two capacitors in parallel since the common upper and lower 
plates cause the voltage difference A Vai r across the air gap to be the same as 
A Vdiel a c r o s s  the dielectric. Taking Kair ~'~ 1, (6.4) and (6.17) yield 

Aair L(I - x )  Adiel ~c L x  
Cair - -  4zrkd = 4zrkd ' Cdiel--K 4zrkd = 4 n k d "  (6.32) 

Since these capacitors are in parallel, (6.8) yields 

L 
C -  Cair -]- Cdiel - -  (l - x + K x) 4re kd" (6.33) 

Clearly, the capacitance increases when the dielectric is pulled into the capac- 
itor, and thus (at fixed charge) the energy decreases because C appears in the 
denominator of the expression for the energy at fixed charge. 

We now determine the force of attraction. In (6.33), increasing x by ~x causes 
a change in C of 

L 
~C = (K - 1) 4rrkd~X. (6.34) 

(This corresponds to a shift in area d A  = L d x  from air capacitor to dielectric 
capacitor.) By (6.27) with d~" = ~cdx, by U = Q 2 / 2 C  with the charge Q fixed, 
and by (6.34), 

Q2 Q2 L 
(~U - -Fx(~X - -2C----g(~C- 2 C  2 (K - 1) 4zrkd(~X. (6.35) 

Thus 

Q2 L 

Fx = 2C 2 ( K -  1)4rrkd. 
(6.36) 

Since K > 1, the force indeed pulls the slab inward (Fx > 0). By (6.36) 
and (6.33), at fixed Q the force decreases as the slab gets farther into the 
capacitor. 

~ Force pulling slab into capacitor 

Consider a parallel plate capacitor Q /C  = 100 V, L = 10 cm, and d = 1 mm. 
A dielectric slab with K = 5 and the same L and d is at the edge. Find the 
force pulling the slab between the plates. Compare with the force of gravity 
on a penny, of mass m = 3.11 g. 

So lu t ion :  Equation (6.36) gives Fx = 1.77 x 10 -s N. A penny, of weight mg = 
3.05 x 10 -z N cannot be lifted by such a small force. 
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~ Comparing surface charge densities 

Consider two capacitors with the same geometry, one filled with air and the 
other filled with dielectric of dielectric constant K. They are given the same 
voltage difference. Compare the charge densities in the two cases. 

Solution: Because the voltage differences are the same across both air and dielec- 
tric, the electric fields are the same across both: Eair-- Ediel. Because the charge 
density induced in the dielectric weakens the field of the charge on the plates, 
for the dielectric the charge density ~did on the plates must be larger than the 
charge density Crai r without the dielectric. Specifically, since E a i r  " -  4rrk~air and, 
by (6.13), Ediel- 4rrkcrdiel/K , we have 

c r d i e I  (6.37) 
~ a i r  - -  ~ . 

K 

• Charge densities and net slab in charge as goes 

Let A V = 100 V, K = 5, L - l 0 cm, l = l 0 cm, and d = 1 mm in the situation 
described by Figure 6.19. (a) Find the charge densities for the air region and 
for the dielectric region. (lo) Find the net charge on the plates for the set of 
distances x = {0, 5, 10} cm. 

Solution: (a) By A V = Ed, E - A V/d  = 1.0 x 105 V/m, both in the air and 
in the dielectric. Then Cr~ir = Eair/4~rk=8.84 x 10 -7  C / m  2 and by (6.37), 
CraieZ -- KCr~ir = 4.42 X 10 -6 C/m 2. (lo) For the set of distances x = {0, 5, 10} cm, 
(6.33) yields the set of capacitances C = {8.84 x 10 -11, 2.65 x 10 -11, 4.42 x 
10 -1~ F. Then Q = CA V gives the set of net charges Q = {8.84 x 10 -9, 2.65 x 
10 -9, 4.42 x 10 -8} C. 

6~ Coefficients of Potential 

So far we have only considered situations where two conductors have equal and 
opposite charges. We now turn to the more general case. 

Consider two conductors of arbi- 
trary shape, each on an insulating 
stand, with respective net charges Q1 
and Q2. See Figure 6.20. By the 
action-at-a-distance approach, there is 
a contribution d V  = k d q / r  for each 
bit of charge dq (although the q's on 

Figure 6.20 Two conductors with the conductors are unknown). Hence 
arbitrary charges (e.g., ducks) for study of the voltage on any conductor, due to 
the coefficients of potential, charge on itself or any other conduc- 

tor, is proportional to the amount of 
charge on itself and that other conductor. Following a notation introduced by 
Maxwell, we write 

V1 - pl lQ1 -b- p12Q2, v2 - p21Q1 + p22Q2, (6.38) 

where the (unknown) coefficients p~y are called coefficients ofpotential and may be 
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d e t e r m i n e d  exper imenta l ly .  The  Pl l  and P22 are the  coefficients of self-potential, 
and the  P12 and P21 are the  coefficients of mutual potential. T h e y  usually are 
difficult to calculate; typically, it is more  practical  to measu re  t hem.  

• Measuring the coefficients of potential 

With one aluminized rubber duck given a charge of Q.1 = 10 -9 C, and a 
second, smaller, aluminized rubber duck uncharged (Q2 = 0), the measured 
voltages are 1/1 = 8 V, V2 = 4 V. (The second duck's potential  has "floated 
up" toward that  of the first, due to the coefficient of mutual  potential.) Wi th  
the second duck given a charge of Q2 = 10 -9 C, and the first duck uncharged 
(Q1 = 0), the measured voltages are V1 = 4 V, V2 = 20 V. Find the coeffi- 
cients of potential. 

Solution: From the first set of information, (6.38) yields Pll = V1/Q1 = 
8 • 109 F -1 and P21 = V2/Q1 = 4 x 109 F -1. From the second set of informa- 
tion, (6.38) yields P22 - V2/Q2 = 20 • 109F -1 andp12 = V1/Q2 = 4 x 109F -1. 
Note that P12 = P21, a property that holds in genera l~our  example was chosen 
to satisfy this condition. Here, that means a charge of 10 -9 C on either duck pro- 
duces 4 V on the other one. Note that, if both ducks are given the same charge, 
the smaller duck is at a higher potential because it is closer to that charge. 

~ Using the coefficients of potential: effect of grounding 

Employ the coefficients in the previous example. Let Q2 = 10 -9 C, Q1 = 0, 
and 111 = 4 V, V2 = 20 V, as in the second situation of the previous example. 
Find (a) the Q~ that  will ground 1, and (b) the new voltage of 2. 

Solution: (a) On connecting 1 to ground, V~ must decrease by 4 V to II1 = 0. For 
such a decrease, a negative charge Q1 must flow to conductor 1, obtained from 
(6.38) by V1 = 0 = PllQ1 + P12Q2 with Q2 unchanged. Solving for Q1 yields 
Q..1 = -Q..2(p12/p11) = -0 .5  x 10 -9 C. (b) Note that the initial voltage differ- 
ence is 1/2 - 1/1 = 16 V. Because Q1 is negative, both 1/1 and 1/2 decrease, but be- 
cause Q1 resides on conductor 1, 1/1 decreases more than does ~ .  Specifically, 
we have P21Q1 = - 2  V, so 172 is lowered by only 2 V, from 20 V to 18 V. Thus 
the voltage difference increases to V2 - V1 = 18 - 0 = 18 V. 

~ Coefficients of potential for two distant spheres 

Consider two spheres separated by a distance R, of radii a and b satisfying 
a, b << R. Find the coefficients of potential. 

Solution: Even when the spheres are far apart, one can affect the other because 
it will produce a potential as if it were a point charge. A lesser effect is that, by 
electrostatic induction, the electric field produced by one will cause the charge 
on the other to redistribute. Neglecting such charge redistribution, 

Va = kO~a k~b kQ~a k~b 
I4 = + ~ a, b << R. (6.39) 

a R ' R b ' 

Thus 

k k k 
Pll = - ,  P 2 2  = ~, P21 = P12 = --. (distant spheres) (6.40) 

a R 
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For a = 0.5 m, b = 1 m, R - 10 m, (6.40) yields Pl] = 1.8 x 101~ F -1, P22 = 

0.9 x l010 F -1, P12 - - 0 . 9  x 10 9 F -1. If Qa = 0 and Qb = 10-9 C, then (6.38) 
gives V~ - 0.9 V, I4 = 9 V. We can also use (6.39) directly to obtain V~ and 14. 

6~8~I Properties of the Coefficients of Potential 

The preceding example of two conducting spheres at a distance illustrates a 
number  of general properties of the coefficents of potential Pij for two arbitrary 
conductors. Many of them are simply common sense restatements of results from 
Chapter 5. 

(a) The pq are positive because positive charge produces positive potential. 
Moreover, the coefficients of mutual  potential P12 and P21 approach zero 
when the conductors get infinitely far apart. 

(b) The pq satisfy P 1 2  - -  P21, a result to be established later in this section. 

(c) No matter  how close 2 comes to 1 (unless 2 is inside 1), P21 < P11. This is 
because the charge on 1 is closer to 1 than 2, and thus has a larger effect on 
1 than on 2. Similarly, P12 < P22. 

The coefficients of potential have some other properties: 

(d) If 2 is inside 1, and it is uncharged, then it is inside the equipotential defined 
by 1. Having no charge of its own, it does not disturb that equipotential. 
Hence V2 - p21Q1 - V1 - p l lQ1,  so P21 - p11. However, P22 > P21 con- 
tinues to hold. 

(e) We might think that Pll is unaffected by the presence of 2. However, con- 
sider the case where 1 is charged positively and 2 is uncharged. By elec- 
trostatic induction the induced negative charge on 2 is closer to 1 than the 
induced positive charge on 2. This decreases the potential of 1. Hence the 
coefficients of self-potential depend upon the positions (and even orienta- 
tions) of other conductors. The closer 2 is to 1, the more the decrease. Such 
effects are neglected in (6.39). They are measureable and are used in devices 
that detect the approach of a hand to a doorknob, or the movement  of a key 
on a computer  keyboard. 

6 .8 .2  Capacitance in Terms of the Coefficients of  Potential 

If the pq's have been measured, or can be calculated, then (6.3) can be evaluated 
using them. With Q -  Q1 - - Q 2 ,  and A V -  V1 - �89 (6.38) gives 

c =  Q1 = Q 
- �89 p l i Q )  - ( # 2 1 Q -  pi2Q) Pll + P22 -- P12 -- P21 

(6.41) 

Hence the capacitance of a two-plate capacitor is a combination of both 
mutual- and self-potential coefficients. (Don' t  even think about remembering this 
equation.) 
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• Capacitance of two-duck capacitor a 

Find the capacitance of a capacitor where the two plates are the two 
ducks in our previous two-duck example, where Pll = 8 x 10 9 F -~, P22 = 
20 x 10 9 F -1 and P21 - P21 = 4 x 10 9 F -1 j 

Solution: By (6.41), the two conductors, if employed as a two-plate capacitor, 
have capacitance C = 5.0 x 10 -11 F. 

For an infinitely wide parallel-plate capacitor, the Pij's cannot  be compu ted  easily 
because of the infinite amoun t  of charge on each plate. Thus (6.41) cannot  be 
used. Imagine put t ing charge on one of the plates in order to determine P11. 
The resulting electric field would  fill all space, and the field energy would  be 
proport ional  to the volume of all space. This makes it difficult to define P11. A 
similar a rgument  holds for truly infinite cylinders, except  that  the field energy 
would  vary logarithmically with the distance from the cylinder to infinity. 

• Capacitance of two concentric spheres 

Find the capacitance of two concentric spheres of radii b > a. See 
Figure 6.6(a). 

Solution: Let the inner (outer) sphere be 2 (1). If Q2 - 0, then the voltage at b 
is that of a point charge Q1 at the origin, or I11 - (kQ1/b) .  By (6.38), Pll - k/b. 
Similarly, if Q1 = 0, then V2 = (kQ2/a) ,  so p22 = k/a. Since 2 is within 1, by 
property (d) of the coefficients of potential, we have P21 = Pll = k/b. Also, by 
property (b), P12 - P21. Hence (6.41) leads to 

1 ab 
C = - (spherical two-plate capacitor) 

(k/b) + (k/a) - (2k/b) k(b - a)" 

This is in agreement with (6.5). 

6 . 8 . 3  Energy for Two Conductors: Establishing That P~2 - -  P 2 ,  

Let us consider the energy to charge up two initially uncharged conductors. In 
the first stage, charge up 1 by bringing in charge dQ'l from infinity, while holding 
Q2 - 0. By d U -  d Q ( A  V) and (6.38), 

d U1 - d Q'  1 VI'IQ~=O - d Q'l ( p11Q' 1 + P12 Q'2 ) I Q 2 =O - p11Q'1d Q'1 �9 

Hence, integration leads to 

1 
U1 - ~P l l (Q ' I )  2 

O_1 1 )2 
- ~ p 1 1 ( Q 1  �9 

In the second stage, charge up 2 with Q1 fixed. Then  

dO2 - d Q '  2 V2']Q,~=Q1 - dQ~2(p21Q~l + P22Q'2)]Q'~=Q~ -- (p21Q1 + p22Qt2)dQ~2. 
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Hence, integration on Q~ at fixed Q1 leads to 

U2 = p21Q1Q'2 
Q2 1 ]Q2 l 

+ ~P22(Ql2) 2 - p21Q1Q2 + ~p22(Q2) 2. 
0 

The total energy of charging is thus 

1 1 
U -  01 + 02 - ~ p 1 1 ( Q 1 ) 2  + p 2 1 Q 1 Q 2  + ~ p 2 2 ( Q 2 )  2. (6.42) 

Now reverse the order of charging. Mathematically, this corresponds to inter- 
changing 1 and 2 in (6.42), leading to 

1 1 )2 
U f - U ~  --]- U~ - ~-p22(Q2)  2 --}- p l 2 Q 2 Q 1  -Jr- ~ - p l l ( Q 1  �9 (6.42') 

Since the physical states in both cases are the same, the energies U and U' must  
be the same. Comparing (6.42) and (6.42') yields 

P]2 = P21, (6.43) 

a result stated earlier wi thout  proof. 

~ Grounding a conductor decreases its electrical energy 

In Example 6.2, we grounded a system of two conductors with Pll = 
V1/Q1 = 8 x 10 9 F -1, P22 = V2/Q2 = 20 x 10 9 F -1, and P21 = V2/Q1 = 
4 x 109 F -1, starting with Q1 = 10 -9 C, Q2 = O. Find the initial and final 
energies. 

Solution: The initial energy was, by (6.42) with Q2 = 0, Uinitia l = Pll Q 2 / 2  = 
10 -8 J. The final energy, with Q1 unchanged, but now Q2 = - 0 . 5  x 10 -9 C, 
is given by the full expression in (6.42). This is Urina l -- 0.9 X 10 -8 J. Thus, the 
system has lost energy. This goes into heating up the system, due to friction on 
the charge as it passes through the wire connecting (72 to ground. 

6~ Material Properties of Dielectrics 

This section is different from other sections we have studied because it a t tempts 
to relate macroscopic phenomena  to microscopic quantities. 

6,9.1 Polarizability and Dielectric Constant Are Related 

Chapter  3 ~ s e e  (3 .16)~d i scussed  the atomic polarizability ~, defined by 

- +  

=oeE. (6.44) 
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It gives the relation between the induced dipole moment ~ of an atom and the 
applied electric field/~. Not surprisingly, there is a relationship between the 
polarizability and the dielectric constant. Although difficult to obtain in general, 
this relationship can be found for a dilute single-component gas, where we expect 
that K ~ 1. Even knowing about this case is revealing. 

Consider the dielectric in Figure 6.14 to be a dilute gas, such as air. Then the 
induced charge density ~' should be small, and hence in (6.44) the approximation 
E ~ E0 is valid, where E0 is due only to the charge i a  on the capacitor plates. 
Thus, by (6.12), 

E ~ 4zrkm (6.45) 

Let the atomic density of the gas be n, and let the parallel-plate capacitor have 
plate areas A and plate separation d, so it has volume Ad.  Then 

Q'  Q ' d  
~' - = (6.46) 

A A d "  

Since Q ' d  is the total dipole moment of the induced charge, and within the 
capacitor there are Nmol - n A d  molecules, each of dipole moment p, we have 

Q ' d  - l~o lp  - ( n A d )  p - (pn)  (Ad) .  (6.47) 

Then (6.46) becomes, with (6.47) for Q'd, with the scalar form of (6.44) for p, 
and with (6.45) for E, 

, Q ' d  = pn - n~E  .~ n~(4zrk~). (6.48) 
c~ - A d  

Rearranging (6.14) and then using (6.48) yields 

a'  1 K -  1 
- -  = 1 = ,~ 4zr kno~. (6.49) 
(7 K K 

Since we assume a dilute gas, in (K - 1)/K we can take K ~ 1 in the denominator 
(but not in the numerator). Then (6.49) yields 

14 ,~ 1 + 4rrkno~. (6.50) 

Here the relatively small second term of (6.50) contains the polarization effects. 
The relationship between K and ~ is more complicated for denser systems, 

like liquids and solids. However, (6.50) captures the intuitively evident physics 
that the higher the density and the higher the polarizability, the larger the dielectric 
constant K. 

From dielectric constant to density 

For a sample of He gas at room temperature, where c~ = 0.23 x 10 . 4 0  C-m2/ 
V, K is measured to be 1.000045. Find the density n and the gas pressure 
P. 
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Solution: From (6.50), we have n = (x - 1)/4zrka = 1.73 x 1025/m 3. Atmo- 
spheric pressure (P0 = 1.013 x l0 s N/m 2) and room temperature T=293 K 
corresponds to no = 2.47 x 1025/m 3. Since, at fixed temperature, by the ideal gas 
law the pressure P is proportional to the density n, this density corresponds to 
P = 0.7 atm. 

6o9~2 

We close this section by noting that these ideas work, qualitatively, even 
for denser materials, as long as the molecules are nonpolar~that  is, without a 
permanent electric dipole moment. Forpolar molecules, which have a permanent 
electric dipole moment, a small electric field can completely align them with the 
electric field, giving a very large dielectric constant. The extent of their alignment 
is limited by the thermal energy, which tends to orient them randomly. 

Electrical Breakdown Occurs More Easily 
at Low Gas Density 

Sparking occurs when a critical value of the electric field, called the dielectric 
strength Ea, is reached. In air, that value is determined by how much energy an 
electron needs to ionize a molecule of air (either N2 or 02). At atmospheric 
pressure, E a = 3 x 106 V/m. 

Consider the motion of an electron through a gas of neutral molecules. (Elec- 
trons are always present in gases, due to ionization by cosmic rays.) In a field E, 
the characteristic voltage gain A V of the electron, on traveling a characteristic 
mean-free p ~ h  I from one molecular collision to the next, will be A V -  El, 
where E = [E 1. If E is large enough that A V is on the order of the ionization 
voltage Vz of the molecule the electron hits, then another electron is kicked 
off, so there are now two electrons in the gas. This starts an electron avalanche, 
leading to a spark. This phenomenon is known as dielectric breakdown. At the 
threshold field Ea for dielectric breakdown 

V~ ~ Eal. (6.51) 

This is not an equality because dielectric breakdown is a statistical process, for 
which the exact coefficient is difficult to obtain. Note that 02 has V / ~  12.0 eV, 
and N2 has V / ~  15.5 eV. 

The mean-free path l has the following properties: (1) it increases with de- 
creasing density n ofthe air molecules (there are fewer to collide with, so it travels 
farther before it collides); (2) it increases with decreasing scattering cross-section 
(which is on the order of the square of an atomic dimension a). Hence, l satisfies 
the proportionality 

1 
l ~ ( 6 . 5 2 )  

na 2 , 

which is also dimensionally correct. Combination of (6.52) with (6.51) leads to 

E a "  VI T "~ Vlna2" (6.53) 

Thus, the lower the gas density, the lower the dielectric strength, and the easier 
it is to ionize the gas. In solids and liquids, the dielectric strength is determined 
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by the field needed to ionize the atoms of the material and is much  higher than 
in rarefied gases because the density n is much  higher. 

~ Electrical breakdown in the atmosphere 

Consider the atmosphere at T - 300 K (near standard temperature of 293 K) 
and at standard pressure (10 s Pa, where the pascal is Pa - N/m2). Assume the 
ideal gas law in the form P V = Nks T, where N is the number of molecules 
and kB - 1.38 x 10 -23 J/K. Taking the collision cross-section to be a 2 with 
a = 1.0 x 10 - l~ m, and V1 - 15 V, estimate the mean-free path and Ed. 

Solution: By the ideal gas law, the gas density n = N~ V = P/kBT is about 
2.4 x 1025/m3. This corresponds to an average separation s - - n - 1 / 3 ~  3.5 x 
10 -9 m. Equation (6.52) then gives a mean-free path of l ~ 4.2 x 10 -6 m. This 
is much greater than a or s. For V1 - 15 V, use of (6.53) as an equality gives 
Ed .~ 3.6 x 106 V/m, very close to the measured value of 3 x 106 V/m. 

~ Electrical breakdown in plasma globes 

What  are called plasma globes are available at commercial electronics stores. 
Within the globe, constantly changing filaments of light go from a central 
electrode to the transparent outer casing. The detailed colors depend upon 
the gases within the partially evacuated globe. To see the principle involved, 
consider a partially evacuated chamber of air, with only 10 -2 of atmospheric 
pressure. The idea is that, at low gas density, there are few but  energetic 
collisions, and the associated recombination is responsible for the colors of 
the plasma globe. Estimate the dielectric strength of air at 10 -2 of atmospheric 
pressure. 

Solution: Since the density of air molecules relative to atmospheric pressure is 
smaller by a factor of 10 -2, the mean-free path l will be 100 times longer (about 
4.2 x 10 -4 m), and Ed will decrease by a factor of 100, from 3 x 106 V/m to 
3 x 104 V/m. Hence, dielectric breakdown is achieved more easily at the lower 
pressure. Plasma globes have an electrode that produces a high voltage (~5 kV) 
at a high frequency (~30 kHz), and this causes dielectric breakdown in the low- 
pressure gas within the globe. The light emitted on recombination of electrons 
with positive ions leads to the observed visual display. If the mean-free path were 
so long that an electron would cross the globe without hitting any atoms, sparking 
within the globe would be suppressed. Nevertheless, significant amounts of energy 
would be deposited at the walls, causing the emission of light or even x-rays if 
the electrons are energetic enough. 

~ Electrical breakdown in fluorescent tubes 

Fluorescent tubes contain a mixture of argon and nitrogen at atmospheric pres- 
sure, including a small drop of vaporized mercury (Hg). Electrons accelerate 
between the two electrodes at opposite ends of the tube. While crossing 
the tube, the electrons collide with Hg atoms, losing energy while exciting 
the Hg atoms. When the Hg atoms deexcite, they emit ultraviolet radiation, 
which gets absorbed at the walls and is rapidly reemitted as visible light. This 
rapid reemission at a lower frequency is called fluorescence. Absorption and 
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reemission of radiation occurs in all materials. When the reemission process is 
too fast to be noticed on the human scale of fractions of a second, it is called 
phosphorescence. Recall the quickly disappearing phosphorescent afterglow of 
a TV or computer screen, and the slowly disappearing fluorescent afterglow 
of some light switches. 

6.9~ Electrical Breakdown to the Max: Lightning 

Lightning is not merely an interesting visual display. In the United States alone, 
each year lightning hits and kills between 75 and 100 people, and starts about 
10,000 forest fires, with costs from forest and building fires of about $100 million. 
There also is economic loss due to currents induced on electrical wiring (e.g., 
phone lines) connected to sensitive and unprotected electronic equipment (e.g., 
computer modems). Such currents (in wiring and in people) need not come from 
a direct hit, but can be caused by sudden depolarization when a cloud overhead 
suddenly discharges to another cloud or to ground a distance away. 

Lightning can be cloud to cloud or cloud to ground, cloud to cloud being 
about three times more frequent. The most frequent type of cloud-to-ground 
lightning brings negative charge to the earth. However, about one-tenth of light- 
ning bolts bring positive charge to the earth; such lightning can be particularly 
destructive. 

Because lightning bolts occur quickly, and because electrons have much less 
inertial mass than ions, the charge transfer is due to electrons. Even when it ap- 
pears that positive charge is being transferred one way, it is mostly the movement 
of electrons in the opposite direction. 

A typical thundercloud has three regions where electric charge accumulates: 
(1) closest to ground (about 2 km from ground) might be about +10 C, called 
the p charge; (2) distributed over the middle of the cloud (about 5 km from 
ground) might be about - 4 0  C, called the N charge; (3) toward the top (about 
10 km from ground) might be about +40 C, called the P charge. A thundercloud 
has an electric dipole moment, which can be measured from the ground. 

For electrical discharge to occur, an electric field in excess of the breakdown 
field must develop. In moist air, this is thought to be about 10 s V/m. Since 
voltage differences between ground and cloud can be as high as 108 V, it is not 
difficult to see that such fields (i.e., voltage gradients) can develop. Lightning 
originates in a discharge from the middle of the cloud (the region with negative 
charge N) to the bottom of the cloud (the region with positive charge p). This 
negative discharge overshoots, going all the way to the ground in a series of steps, 
via the stepped leader. Once the stepped leader produces an ionized channel, a 
much larger return stroke carries positive charge from ground to cloud; this return 
stroke is seen as lightning. 

(a) The stepped leader proceeds by hundreds of steps, each lasting perhaps a 
#s (with a rise time of about 0.1 #s) and extending perhaps 50 m, with 
pause times of perhaps 50 #s. See Figure 6.21 (a) and (b), which include a 
house and a tree. By the time the stepped leader approaches the ground, 
its channel contains about -5C.  (Note: Stepped leaders are quite vari- 
able. Steps of 3-200 m, pause times of 30-125 #s, and channel charges of 
3-20 C are measured regularly.) During the step, but not during the pause, 
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(c) (d) (e) 

Figure 6.21 Five stages in a typical lightning strike (which brings negative 
charge to ground). (a) Initiation of stepped leader from cloud. (b) Growth of 
stepped leader. (c) Return stroke leader from ground rising toward stepped 
leader. (d) Connection of leader from ground and stepped leader from cloud. 
(e) Fully developed return stroke from ground constitutes the lightning bolt. 

the leader is luminous enough to be visible by special photographic tech- 
niques. Luminous stepped leader channels have diameters of 1-10 m. 

Starting from a height of 3 km, the total time for lightning to reach 
ground might be 20 ms. This time gives much information. First, it gives 
an average downward velocity of 150,000 m/s (= 3 km/20 x 10 -3 s). (Note: 
average velocities between 1.0 x 10 s m/s and 25.0 x 10 s m/s are measured 
regularly.) Second, it indicates that from cloud to ground there might be 400 
steps (20 ms total time/50 #s pause time). (Note: This gives a path length 
of about 400 • 50 m = 2 kin, which is less than 3 km; clearly, the average 
pause time must be larger than 20 ms.) Third, it gives an average current 
(including pauses) of 250 A (= 5C/20 ms); the peak current during a single 
step might be 10,000 A. 

The leader channel heats to about 30,000 K. Associated with the heating 
of the channel is a shock wave (high-intensity sound), which propagates 
outward as thunder. 
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(b) The return stroke is initiated by its own leader rising up from the ground 
toward the stepped leader (Figure 6.21 c). The two meet some hundreds 
of feet from the ground (Figure 6.21 d), providing a continuous channel of 
conducting gas from cloud to ground. The return stroke then travels upward 
(Figure 6.21 e) at from one-tenth to one-third of the speed of light, with a 
total transit time of about 100/zsec, a peak current of about 30 kA, and a 
rise time of a few ms. The fall time to half the peak current is about 50/zsec, 
and current on the order of hundreds of amperes can last for a ms or more. 
It transfers a charge of perhaps - 2 5  C downward to ground, with charges 
o f - 3  C to - 9 0  C not uncommon. (For a transfer of 5 C across 2 km, this 
corresponds to a change in dipole moment of 104 C-m.) 

Following the return stroke, usually a dart leader will pass from cloud to 
ground, following the path of the stepped leader. This will be followed by another 
return stroke from ground to cloud. There are typically 2 to 3 dart-leader-return- 
stroke occurrences, but sometimes there are none, and sometimes there are as 
many as 25. A typical lightning bolt might flash for 0.2 s, but lightning bolts can 
be as short as 0.01 s or as long as 2 s (there is even a 19th-century report of a 
15-20 s flash1.). 

It is believed that the leader channel contains a highly ionized core of radius 
1 mm or so. Assume that all the molecules in a gas column 5 km long and 
radius 1 mm, at standard temperature and pressure (STP), are singly ionized. 
This corresponds to a volume of about 16 • 103 cm 3. Since one mole of gas at 
STP has a volume of 22.4/(1000 cm3), this corresponds to about 0.7 mole. One 
mole ofions with charge e contains 6 x 1023 x 1.6 x 10 -~9 C, or about 96,500 C, 
known as a faraday in the chemical literature. Hence 0.7 mole contains nearly 
70,000 C of both positive and negative charge. If only 0.1% of the negative 
charge is in the form of electrons (rather than negative ions), then there is plenty 
of charge available to explain how, even though the leader channel has only a 
net charge of about - 5  C, there is a much greater charge transfer by the return 
stroke. 

The area of lightning research is filled with unsolved problems. What atmo- 
spheric processes cause the charge separation responsible for lightning? What 
happens during the pauses of the stepped leader? Exactly where does the charge 
come from in the return stroke? How does the atmosphere recover after a light- 
ning bolt? Can we predict the brightness of a lightning bolt? Can we predict the 
intensity of thunder? What role does charge on the earth (a conductor) play? 
Generations of atmospheric scientists have been at work, trying to answer these 
questions, and it likely will be many generations more before all the answers have 
been found. 

&9~4 More on Electrical Screening 

1. Ideal conductors: Chapter 4 discussed electrical screening by ideal conduc- 
tors, which have, implicitly, an infinite density of free charge carriers. In the 
presence of an applied electric field/~0, free charge goes to the surface and 
produces an electric field that, within the conductor, cancels/~0. For the ge- 
ometry of Figure 6.14 (but with the dielectric replaced by an ideal conductor), 



266 Chapter 6 i Capacitance 

in response to the charge density ~ on the capacitor plate free charge from 
the conductor produces a surface charge density -cr. 

2. Real conductors: Section 4.11.3 pointed out that, for real conducting materi- 
als, when the finite density of free charge is accounted for there is a screening 
length l over which the total electric field is nonzero within the conductor. 
This is because the screening charge cannot go literally to the surface of the 
conductor. The higher the density of the free charge carriers, the shorter the 
l. For the geometry of Figure 6.14 (but with the dielectric replaced by a real 
conductor), in response to the charge density ~ on the capacitor plate free 
charge from the conductor produces a bulk charge density p near the surface. 
Integrating f pdx over a distance a few times l into the conductor gives an 
effective surface charge density - ~ .  

3. Dielectrics: The present chapter has discussed the electrical response of di- 
electrics. In the presence of an applied electric field E0 localized charges cause 
polarization that, over a distance scale on the order of an atomic dimension, 
puts charge on the surface. This produces an electric field that within the con- 
ductor partially cancels/~0. For the geometry of Figure 6.14, in response to 
the charge density ~ on the capacitor plate, the polarized tips of the atoms and 
molecules of the material produce a polarization charge density on the surface 
o f - ~ ( 1  - K-~). [For gases, K = 1 + 4zrn~ of (6.50) shows that the higher the 
density n of the atoms or molecules of polarizability ~, the larger the K, and 
thus the more effective the screening.] Hence the total field within the di- 
electric decreases to/~0/K. The field within the dielectric does not decrease 
any further on going deeper into the dielectric because there is polarization 
charge only on the surface, not in the bulk. The total polarization charge on 
an object must be zero. 

4. Materials with both free charge and polarization charge: We can now dis- 
cuss what happens when there are finite densities of both free charge and of 
polarization charge. An example is a semiconductor like Si (the basis of most 
semiconductor electronics) when it has been "doped" with impurities to give 
it free charges. Here, if the screening length is l due to free charge alone (for 
which K = 1), then it becomes l v ~  when there is also polarization charge. 
At the surface the response is the same as for a dielectric: for the geometry 
of Figure 6.14, in response to the charge density ~ on the capacitor plate, the 
polarized tips of the atoms and molecules of the material produce a polar- 
ization charge density on the surface of-cr(1 - K -1). In addition, there is a 
bulk charge density p near the surface that gives an effective surface charge 
density crK -1 on integrating f pdx over a distance a few times the screening 
length l ~  into the conductor. Hence the total charge associated with the 
material at and near the surface is - ~ ,  as for the ideal conductor and the real 
conductor without dielectric. The bulk electrical response of the material is 
complex. It consists both of free charge and polarization charge, the polar- 
ization charge tending to cancel the free charge: (1) the free charge sums 
to - ~  per unit area, just what it would be for a conductor; (2) the polariza- 
tion charge sums to ~(1 - K -1) per unit area, which completely cancels the 
polarization charge on the surface. Moreover, the length over which the free 
charge near the surface extends is larger when there is dielectric, by a factor of 
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v~, because of the partial cancellation of the free charge by the polarization 
charge. 

5.10 

6~t0~1 

Flux Tubes 

As he performed more experiments, Faraday changed his views on how to think 
about electricity. The form that is passed on to us was developed by Maxwell, 
who made Faraday's field-line ideas quantitative and rigorous by reformulating 
them in terms of flux tubes. We will develop some of these ideas, following a 
treatment in J. J. Thomson's Elements of the Mathematical Theory of Electricity 
and Magnetism. Thomson himself edited the third and final edition of Maxweli's 
classic Treatise on Electricity and Magnetism, published in 1891, after Maxwell's 
untimely death in 1879, at the age of 48. 

E 2 
Electr ical  E n e r g y  D e n s i t y  UE = S~k 

! 

Consider (5.28) for the electrical energy U -  �89 of a set of charges 
qi and qj seperated by distances rij, where the prime means do not include the 

f 

terms where i - j. This can be rewritten, with Vi - k ~  jqj/rij, as U -  1 ~ i  Viqi. 
Letting the charges become differentials, both V and U remain finite, with 1/ 

U - -~ Vdq , (6.54) 

where the factor of �89 is to avoid 
double counting. We consider 
both point charges and conduc- 
tors, in vacuum, treating the point 
charges as small spherical con- 
ductors. The field lines originate 
on positive charge dq and termi- 
nate on negative charge - d q  (see 

Figure 6.22 Flux tube connecting two Figure 6.22). The integral may be 
conductors in equilibrium. The sides of the done by considering equal and op- 
flux tube are parallel to the local electric field, posite bits of charge +dq via 

(V+)(dq) + (V_)(-dq)  = (V+ - V_)dq, (6.55) 

and then integrating only over dq. Because dq - -r  is at the surface of a 
conductor, by (4.22) we have 

EsdAs d e e  
dq - crsdAs - 4zrk = 4zrk' (6.56) 

where Es = 4zrkcrs is the magnitude of the field at the surface. 
Since the field lines go from higher to lower potential, and d~" points along 

/~, we have E . d Y -  E ds, so 

V + -  V_ - Eds, (6.57) 
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where the path of the integral is from dq to -dq.  Combining (6.56) and (6.57), 
and changing the order of integration, yields 

if U -  -~ (V+-  V_)dq - f f 1 Eds EsdAs, (6.58) 
8zr k 

where f+ restricts the integration to the surface containing the positive charge. 
Now convert from an integral over the surface elements dAs and the con- 

necting elements ds to an integral over the volume dl2 of the Faraday flux 
tube associated with dq. Since, along a flux tube, the flux is constant, we have 
d ~  = EsdAs = EdA_ Since the flux tubes fill all space, with dV = dAds (6.58) 
may be rewritten as 

] f f  U -  8rrk Eds E d A -  8zrk E2dl2" (6.59) 

From this we deduce that the electrical energy per unit volume u~ is 

dU E 2 
= (6.60) 

u~ - d12 8zrk" 

This is consistent with (6.25), obtained previously for a strictly uniform field, on 
setting K - 1. 

Now consider partial flux tubes all with the same flux d~e - EdA and the 
same potential difference d V -  E ds. Each part contains the energy 

E 2 d ~ e d V  
d U - ~ k d A d s -  8zr-------k-" (6.61) 

This is the same for each of the partial flux tubes no matter their volume element 
dV - dAds. 

6.10.2 E 2 F i e l d  L ine  Tension p e r  U n i t  A r e a  T = 8~k 

Consider a flux tube connecting one conductor to another. If one of these con- 
ductors is compressed so that its surface corresponds to a smaller equipotential 
surface, then the field lines and flux tubes are not disturbed, except that they 
lengthen. By (6.61), this costs an extra energy (EZ/8zrk)dAds. See Figure 6.23. 
We may think of this as stretching a string by ds against a tension (E2/8zrk)dA. 
Hence the tension per unit area dA of the flux tube is 

E 2 

T -  8zrk" (6.62) 

The total force exerted by the tension of flux tubes connecting charges +q and 
- q  separated by a distance r has magnitude I FI - kq 2/r 2. This nontrivial cal- 
culation can be done by considering the forces on the midplane separating the 
charges. 
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V=9 Flux tube 

Figure 6.23 Two nearby flux tubes, 
for calculation of field energy and 
field-line tension. 

V=I  

6.10.3 E 2 . Pressure o f  F ie ld  Lines on One A n o t h e r  is P = S~k" 
Radia l  F ie ld Lines 

The field lines also exert a pressure on one another. To find that pressure, we 
must examine two cases. First, consider the case where the field varies in strength 
along the flux tube. See Figure 6.24. 

Let a tiny length ds of the flux tube have cross-section d A  at the top and dA'  
at the bottom. By construction of the flux tube, the field magnitudes E and E' 
on the top and bottom are related by 

d ~ e  - E d A  - E 'dA ' .  (6.63) 

From Figure 6.24, there is a vertical force upward, due to the line tension, of 

FT - T d A -  T ' d A ' -  
E 2 d A  - E ' 2 d A  ' ( E  - E ' ) E d A  

8Jrk 8zrk ' 
(6.64) 

where we have used (6.62) and (6.63). 
There is also a downward force Fp from the pressure of lines against one 

another. See Figure 6.24. We can obtain Fe from considerations of hydrostatics, 
with a uniform pressure P. An object subject to uniform pressure is in equi- 
librium, so the force on it from the sides must be equal and opposite to the 
force on it from the top and bottom. Thus, from Figure 6.24 and some algebraic 
manipulation, 

P 
Fe - - P ( d A '  - dA)  - - - f f ; ( E '  dA '  - E' dA)  

P ,) P 
= - - ~ 7 ( E  - E d A  ~ - - ~ ( E  - E ' ) d A ;  (6.65) 

Figure 6.24 Part of a flux tube, for calculation of 
pressure between neighboring field lines when 
field is radial. 
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6.10,4 

here we have again used (6.63), and we have set E' ~ E in the denominator. In 
equilibrium, (6.64) and (6.65) give 

( E P ) ( E - E ' ) d A .  (6.66) 
O - FT + Fp - 87r k E 

From this, we deduce that 

E 2 
P = 8zrk" (6.67) 

This is precisely the same in magnitude as the flux tube tension per unit area T. 

E2  �9 Pressure o f  Fie ld Lines on One A n o t h e r  Is P = ~k" 
Tangent ia l  F ie ld Lines 

We now check the consistency of this approach. Consider the case where the 
field lines vary in strength perpendicular to the flux tube. See Figure 6.25. 

Let a flux tube of constant area d A have length ds on the left, and length ds' 
on the right. Take the tube to have width dl, and depth w into the page, so areas 
on top and bot tom satisfy 

d A  = dA' = wdl. (6.68) 

By construction of the flux tube, the fields on the right and left are related by 

d V  = Eds = E'ds'. (6.69) 

From Figure 6.25, the net rightward force from pressure is given, from (6.67), 
(6.68), and (6.69), by 

w(E2ds - E'2ds ') w(E - E ' )Eds 
Fp - ( P w d s -  P'wds') - 8zrk = 8zrk . (6.70) 

Figure 6.25 Part of a flux tube, for calculation of 
pressure between neighboring field lines when 
field is tangential. 
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Also from Figure 6.25, the net rightward force from tension comes only from 
the component of the tension force on the top, which is at the small angle 0, 
where 

ds = ds' + dl 0. (6.71) 

Explicitly, the rightward force from tension is, with (6.62) and (6.68), 

E 2 
FT - T d A O  - 7 - - r w d l  0. (6.72) 

t5 7c le, 

Use of (6.71) and (6.69) in (6.72) gives 

E 2 E 2 
FT -- ~ k  W(ds  - ds ' )  - 8zr E 'k ~ w ( E ' d s -  E ' d s ' )  

E 2 E 
8zr E '----~w(E ' - E)  ds ~ ~ k  W(E  ' - E)  ds.  (6.73) 

Here we have used E '  ~ E to write E 2 / E  ' ,~ E. Comparing (6.73) with (6.70), 
we see that 

FT -- - F p .  (6.74) 

Hence the force from field-line pressure cancels the force from field-line tension, 
so the system is in equilibrium, as desired. The concept of pressure of field lines 
on one another thus is a consistent one, both for field lines that vary in magnitude 
along the flux tube and for field lines that vary in magnitude perpendicular to 
the flux tube. 

The total force exerted by the pressure of flux tubes connecting charges +q 
and +q separated by a distance r has magnitude l i ~ l -  kq 2 / r  2. This nontrivial 
calculation can be done by considering the forces on the midplane separating the 
charges. 

Problems 

6-2.1 A space cruiser is given a charge 2.5 ttC, 
which raises its voltage by 106 V relative to a dis- 
tant space station. (a) Determine the capacitance of 
the space cruiser. (b) Estimate its characteristic size, 
using a spherical approximation. 

6-2.2 A tin can, hung by insulating string from a 
tall ceiling, has a capacitance of 4.2 nF. A scaled-up 
version of this can, with a height that is 2.4 times 
as great, is ejected from a spaceship, having been 
given a charge of 8.7 nC. Find its voltage relative to 
a distant point. 

6-2.3 The supply of electrons in a material is not 
limitless; adding or subtracting one electron per 

atom would surely cause structural changes in the 
material. Discuss whether excess charge affects the 
structure of a solid conducting sphere more or less 
than a conducting shell of the same material and 
external dimensions. 

6-2.4 A grain of Zn (approximated by a sphere of 
radius 95 nm) is illuminated with ultraviolet radia- 
tion, which ejects negatively charged electrons until 
the Zn voltage is about 1.7 V. Find the charge on the 
grain, and the number of electrons that have been 
ejected. 

6-2.5 If the capacitance of a spherical aluminum 
grain is 5 aF (aF = 10 -18 F), estimate its radius. 
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6-2 .6  Recent advances in technology permit the 
fabrication of tiny electrical devices where the addi- 
tion of a single electron to a small piece of metal can 
produce measureable voltages. (a) Find the capaci- 
tance of an aluminum grain about 10 nm in radius. 
Express your answer in units of 10 -18 F, or aF, the 
attofarad. (b) Estimate the voltage change caused 
by the addition of an electron. (c) Estimate the 
total number of electrons on the grain, taking there 
to be three conduction electrons per aluminum 
atom. Such small grains are called artificial atoms, 
or quantum dots, because the electron orbitals on 
them are unique to very small particles. The den- 
sity of aluminum is 2.7 • 103 kg/m 3, and its atomic 
weight is 27.0. 

6-3.1 Two irregular conducting objects have 
charges 4-5 nC. One is at V1 = 20 V and the other 
is at �89 = - 1 5  V. They are far from any other con- 
ductors. Take V~ = 0. (a) Determine their capaci- 
tance. (b) If these two objects and their separation 
are now linearly scaled down by a factor of 4, find 
the charge if the same voltage difference is applied. 
(If the conductors are spheres, which one is larger?) 

6 -3 .2  A parallel-plate capacitor has circular plates 
of radius 5.4 cm, and plate separation 2.2 mm. De- 
termine the capacitance, and the voltage difference 
for charges 4-18 nC. 

6 -3 .3  A capacitor consists of two circular plates 
of radius 5 cm and separation 1.2 mm. (a) Estimate 
the capacitance. (b) If the field toward the middle 
of the capacitor is 25 V/m, estimate the charge on 
the capacitor plates. 

6 - 3 . 4  A parallel-plate air capacitor C has plate 
separation d. A piece of metal of thickness 0.8d is 
inserted between the plates. Explain why the new 
capacitance corresponds to a smaller plate separa- 
tion, and determine the new capacitance. 

6 -3 .5  The capacitance of a parallel-plate capaci- 
tor is proportional to the area A and inversely pro- 
portional to the plate separation d. Suggest what 
might set limits on (a) the minimum d and (b) the 
maximum A. 

6-3.6 Consider two co-axial circular conducting 
plates of radius a, with equal and opposite charges 
+q. They are separated by h. See Figure 6.26. 
(a) Let h >> a. Describe the surface charge density 
on each side of the positive plate, and how uniform 
it is. Is the surface charge density at the edges higher 
or lower than in the middle? (b) Now let h << a, so 

the plates are near one another. Describe the surface 
charge density on each side of the positive plate, 
and how uniform it is. Is the surface charge density 
at the edges higher or lower than in the middle? 
(c) Show that the surface charge density at the cen- 
ter of the inner surface of the positive plate is now 
four times (not twice) as large as when the negative 
plate is far away. Hint: See Section 1.9. 

hi q 
Figure 6.26 Problem 6-3.6. 

6-3.7 A parallel-plate air capacitor of capacitance 
400 pF has a charge 4-500 nC. The plates are 
2 mm apart. Find (a) the potential difference, (b) 
the plate areas, (c) the electric field between the 
plates, and (d) the surface charge density on the 
plates. 

6 - 3 . 8  A spherical capacitor with an air gap has 
inner and outer radii of 5 cm and 8 cm, at a volt- 
age difference of 250 V. (a) Find its capacitance. 
(b) Find the charge on the plates. (c) Find the max- 
imum electric field within the capacitor. 

6 -3 .9  A spherical capacitor with a wax-filled gap 
has an outer radius of 4.8 cm. For a voltage differ- 
ence of 7600 V, there is breakdown. (a) Find the 
radius a of the inner plate. (b) Find the capacitance 
of this capacitor. (c) Find the charge on the capac- 
itor at breakdown. See Table 6.1. Note: There are 
two solutions for a, one corresponding to a small 
gap and a nearly uniform field, and the other cor- 
responding to a large gap and an inner electrode of 
very small radius. Consider only the first solution. 

6 - 3 . 1 0  A 15 cm long cylindrical capacitor with a 
wax-filled gap has an outer radius of 0.8 cm. For a 
voltage difference of 9800 V, there is breakdown. 
In what follows, neglect fringing field effects at the 
ends of the capacitor. (a) Find the radius a of the in- 
ner plate. (b) Find the capacitance of this capacitor. 
(c) Find the charge on the capacitor at breakdown. 
See Table 6.1. Note: There are two solutions for a, 
one corresponding to a small gap and a nearly uni- 
form field, and the other corresponding to a large 
gap and an inner electrode of very small radius. Con- 
sider only the second solution. 

6 -3 .11  A 24 cm long cylindrical capacitor with 
an air gap has inner and outer radii of 1.2 cm and 
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2.4 cm, at a voltage difference of 240 V. In what 
follows, neglect fringing field effects at the ends of 
the capacitor. (a) Find its capacitance. (b) Find the 
charge on the plates. (c) Find the maximum electric 
field within the capacitor. See Table 6.1. 

6 - 4 . 1  Frank has many 2 #F capacitors with 100 V 
breakdown. (a) How should he connect them to ob- 
tain a 2 #F capacitor with 300 V breakdown? (b) A 
4/xF capacitor with 300 V breakdown? 

6 - 4 . 2  A capacitor C is rated at a maximum volt- 
age Vm. Explain how, by using four such capacitors, 
you can get a net capacitance of C, with a maximum 
voltage of 2 Vm. 

6-4.3 Two parallel-plate air capacitors of identical 
area A have separations dl and d2. Show that, when 
placed in series, they have the same capacitance as 
a single capacitor of area A and separation dl + d2. 
Give a physical explanation for this result. 

6 -4 .4  Two parallel-plate air capacitors of identi- 
cal separations d have areas A1 and ,42. Show that, 
when placed in parallel, they have the same capaci- 
tance as a single capacitor of area A = A1 + ,42 and 
separation d. Give a physical explanation for this 
result. 

6 - 4 . 5  (a) For capacitors C1 = 8/xF and C2 = 6 #F, 
find their capacitance in series and in parallel. (lo) 
Find the charge and voltage difference on each ca- 
pacitor when they are connected in series with a 
12 V battery. (c) Find the charge and voltage differ- 
ence on each capacitor when they are connected in 
parallel with a 12 V battery. 

6 - 4 . 6  Terminal a connects C1, C2 and C3. Ter- 
minal b connects C4, C2 and C3. See Figure 6.27. 
Let C~ = Ca = 6.8/zF and C2 = C3 = 4.8 #F. Find 
the voltage and charge associated with each capac- 
itor if V~ - 50 V and % = 68 V. Assume that the 
plates associated with terminals a and b initially are 
neutral. 
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Figure 6.27 Problem 6-4.6. 
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6 - 4 . 7  A 45 nF capacitor C1 is connected across 
a 1.5 V battery. The connections to its terminals 
are then removed from the battery and connected 
across an unknown, originally uncharged capacitor 
C2. If the voltage across C1 is now 0.34 V, find C2. 

6-4 .8  A 6/xF capacitor is in series with a combi- 
nation of a 3/~F and an unknown capacitor C. The 
overall capacitance is 4 ~tF. Find C. 

6-4 .9  Find the capacitance of a bridge circuit 
where the bridge capacitor has a capacitance 2 nF, 
and the other four capacitors have capacitance 4 nF. 
Hint: First use symmetry to determine the voltage 
difference across the bridge capacitor. 

6 -4 .10  Benjamin Franklin may have been the first 
person to put capacitors in series, and to charge 
them by connecting them to a prime conductor 
(characterized by a fixed voltage, as we now know). 
He found that the capacitors did not charge as well 
by this method as when he put them in parallel. 
Explain. 

6-4.11 Figure 6.28 gives a circuit containing a 
number of capacitors, each of capacitance C = 6 ~tF. 
Find the capacitance between the terminals. 

Figure 6.28 Problem 6-4.11. 

6-4 .12  In equilibrium, two or more conductors 
in contact with one another take the same poten- 
tial, so they are equivalent to a single conductor. 
(a) How many distinct pieces of conductor are there 
for five capacitors in parallel? (b) For five capacitors 
in series? (c) For the series case, if the outer conduc- 
tors have charges + Q, give the net charges of the 
internal pieces of conductor. 

6 - 4 . 1 3  (a) For the first part of Example 6.7 (con- 
nection), work out the wrong "solution" where each 
capacitor gets the average of the initial charges. (b) 
Is charge conserved? (c) Are the voltages equalized? 

6 - 4 . 1 4  (a) For the first part of Example 6.7 (con- 
nection), work out the wrong "solution" where each 
capacitor gets the average of the initial voltages. (b) 
Is charge conserved? (c) Are the voltages equalized? 
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6-5.1 Design a parallel-plate air capacitor with 
C = 8 #F to operate at 400 V in a maximum field 
that is half E d in air. 

6-5.2 A cylindrical air capacitor of length 4.6 m 
has a capacitance of 8.6/~F. (a) Find the ratio of the 
inner and outer radii. (b) If the outer radius is 2 cm, 
at what voltage is there breakdown? 

6-5.3 A parallel-plate capacitor of area 50 cm 2 
and plate separation 0.12 mm has charge +3.6/zC. 
The voltage difference between the plates is 2500 V. 
Find the dielectric constant. 

6-5.4 If you rub a comb through your hair, and 
then bring it up to a faucet of running water, the 
water will deflect toward the comb. Transformer 
oil, with K = 4.5, will not deflect nearly as much 
under the same circumstances. Explain why. Hint: 
Viscosity is not the most relevant property of these 
fluids. 

6-5.5 Despite the large dielectric constant for 
pure water, it is not normally used inside capacitors. 
Suggest why. 

6 - 5 . 6  Let C~ = 1.1 #F/m 2 for a cell wall with 
K = 3.6 that will withstand a maximum voltage 
difference A V~ = 250 V/m before beginning to 
conduct. (a) Determine the cell wall thickness. 
(b) Determine the electric field across the cell wall 
at which conduction begins to occur. (c) Deter- 
mine the free surface charge density at this field. 
(d) Determine the corresponding polarization 
charge density. 

6 - 5 . 7  A parallel-plate capacitor of C = 60 pF is to 
be filled with Lucite. (a) What  is the minimum area 
it must have to withstand a voltage of 3.5 kV? (b) If 
the plate area is doubled, what are the new capaci- 
tance and the maximum voltage it will withstand? 

6 - 5 . 8  A cylindrical capacitor of C = 20 pF and 
length 25 cm is to be filled with wax. (a) What  is the 
minimum inner radius it must have to withstand a 
voltage of 8.2 kV? (b) If the inner and outer radii 
are doubled, what voltage will it withstand? 

6-5.9 A dielectric slab of area A, thickness d], and 
dielectric constant K] is placed in series with a di- 
electric slab of area A, thickness d2, and dielectric 
constant K2. This combination is placed within a 
parallel-plate capacitor of area A and plate separa- 
tion dl + d2. See Figure 6.29. (a) Show that the ca- 
pacitance is given by C = (A/4rrk)/(dl/~cl + d2/tc2). 
(b) Verify that this agrees with the case K1 = K2. 
(c) Show that if the charge density is a on the 

positive plate (near 1), then there is a charge den- 
sity a(Ki -1 - K 2  ]) on the interface between the di- 
electrics. (Get the sign right by comparing with the 
charge on the dielectrics near the positive plate.) 

Figure 6.29 Problem 6-5.9. 

6-5.10 A dielectric slab of area A], thickness 
d, and dielectric constant K] is placed in parallel 
with a dielectric slab of area A2, thickness d, and 
dielectric constant K2. It is placed within a parallel- 
plate capacitor of area ,4] + A2 and plate separation 
d. See Figure 6.30. (a) Show that the capacit- 
ance is given by C=(1/4zrkd)(Altc] +A2K2). 
(b) Verify that this agrees with the case K] = K2. 
(c) Show that there is no charge on the interface 
between the dielectrics. 

Figure 6.30 Problem 6-5.10. 

6-5.11 Consider a sphere of dielectric constant 
K, with radius R and total charge Q. that is uni- 
formly distributed over its volume. If V~ = 0, show 
that the potential at the center of the sphere is 
(kQ/R)(1 +(2K)-] ) .  [Note that (5.41) was de- 
rived, implicitly, for K = 1 .] 

6-5.12 A cell wall has x = 4.3 and thickness 
3.4 nm. (a) Find its capacitance per unit area. (b) 
Find the capacitance for a spherical cell of radius 
8.3 ~tm. (c) Find the charge associated with a volt- 
age difference of 87 inV. 

6 - 5 . 1 3  An aluminum grain has a 1 nm thick insu- 
lating oxide layer with K = 8 against a thin film of 
copper. (a) If the contact is a circle of radius 10 nm, 
estimate the capacitance of the resultant capaci- 
tor. (b) Estimate the voltage change if one electron 
transfers from the aluminum to the copper. [Note: 
In practice, the energy to remove an electron (the 
work function) is different for neutral aluminum and 
neutral copper. Neglect this effect. ] 

6-5.14 An aluminum film with a 2.6 nm thick 
aluminum oxide layer with dielectric constant 8 
is against a thin film of copper. If the capacitance 
across the layer is 8 aF, estimate the contact area. 
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6-5.15 Consider a spherical shell of inner radius 
a and outer radius b, its upper half filled with air 
and its lower half filled with dielectric of dielec- 
tric constant ~. See Figure 6.31. With Kair "~ l ,  find 
its capacitance. Hint: Draw the field lines before 
the dielectric is added. Will adding the dielectric 
cause the direction of the field lines to change? 
Will polarization charge appear along the surface 
that separates the air and the dielectric? The an- 
swer to these questions will help you to simplify this 
problem. 

Figure 6.31 Problem 6-5.15. 

6-5.16 Find the capacitance for a spherical shell 
with conducting plates at r = a and r = c, and filled 
with dielectric of dielectric constant K1 (K2) for 
a < r < b (b < r < c). See Figure 6.32. 

Figure 6.32 Problem 6-5.16. 

6-6.1 An air capacitor has an area of 250 cm 2. 
For a charge of 8/~C, the voltage difference across 
the plates is 120 V. (a) Find the capacitance and 
the plate separation. (b) Find the energy stored at 
this voltage. (c) Find the electric field magnitude 
within the capacitor. (d) Find the electrical energy 
density. 

6-6.2 (a) What capacitance would store 50 kJ of 
electrical energy at 860 V? (lo) What would the 
charge be? 

6-6.3 A ventricular defibrillator, attached by low- 
resistance paddles placed above and below the 

heart, provides an average of 20 A and 10 s W for 
2 ms. If this were provided by a capacitor, estimate 
its capacitance. 

6 - 6 . 4  A 50 #F capacitor has 4 kV placed across 
its terminals. (a) What is the associated charge and 
energy? (b) How much energy is stored by 2000 
such capacitors? (c) How does this compare to the 
energy stored by a 12 V, 80 A-hr battery? (d) How 
do the maximum currents compare, if each capac- 
itor can provide 2 • 10 s A through a 0.02 ohm re- 
sistor, and the battery can provide 1200 A? Note 
that the capacitors will discharge in about 10 -6 s, 
whereas the battery will last for a few minutes at this 
current. 

6-6.5 Capacitors CA (40 nF) and CB (20 nF) are 
connected in series with a 12 V battery. (a) Find the 
voltages, charges, and energy associated with each. 
(b) The battery is removed and the plates of like sign 
(+ to +, and - to - )  are connected. Find the volt- 
ages, charges, and energy associated with each. (c) 
Deduce the energy loss on making the connection. 
(d) Now the plates of opposite sign (+ to - ,  and - 
to +) are connected. Find the voltages, charges, and 
energy associated with each. (e) Deduce the energy 
loss on making the connection. 

6-6.6 (a) By integration over the energy density, 
find the energy stored by two long concentric cylin- 
drical conductors of radii a < b and length I. Take 
+ Q on the inner cylinder, and neglect edge effects. 
(b) Determine the capacitance per unit length. 

6-6.7 (a) By integrating over the energy density, 
deduce the energy U of a conducting sphere of ra- 
dius R and charge Q. (lo) Let a sphere with charge Q 
be slowly compressed from R + dR to R, against the 
(unknown) electrical force per unit area Pel. Find 
the change in electrical energy and thus deduce Pel. 
Compare with E 2/8Jr k. 

6-6.8 (a) By integration over the energy density, 
find the energy stored by two concentric spherical 
conductors of radii a < b. Take + Q  on the inner 
sphere. (b)Deduce the capacitance. 

6-6.9 See Figure 6.33. The combination of capac- 
itors is connected to a voltage source across a and 
c, and then the voltage source is removed. (a) If 
Va -- Vb -- 60 V, find the charges and voltages asso- 
ciated with each capacitor. (b) Find the total energy. 
(c) If b and b' are connected, find the new charges 
and voltages associated with each capacitor. (d) Find 
the new total energy. (e) Find the amount and the 
sign of the charge that must flow from b to b'. 
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Assume that the plates associated with terminals 
b and b' initially are neutral. 

~ C 

! I 
12~F 

! I 
~a 

@F 

12~F 

Figure 6.33 Problem 6-6.9. 

6-6.10 For an isolated conducting disk of radius 
a, the charge density is ~ = Q/2Jra~/a 2 -  r 2. (a) 
Show that, if V~ = 0, then V = kQ/2a. (b) Show 
that the electrical potential energy U of such a 
conducting disk is U = k Q2/4a. (c) Determine its 
capacitance. 

6-6.11 Consider the earth to be a spherical capac- 
itor w i t h a = 6 . 3 7  x l 0 6  m a n d b = a + d ,  where 
d = 5 x 104 m (the distance to the ionosphere). If 
the fair-weather field is 100 V/m, find the energy 
stored in the earth's electric field. 

6-7 .1  A parallel-plate capacitor is charged up by 
a 6 V battery, which is then removed. A dielectric 
with dielectric constant K = 5 is slid between the 
plates. Give quantitative answers in terms of the 
ratio of each quantity before and after. (a) What 
happens to the electric field within the dielectric? 
(b) To the voltage difference between the plates? 
(c) To the charge on the plates? (d) To the capaci- 
tance? (e) To the energy stored? Explain how energy 
is conserved. 

6-7.2 A parallel-plate capacitor is charged up by a 
6V battery, which is kept in place. A dielectric with 
dielectric constant K = 5 is slid between the plates. 
Give quantitative answers in terms of the ratio of 
each quantity before and after. (a) What happens 
to the electric field? (b) To the voltage? (c) To the 
charge? (d) To the capacitance? (e) To the energy 
stored? Explain how energy is conserved. 

6 -7 .3  A slab of dielectric is attracted into a 
parallel-plate capacitor both when the capacitor 

noindent has a fixed charge and when it is attached 
to a capacitor of such large capacitance that the volt- 
age difference is fixed. Explain why U = Q2/2 C is 
the relevant energy in the first case but not in the 
second. 

6 - 7 . 4  Two capacitors C1 and C2 are in series, their 
net voltage difference maintained by a battery of 
fixed voltage g. (a) Find the charge and voltage of 
each capacitor. (b) A dielectric of dielectric con- 
stant K is slipped between the plates of (2]. Find 
the charge and voltage of each capacitor. (c) What 
changes are caused by the dielectric? 

6 -7 .$  Consider a capacitor C at a fixed voltage dif- 
ference V. Show that when the capacitance changes, 
the energy change is BUy= [Q2/(2C2)]SC, just 
opposite in sign from (6.35). Hence either F~ = 
-dU/dxlQ (corresponding to an isolated capaci- 
tor) or F~ = dU/dxlv (corresponding to a capacitor 
maintained at a fixed voltage). 

6-7.6 (a) Find the energy to charge a spheri- 
cal capacitor of inner radius a and outer radius b 
to Q by considering the work it takes to move 
the charge, using electrical force considerations. 
Specifically, move dq from r = b symmetrically in- 
ward, acting against the force due to the charge q 
that is already on the inner sphere. (b) Find the 
capacitance. 

6 -7 .7  Connect a 12/~F capacitor to a 6 V bat- 
tery. Disconnect the battery. Pull the plates apart 
(d ~ 2d). Reconnect to the battery. For the battery, 
consider that the energy is given by Ubatt - -  g Q b a t t ,  

where g is the emf of the battery, and Qbatt is its 
charge (this equation is discussed in the next chap- 
ter). (a) Analyze the energy transfer, including any 
work done by or to your hands. (b) Repeat this 
process if the capacitor is connected to the bat- 
tery while the plates are pulled apart. Analyze the 
energy transfer. 

6-7.8 Connect an uncharged capacitor C] = 5 #F 
to a capacitor C2 = 500 #F initially at 6 V. Dis- 
connect the capacitors. Pull the plates of C] apart 
(d ~ 2d). Reconnect to C2. (a) Analyze the en- 
ergy transfer, including any work done by or to your 
hands. (b) Repeat this process if C1 is connected to 
C2 while the plates are pulled apart. Analyze the 
energy transfer. 

6-8.1 Consider two conducting spheres of radii a 
and b, which are very far apart. Specifically, take 
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b = 10 m, and a = 0.5 m. Let the large sphere, 
which serves as a reservoir, initially be at 201 V 
relative to infinity, and let the small sphere be 
uncharged. Now connect the spheres with a very 
fine wire. Find (a) the initial charge on the 
large sphere, (lo) the final potential of the con- 
nected spheres, and (c) the final charge on each 
sphere. 

6 -8 .2  Consider two distant spherical conductors. 
(a) If 10 nC is added to one sphere, and the other 
sphere has its voltage increase by 40 mV, estimate 
the separation r. (lo) Does this estimate only apply 
to spherical conductors? 

6 -8 .3  Recent experiments have shown that small 
capacitors consisting of two blobs of metal can be in- 
fluenced by nearby charge on a third blob of metal. 
Using the pq's, show how charge on the third blob 
affects the voltage difference on the first two. In the 
experiments, the measured voltage difference was 
quantized, because the charges on the third blob 
were due to individual electrons. 

6 - 8 . 4  Consider two capacitors connected in series. 
There are three pieces of conductor, so there are six 
different pq's. Let 1 and 3 be on the outside, and 
let 2 be on the inside. (a) Obtain the overall capac- 
itance in terms of the Pij's, using C = Q/(V3 - V1) 
and Q3 = Q, Q1 = - Q ,  and Q2 = 0. (b) What 
condition must the Pij's satisfy for .Q2 g: 0 to not 
influence � 8 9  Vl? 

6 -8 .$  (a) Explain why, for polarization of a con- 
ductor, only the shape is relevant, whereas for po- 
larization of an insulator, both the shape and mate- 
rial are relevant. (b) Consider a conducting sphere 
of radius a with charge q, and a point charge Q 
at distance r >> a. Explain why electrostatic induc- 
tion can be neglected, as a first approximation, in 
describing their interaction. Hence, far from a small 
conducting sphere with charge q, the sphere can be 
thought of as a point charge q. 

6-8.6 Consider two distant conducting spheres, 1 
and 2. (a) Show that if conductor 2 becomes polar- 
ized (e.g., by charge on 1), its polarization charge 
sets up a dipole moment P2 and, by (5.46), a dipole 
potential k}2 �9 3, where 2~2 is proportional to its 
volume fa2 and to the electric field kQ1 / R 2 at 2 due 
to 1. (This is related to the amber effect.) (b) Show 
that this dipole potential lowers V1 in proportion to 
kQ1 ~ I /R  4, where s21 is the volume of conductor 1. 
Thus, P11, which is positive, decreases in proportion 
to kf21/R 4 . Similarly, P22 decreases in proportion to 

kf22/R 4, where fa2 is the volume of conductor 2. 
(c) From the dependence of Pll on the separation 
R, and the energy of the system when Q1 -Y= 0 but 
Q2 = 0, show that the force of attraction between 
the two spheres varies as R -s, as expected for the 
amber effect. 

6-9.1 Consider a long organic molecule. (a) Along 
which axis is it likely to be more polarizable? Hint: 
Assume the extreme situation where the molecule 
is conducting. Consider the two cases where E of 
a fixed magnitude is along the molecular axis and 
when it is normal to it. Are the I~l's the same for 
these two cases? (b) Explain why ~ = c~/~ is too 
simple an equation to describe polarization in this 
case. 

6 -9 .2  Here is a model for the polarizability of an 
atom. Consider a rigid ball of radius a with uni- 
form charge density and total charge - e  in a small 
external field E. (a) Show that the equilibrium posi- 
tion F of a positive charge +e (relative to the center 
of the ball of charge) satisfies ~ = (a3/ke)E, when 
I EI is small enough that r < a. (b) Find the dipole 
moment } of the overall neutral ball-charge com- 
bination. (c) Show that the polarizability satisfies 
ot = a 3 / k. (d) Evaluate c~ for a = 10 -l~ m. 

6 -9 .3  Consider a spring of constant K that, when 
extended by x, has dipole moment qx. Show that 
the polarizability is given by ~ = q2/K. Hint: Min- 
imize the sum of the interaction energy of a dipole 
(with an external field/~ along x) and the spring's 
potential energy, as a function of x. 

6 - 9 . 4  In what follows, take the surface at x = 0 
and take the electric field to fall off with distance 
as exp[-(x/tvFd)]. (a) If the density of localized 
charge is fixed, so K is fixed, and the density of local- 
ized charge increases, so l decreases, then the screen- 
ing length t ~  decreases. This makes the screen- 
ing more effective everywhere. For an applied field 
of 2500 V/m and K = 5, at x = 4 nm evaluate the 
field magnitude for l =  20, 4, 0.8 nm. (b) A curi- 
ous effect can occur if the density of delocalized 
charge is fixed, so l is fixed, and the density of lo- 
calized charge increases, so K increases. Although 
increasing K causes the field just inside the ma- 
terial to decrease (because it causes polarization 
charge to literally go to the surface), increasing K 
can sometimes cause the field further into the mate- 
rial to become larger (because the screening length 
increases, by l - - ,  I~/-K). This last effect is most 
important for large values of K and relatively large 
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distances into the material, where the electric field 
is small anyway. For an applied field of 2500 V/m 
and l = 2 nm, at x = 8 nm evaluate the field mag- 
nitude for ~ = 1, 1 O, 100. 

6-10.1 Use the field-line tension to verify that 
the attractive force pulling on the midplane of two 
charges +q separated by 2a is kq2/4a 2. 

6 - 1 0 . 2  Use the field-line pressure to verify that 
the repulsive force on the midplane of two charges 
+q separated by 2a is kq 2/4a 2. 

6 - 1 0 . 3  Use the field-line pressure to find the force 
per unit length between two charged rods +X sep- 
arated by 2a along the x-axis. 

6 - 1 0 . 4  Use the field-line tension to find the force 
per unit length between two charged rods ~ and -X 
separated by 2a along the x-axis. 

6-G.1 It is not difficult to generate electrical po- 
tentials of over a thousand volts by rubbing two in- 
sulators against each other. However, on discharge, 
one can get only a small shock. Discuss why using 
the concept of capacitance. 

6-G.2 A small conducting disk is placed within 
a parallel-plate capacitor, parallel to the plates. 
(a) What effect does this have on the field lines? 
(b) On the capacitance? (c) Repeat if the disk is 
placed normal to the plates. 

6 -G .3  If the fringing field of a capacitor is in- 
cluded, how is the capacitance affected? [Answer: It 
increases because extra charge piles up at the edge, 
thereby decreasing the field and the voltage drop 
for other regions.] 

6-G.4 Microphones convert the mechanical en- 
ergy of air motion to an electrical signal. How might 
a parallel-plate capacitor made of a flexible mem- 
brane serve in this role? 

6-G.5 A variable air capacitor used in radio tuners 
has an interleaving of two sets of connected plates. 
One set are semicircles on the even planes z = 
0, 2 d , . . . ,  2nd. The other set are semicircles on the 
odd planes z = d, 3d, . . . ,  2nd + d. If the semicir- 
cles have area A and overlap angle 0 (so that 0 = zr 
is the maximum overlap), show that the capaci- 
tance of this combination is given, approximately, 
by C = (2n + 1)AO/4n2kd.  

6-G.6 Show that C for a concentric cylindri- 
cal capacitor of radii a and b and length L >> 

a, b reduces to that for the parallel-plate capacitor 
when b -+ a, on taking d = b - a and A = 2n La .~ 
2rr Lb. 

~ 6-G.7 Here is a method to measure the sur- 
.... face charge on a dielectric. A dielectric slab 

with an unknown charge density er on its top is 
grounded at its bottom. A small distance above the 
dielectric is a small flat probe of area A. See Figure 
6.34. There is capacitance Ca between the top of 
the dielectric and ground, capacitance C between 
the probe and the top of the dielectric, and capaci- 
tance Cp between the probe and ground. The charge 
on the surface of the dielectric causes a voltage dif- 
ference Vp between the probe and ground. Show 
that ~ = (Ca + Cp + CaCp/C)(Vp/A). Hint: The 
voltage drop is the same along both paths from 
the top of the dielectric to ground: directly down- 
ward through the dielectric and upward through the 
probe and then to ground. 

~  Pro  SP 
Cp 

I .... : : [  
Cd 

Figure 6.34 Problem 6-G.7. 

6-G.8 Consider a large charged conducting 
sphere, to which an initially uncharged conducting 
tip is now added. The charge on the sphere now 
is shared with the tip. How does this change the 
voltage? The capacitance? 

6 - G . 9  Volta found that a frame of cross-connected 
wires had a capacitance comparable to that for 
much larger systems that had no "holes." In other 
words, it had a relatively large capacitance. How 
might such a geometry permit a large capacitance? 
Recall that the electric field is usually larger where 
the surface is more curved. 

6 - G . 1 0  The charges on conductors are related to 
their potentials via 

Q1 = qll v1 + q12 v2, Q~2 = q21 v1 n u q22 v2, 

where the (unknown) qij are called coefficients of in- 
duction. Here potential is measured relative to the 
potential at infinity. Defining 

D = Pll P22 - P12P21, 

where the coefficients of potential Pij are defined in 
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Section 6.8, show that 

P22 P l l  P21 
qll = D ' q22 = D ' q12 = D '  

P21 
q21 ~- �9 D 

6-G.11 L e t  P l l  = 8 x 10 9 F -1,  P22 -~- 2 0  x 10 9 

F -1, and P21 = P21 = 4 X 10 9 F -1. (a) From the re- 
sults of problem 6-G.10, show that D = 1.44 x 
1018 F -2, q l l  = 5.56 X 10 -9 F, q22 = 13.9 x 10 -9 F, 
and q~2 = q2~ = -2 .78  x 10 -9 E (b) Show that, if 
2 is grounded and a 1 2 V battery is connected be- 
tween it and 1, so V2 = 0 and 171 = 12 V, then 
Q1 = qllV1 = 6.67 x 10 -8 C and Q2 = q21 v1 = 
-3 .33  x 10 -8 c. 

6 - G . 1 2  Even a small electric shock can destroy 
the sensitive circuits of a computer chip. What  role 
(or roles) does the metal coating on the bags have 
for the computer memory chips (RAM, or random 
access memory) they contain? What  is the coeffi- 
cient of induction between your hand outside the 
bag and the chip inside the bag? 

6-G.  13  If two conductors are connected by a fine 
wire, they come to the same potential, so they 
can be considered to behave as a single conductor. 
(a) Show that 

Q1 + Q 2  
Cself = V - qll + q22 + q12 + q21. 

(self-capacitance of connected conductors) 

Hence the self-capacitance of two connected con- 
ductors is a combination of both the mutual- and 
self-induction coefficients. (b) Show that, if q12 = 

0 = q21, then (21 = Q1/V1 - q l l  and C2 = q22, SO 
C = C 1  +C2 .  

6 - G . 1 4  Let qll = 5 . 5 6  x 1 0  -9 F, q 2 2 = 1 3 . 9 x  
10 -9 F, and q12 =q2~ = - 2 . 7 8  x 10 -9 F. (a) Us- 
ing the results of problem 6-G.13, find Cself. 
(b) With Q = 10 -9 c, find the common voltage 
V, Q1, and Q2. 

6-1].1 5 Consider a system of two distant spheres, 
of radii a and b, separated by R >> a, b. Explain why 
it is a good approximation to take 

kQa kQb kQb kQa 
Va= 4 - ~  � 8 9  + ~ .  

a R ' b R 

Find the coefficients of induction qij. 

......... !!IIIIEI!I!I!!I,!!~ .... 6-G.16 Let two long parallel plates be sep- 
...... =i:~iiii'~!i:~:':,i ............... arated along the x-axis by 2a, with the mid- 

point at the origin. Rotate the left plate about 

the origin until the angle between the two plates 
is the small angle a, rather than rr. Let there 
be guard rings (gaps connected only by a thin 
wire) an additional distance b along the plates. 
See Figure 6.35. (The guard rings help eliminate 
the fringing field.) (a) Show that the field magni- 
tude E between the plates is well represented by 
E = A V/rol, where A V is the fixed voltage differ- 
ence between the plates and r is the radial dis- 
tance. (b) Show that the charge density on the 

E AV positive upper plate is as = ~ = 4rckrot" (c) S h o w  

that the charge associated with the plates, from 
r = a to r = b, and of dimension L into the page, 
is given by Q = f asdA f av Ldr = aVE lnb = 4Tr~ ~ a" 
(d) Show that the capacitance is given by C = QAv-- 

Av in b L4-dG~ ;. 

/ 
Origin ~ ~ c~ 

. . . . . . .  

a 

Figure 6.35 Problem 6-G. 16. 

6 - G . 1 7  Consider three blobs of metal, with q3 = 
q and q l = - q 2  = Q. Let q be fixed, but let Q 
vary. (a) Find the electrical energy U in terms of 
these charges and the coefficients of potential Pij. 
(b) Show that U can be written in the form U = 
( Q - r q ) 2 / G  + q2/C3,  and evaluate (7, r, and C3 
in terms of the pq's. This form has been used in 
studying the charging energy when the number of 
electrons is so small that in writing Q = ne the dis- 
creteness of charge is noticeable. 

6 - G . 1 8  Consider a slab of thickness d and area 
A with surface charge density i a ' ,  as in Figure 
6.14. Define the direction from -or' to a '  as [. 
(a) Within the air gap between the slab and the 
plates let the field outside the slab be E out. Let 
the field within the slab be Ein. Show that Eout = 
Ein q-4rcka'[.  (b) Show that the polarization [P, de- 
fined as the dipole moment  per unit volume, is 
[P - (q'd it)~ V = a'[. (c) Show that /~  + 4rrk/5 is 
continuous at the interface. Therefore the electric 
displacement D - ~0 (/~ + 4 Jr k/5~ = ~0/~ + /3  is con- 
tinuous at the interface. Since P is the polarization 
of the material, we may think of e0/~ as the "polar- 
ization of the vacuum." D has only free charge as its 
source (such as electrons or ions), not polarization 
charge (such as from neutral but polarizable atoms 
or molecules). Maxwell attributed great significance 
to D. 
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6-G.19 Consider an atom with a permanent 
dipole moment ~ of magnitude P0. For a strong ap- 
plied field/~, ~ aligns with/~. For no applied field, 
points randomly, due to thermal collisions. Assume 
that, when a weak field E is applied, the atoms are 
aligned with/~ a (small) fraction poE/kBT of the 

time, and randomly aligned the rest of the time. 
(Here kB is known as the Boltzmann constant, and 
T is the temperature; kB T has units of energy, just 
as does poE.) (a) Show that the average dipole mo- 
ment is proportional to p~ E/kB T. (b) Show that 
the polarizability is proportional to p~/kB T. 



"The ordinary electrometer indicates tension [voltage] . . . .  There was lacking an instru- 
ment which would enable us to recognize the presence of the electric current.. ,  this instru- 
ment now exists. . .  I th ink . . ,  we should give it the name of galvanometer . . . .  " 

--Andr~ Marie Ampere (1822) 

"I do not regard my experiments..,  to be complete.... My  position as a teacher in a 
grammar school places exceptional obstacles in the way of this fundamental re- 
search . . . .  Cylindrical conductors of the same substances have the same conducting ca- 
pacity for different diameters provided the length is proportional to the cross-section." 

--Georg Simon Ohm (1826) 

CHapter 7 

Ohm's Law: Electric Current Is 
Driven by Emf, and Limited by 
Electrical Resistance 

Chapter Overview 

This chapter has three parts. The first part gives a precise definition of electric current 
and discusses Ohm's law and electrical resistance. The second part discusses sources 
of emf, whose description can be incorporated in a generalization of Ohm's law. The 
third part discusses charge carriers within wires and explains the microscopic origin of 
electrical resistance. 

Section 7.1 gives a brief introduction to the chapter. Section 7.2 discusses electric 
current, for geometries more general than flow along a uniform wire, introducing the 
concept of the local electric current density J (a current per unit area). Section 7.3 states 
Ohm's law, and for uniform wires introduces the concept of the material's resistivity p 
(not to be confused with the p used for charge per unit volume). Section 7.4 shows 
that if the local J is proportional to the local electric field E, thus yielding a local form 
of Ohm's law, then the usual global form of Ohm's law follows. The proportionality 
constant relating J and E is the material's conductivity ~ (not to be confused with 
the cr used for charge per unit area), which satisfies cr - p-1 Section 7.5 discusses 
resistors in series and in parallel, the idealizations usually made in neglecting the 
resistance of connecting wires, and the real meaning of the expression path of least 
resistance. Section 7.6 shows how additional resistors, in series and in parallel with a 
galvanometer, can be used to design ammeters and voltmeters. 

As a prelude to the discussion of emfs, Section 7.7 discusses some complexities 
of car batteries. Section 7.8 considers how emf is measured with an electrometer, 
the internal resistance of a source of emf, and various types of emf. Section 7.9 
discusses energy storage by voltaic cells, and energy transfer by voltaic cells in circuits. 
Section 7.10 considers circuits containing voltaic cells. 

Section 7.11 discusses the fundamental process leading to Ohm's law: an aver- 
age drag force. This idea is first applied to a simple model for parachutists subject 
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to air drag, and then applied to air drag on oil drops, leading to the Millikan oil 
drop experiment that established charge quantization. Finally, drag force is applied 
to charge carriers in a conductor, subject to collisions with the ionic background. 
(This model was developed only as recently as 1900, by Drude, following the 1897 
discovery of the electron.)In metals and semiconductors, the charge carriers are elec- 
trons, producing electronic conduction. In ionic solids~such as salt~and in ionic 
fluids (or electrolytes)~such as salt water or battery acid~the charge carriers are 
ions, producing ionic conduction. Sections 7.12 and 7.13 use the drag model to ex- 
plain why some materials are good conductors and some are poor conductors (i.e., 
insulators). 

Unassuming as they are, Sections 7.11 and 7.12 are extremely important. Millikan's 
discovery of charge quantization, coupled with J. J. Thomson's discovery that cathode 
rays are all negatively charged with the same charge-to-mass ratio for all cathode 
materials, provides justification for the electric fluid model: it identifies negatively 
charged electrons as the charge carriers within a conductor. Moreover, it relates the 
electric current to the average electron flow velocity. In the midnineteenth century, 
none of this was known. In the absence of such knowledge, James Clerk Maxwell, one 
of the most important figures in the development of electromagnetic theory, withheld 
support for the electric fluid model. J. J. Thomson, one of Maxwell's successors at the 
Cavendish laboratory, became its strong supporter. We believe that so would have 
Maxwell, had he known Millikan's and Thomson's results. I 

7.1 

7oi.1 

Introduction 

Electric current~the flow of electric charge~is indispensable to modern society. 
Toasters use electric current for heating; electric motors use electric current to 
produce motion; and radio, television, and telephone all use electric current for 
communications. This chapter discusses electric current and the energy sources 
that drive it. Such current-causing energy sources are called electromotive forces, 
or emfs. 

True forces act locally and have units of newtons (N). The definition of emf, 
however, is not local. It is the work per unit charge for some specific path, and 
thus involves all the points along the path, not a single point. Its algebraic symbol 
is E, and it has units of J/C = V (volts). 

A Brief History of Electrical Conduction 

Until the development of the voltaic cell (1791), the only type of emf was due 
to electrostatic energy, produced by static electricity devices and used directly, 
or stored by capacitors. Since capacitors and static electricity devices typically 
discharge very quickly, it was difficult to perform controlled experiments. In the 
1770s, Cavendish compared the "conducting power" of different metals by the 
intensity of the shocks he received on discharging an electrical device through a 
circuit that included a length of metal and his tongue. He thereby gained valuable 
comparative information, but it was not yet quantitative science. Scientists had 
neither a long-lasting source of emf nor a quantitative means to measure electric 
current. 
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The absence of a long-lasting source of emf ended with the discovery of 
voltaic cells (using chemical energy), beginning in the 1790s with the work of 
Galvani, and then of Volta. In 1822, Seebeck discovered thermoelectric devices 
(using thermal energy). A voltage electrometer, as in Figure 5.8, could then 
characterize the strength of a long-lasting source of emf by putting the emf in 
an open circuit (so there is no current flow). One could next measure current 
by using a long-lasting source of emf in a circuit of very low "conducting power" 
to slowly charge a bank of capacitors in parallel. From the capacitor charge Q 
(monitored with a charge electrometer, as in Figure 2.4) and the charging time 
t, the average electric current i = Q / t  could be determined. Such a procedure 
is tedious. Without a simple and reliable method to measure the instantaneous 
value I = d Q/dt  of the electric current, it was not practical to determine the 
relationship between the electric current and the emf. 

In 1820, Oersted discovered that an electric current (driven by a battery of 
voltaic cells) could cause a magnetic needle to deflect. It was found that the 
deflection was proportional to the electric current. (This effect will be discussed 
in Chapter 10.) Here, at last, was the instantaneous current-measuring device 
that scientists had been seeking; what Ampere named the galvanometer. 

With this device to measure current, and a thermoelectric power source 
(more stable than a voltaic power source), Ohm studied how the current through 
a wire depends upon the emf, the material, and the length and cross-sectional 
area of the wire. In 1827, he published what we now call Ohm's law. Had Nobel 
prizes in physics been awarded at that time, Ohm surely would have been a 
recipient. 

7~1.2 Ohm's L a w  in a Nutshe l l  

Consider a material with two electrodes, across which there is a voltage difference 
A V, and through which passes a current I. Then I = A V~ R defines the electrical 
resistance R. When Ohm's law applies, two results hold: (1) the electric current I 
through an object passes from high to low voltage; (2) I and A V are proportional, 
so that R is independent of A V. Nearly all materials satisfy Ohm's law for a 
small enough range of I and A V. Moreover, for many materials, Ohm's law is 
an exceedingly good approximation for a wide range of I and A V. Nevertheless, 
no material satisfies Ohm's law for all values of I and A V. 

Consider Figure 7.1. The material of Figure 7.1 (a) satisfies Ohm's law for a 
wide range of I and A V, and is thus called ohmic; the material of Figure 7.1 (b) 
does not satisfy Ohm's law for a wide range of I and A V, and is thus called 
non-ohmic. 

When Ohm's law applies, R depends on the geometry of the object and the 
type of material, but not on the current or emf. For wires, where the electrodes are 
attached at the ends, R is proportional to the length and inversely proportional 
to the cross-sectional area. Thus, overall, R is inversely proportional to the linear 
dimension (compare with capacitance C, which in Chapter 6 was found to be 
proportional to the linear dimension). 

Metals, such as copper and aluminum, are ohmic over a wide range of currents 
and voltage differences, as in Figure 7.1 (a). However, silicon and other semicon- 
ductors (so called because they conduct electricity better than an insulator like 
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I~ ] I~ 
n t  = -R 

Ohmic Non-ohmic 

. . . . .  

(a) (b) 

Figure 7.1 Current response I of a circuit element to a voltage 
difference A V placed across two points. Resistance R =- A V / I  is 
the inverse slope of the tangent to the curve. (a) Ohmic response, 
where I is proportional to A V. (b) Non-ohmic response, where I 
is not proportional to A V. 

window glass, but worse than a conductor like copper), are non-ohmic, as in 
Figure 7.1 (b). (There are an infinite number of I versus A V curves that can be 
non-ohmic, but only straight lines with positive slope and passing through the ori- 
gin are ohmic.) Many materials and devices (e.g., vacuum tubes) are non-ohmic. 
Modern electronics uses ohmic materials to transport current, and non-ohmic 
materials for amplifiers and other nonlinear devices. We will concentrate upon 
ohmic materials; the study of non-ohmic materials and their uses is an advanced 
topic. 

Z !~3  
[ej~lv~.jm ~la 

A Historical Sidelight 

Ohm's contemporary Ampere understood the concepts ofvoltage and of current. 
Further, Ampere understood the idea of an electric fluid~actually, he thought in 
terms of a positive and a negative fluid--driven by emf and limited by some sort 
of resistance. However, do not feel sorry for Ampere for not discovering Ohm's 
law. He was thoroughly occupied studying the magnetism of electric currents, 
which forms the basis of Chapters 10 and 11. The 15 years from 1819 to 1834 
provided enough discoveries about electricity and magnetism that Chapters 7 to 
12 are devoted to them. 

If anything, feel sorry for Ohm. First, he published his careful and detailed 
experimental work. Then he published a very mathematical work, based on his 

Electrocardiography is a well-established method to study the heart by measuring its 
electrical output. A method called electrical impedance imaging, still under develop- 
ment, provides electrical inputs, measures electrical outputs, and interprets the results 
using Ohm's law. Healthy lungs, filled with air, show up in an impedance image as re- 
gions of low conductivity, but lungs suffering from pulmonary edema, and thus partially 
filled with fluid, show up in an impedance image as regions of much higher conductivity. 
This technique may eventually enable noninvasive monitoring of the blood circulatory 
system. 
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e x p e r i m e n t s ,  w h i c h  d e v e l o p e d  t h e  a n a l o g y  b e t w e e n  c u r r e n t  f l o w  a n d  h e a t  f low. 
N e x t ,  b e c a u s e  o n e  g r o u p  t h o u g h t  his  m a t h e m a t i c a l  w o r k  w a s  n o t  b a s e d  o n  e x p e r -  
i m e n t ,  h e  w a s  r e f u s e d  a u n i v e r s i t y  a p p o i n t m e n t .  Final ly,  b e c a u s e  a n o t h e r  g r o u p  
n o t i c e d  w h a t  t h e y  c o n s i d e r e d  t o  b e  his  p h i l o s o p h i c a l l y  u n a c c e p t a b l e  r e l i a n c e  
o n  e x p e r i m e n t ,  h e  los t  h is  p o s i t i o n  t e a c h i n g  s e c o n d a r y  s choo l !  For  s ix years ,  h e  
s c r a p e d  o u t  a m e a g e r  e x i s t e n c e ,  u n t i l  g r a d u a l l y  h is  w o r k  b e c a m e  k n o w n ,  a n d  h e  
b e g a n  to  r e c e i v e  h o n o r s  f r o m  a b r o a d .  O h m  at  l as t  r e c e i v e d  a m a j o r  p r o f e s s o r i a l  
a p p o i n t m e n t  in  1 8 4 9 ,  22  y e a r s  a f t e r  t h e  p u b l i c a t i o n  o f  his  b o o k .  

7,2 Electric Current 

E l e c t r i c  c u r r e n t  I is t h e  r a t e  a t  w h i c h  c h a r g e  c ros ses  a g i v e n  c r o s s - s e c t i o n a l  a r ea  
p e r  u n i t  t i m e .  T h a t  is, 

i~i~iii ~i~ii i i iii i i iiiii i iiiiiiii~ i~i~i ~i~i~ i~iii ~i~i~ !~ i~i~i ~i~i~ iiiiiiiiii i ilii i i i ii i i iiiii iliii i iiil i ilii i ilii i iiiiii iilil i liii i iiii i iiii i iiiiii iiiii iiiii i lili i iiii i iiii i i iiiii i iiiiiiiii iiiii i i ill i iiii i iiiiiiiiiii iliii i iiil i ilii i iiii i i iiiil !iiiiiiiiiiiiii i iiii i i i iili iiiiii!iiiiiill i iili i! iiiil iiiii iiiiiiiiii i ilil i iiiiii iiiii i iili iiiii iiiii!ilil i iiii i!!il i i iilil iiiiiiiiii i iiil i iiiiil iii i i iiiii iiiiiiii!i i lili i i iiiii iiiii iiiiiiiiii !iiii i iiiiii ilili iiiililiiiiiiii i i i i! i i iiiiiiii i iiiiii iiiiiiiiiiii!ii i iili i iiiiii iiiiiiiiii!i!ii i!ili iT ii iiiii iiiiiiiiil i iiii i iiii!i i7 iiiiiiiiiiiiiil i ilii i iiiiii ililili!iiiiiii i iiiiiiiii i iiii i iiii ii 7i iiiiiiiiiiiiTi iT ii i i iiili i{iil iiiiiiii!! i ilil i i iiili iiill iiiiiiiiii i iili i ilil i i !ilii iiiii iilii 1717 i iiiii! iiiii iiili iilii iiiiiiiiiilil i iili i i!iiiiiiiiiiiiiiii i lili i ilii i i iiili iiiiiiiiiiiiii!iiiiiiiiiiiiiii!iiiiiiiiiiiiiiil 
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I t  has  u n i t s  o f  C/s, w h i c h  is t h e  a m p e r e  (A) .  As  d i s c u s s e d  in  S e c t i o n  7 .1 ,  I c a n  
b e  d e t e r m i n e d  f r o m  t h e  d e f l e c t i o n  o f  t h e  m a g n e t i c  n e e d l e  in  a g a l v a n o m e t e r .  
W h e n  t h e r e  is o n l y  o n e  t y p e  o f  c h a r g e  carr ier ,  t h e  c u r r e n t  is t h e  p r o d u c t  o f  t h e i r  
c h a r g e  q a n d  t h e  r a t e  d N / d t  a t  w h i c h  t h e y  c ross  a g iven  c r o s s - s e c t i o n  o f  t h e  
c i r cu i t .  

C o n s i d e r  t h e  g e n e r a l  case,  w h e r e  a w i r e  m i g h t  h a v e  a b e n d ,  o r  a n o n u n i -  
f o r m  c r o s s - s e c t i o n .  T h e n  b o t h  t h e  d i r e c t i o n  a n d  m a g n i t u d e  o f  t h e  c u r r e n t  p e r  
u n i t  a r ea  n e e d  n o t  b e  u n i f o r m .  ( T h e  v e c t o r  s p e c i f i e d  b o t h  b y  t h e  loca l  d i r e c -  
t i o n  a n d  b y  t h e  m a g n i t u d e  o f  t h e  c u r r e n t  p e r  u n i t  a r ea  is w r i t t e n  as J a n d  
is c a l l e d  t h e  current density.) If  t h e  loca l  n o r m a l  t o  t h e  c r o s s - s e c t i o n  is s p e c -  
i f ied b y  h, t h e n  t h e  c u r r e n t  p e r  u n i t  a r ea  a l o n g  t h e  n o r m a l  fi is d I / d A -  
J . h .  T h e  t o t a l  e l e c t r i c  c u r r e n t  l p a s s i n g  t h r o u g h  t h a t  c r o s s - s e c t i o n  t h u s  is 
g iven  b y  

i i i ii!iiiiiiiii i iiiiiiiiiiiiiiiiiii Tiiiiiiiiiiiiiiiiiii ii iiii iiiiiT i!iiiiiiii ii!ii iiliii iiiiiT!iii!! i! iiiiiii ii !iii iiii !ii iiiiiiiii!iiiiill iiiiiiii!!iiiiiiil 

w h e r e  t h e  i n t e g r a l  is o v e r  t h e  c r o s s - s e c t i o n  o f  t h e  wi re .  

iiiiiiiiiiii !i!iiiiii!ii!Tii71iiii!!ii!iii!iii!iiiiiiiii!iiiiiiiiii 
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• Charge flow and current 

Eve ry  50 ms, a cha rge  1.5 C u n i f o r m l y  crosses  a 40  m m  2 area, t r ave l ing  in 
t he  x -d i r ec t i on .  F ind  (a) I;  (b) dI/dA; and  (c) J .  

Solution: (a) By (7.1), I = dQ/dt .  Since Q increases in p r o p o r t i o n  to t ime,  

I = A Q / A t  = 1.5 C/ .05  s = 30 C/s  = 30 A. 
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(b) Because the charge crosses the area uniformly, by (7.2) 

dI I 3o A = 1 . 5 x 1 0 6 A / m  2. 
dA A 40 x 10 -6 m 2 

(c) Since this corresponds to fi along the x-direction, by (7.2), Jx = ]" ~ = 
dI /dA = 1.5 x 10 6 a / m  2, and Jy -- Jz = O. 

For an ordinary fluid with local velocity ~, f ~. ~dA equals dV/dt ,  the rate 
of flow of fluid volume, or volume flux of fluid, across a given cross-section of, 
for example, a pipe. (Check the units.) Thus ~ - ~  may be interpreted as the 
volume flux per unit  area. Similarly, f J .  izdA = I equals d Q/d t ,  the rate of 
flow of charge, or charge flux across a given cross-section of, for example, a wire. 
T h u s  J �9 fi, in addition to its interpretation as current per unit area, also may be 
interpreted as charge flux per unit area. This strengthens the analogy between 
flow of fluid and flow of electricity. Moreover, it justifies the use of ~ as electric 
flux and d ~ / d A  = b7 �9 ~ as electric flux per unit area. 

Equation (7.2) applies for arbitrary cross-sections. For a cross-section that  is 
parallel to the sides of a wire, so J is perpendicular to ~, the current is zero. For a 
wire of uniform cross-section A and uniform current density J along the normal 
to the cross-section, (7.2) reduces to 

I - JA, J - ] J ] .  (7.3) 

See Figure 7.2(a). However, (7.2) applies more generally. 

~ Cylinders and radial current flow 

Consider Figure 7.2(b), which represents two concentric cylinders of radius 
r and length l, with radial current density Jr ---- J" ~ that is independent of 
position along the z-axis. Moreover, the total radial current is independent ofr. 
(a) For fi - ~ and a given r, compute the total radial current I - f J �9 hdA = 
f J .  ~ d A -  f JrdA. (b) If I is independent of r and proportional to l, find 

Figure 7.2 Two forms of current flow for cylindrical 
geometries: (a) axial current flow, (lo) radial current flow. 
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Jr as a function of the radial current per unit length K = I/I .  (Note: If I 
depended on r, then there would be charge buildup.) 

Solution: (a) For this geometry I = f JrdA= Jr A =  Jr(2z~rl). (b) Thus Jr = 
I/(2~rrl) = K/(2~rr). Hence Jr varies inversely with r. The larger the radius r, 
the greater the area A = 2~rrl through which the current must pass, and thus the 
lower the current density Jr. 

7.3 

7o3~1 

Global Form of Ohm's Law 

Ohm's Law 

When an overall voltage difference A V is applied between two terminals con- 
nected to an ohmic material, leading to a total current I through the material, 
Ohm's  law in its overall, or global, form applies. To repeat what  was noted in Sec- 
tion 7.1, Ohm's  law states (1) current I flows from higher to lower voltage; (2) in 

~y~U~~~ ~ ~~~ ~ i~ i~i~ i~i~i~i~i~i~~i~ii~i~i ~~ ii~i~ii~ii~i~i~i~i~ii~ii~i~i~i ~i~i~ii~i~i ii~i~i~~ i~i~ iii~i~ii~ ii~~i~i~i~ii~ ~i i ii~i~i~~ i~~ii~i~ii ~ i~ i~ii~iiiiiiii~i~i~i~ii~ i~ii~ii~i~i~i~i~ii~i~i~ii~iiiiiiiiiiiiiiiiiiiii iiiiiiiii~ii~iiii~i ~i~i~i~iii~i~i~ii~iii~ i~iii~i ~iiili ii i ~ ~i~i~i~i~ 

R is independent  of A V or I, as in Figure 7.1(a). Note that  (7.4) also applies 
to non-ohmic materials (e.g., silicon), but  then R depends on A V or I, as in 
Figure 7.1 (b). 

~ T h e  resistance the feet of duck. (Is the duck across a 
ohmic?) 

Two wires are connected across the feet of a solid copper duck. A current of 
2.5 A passes into the duck when the voltage drop across its feet is 0.04 V. In 
addition, when the voltage is halved, so is the current. (a) Find the resistance 
across the feet of the duck. (b) Is the duck ohmic? 

Solution: (a) R = A V~ I = 1.6 • 10 -2 ~ for currents less than or equal to 2.5 A. 
(b) Since R is independent of I for this current range, the duck is ohmic in this 
current range. 

For the specific case of a wire of length l and cross-sectional area A, O h m  
also found that  

Here p is the electrical resistivity; it is material dependent,  but  independent  of 
A V or I or the geometry of the resistor. (Earlier p denoted charge per unit vol- 
ume; context will usually define the meaning of the symbol p.) This is consistent 
with our earlier s tatement that  R-1 is proportional to the linear dimension: dou- 
bling all dimensions doubles l and quadruples A, so R halves and R -a doubles. 
Clearly, the resistance R depends on the resistivity p and on the geometry of the 
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Table 7.1 Table of resistivities 

Silicon 
:~ ~aterial Glass Graphite 

p (in ~-m)  1012-1013 640 3.5 x 10 -5 

p-1 dp/dT -0.7 -0.075 -0.0005 
(in K -1) 

Steel Aluminum Copper 

4 0 x ] 0  -8 2 . 8 x ] 0  -8 ] . 6 9 x ] 0  -8 ] . 5 x ] O  -s 5 . 6 x ] 0  -s 

0.0008 0.0039 0.0039 0.0038 0.0045 

wire. Take a wire. Mash it, bash it, smash it: its resistance R may change, bu t  the 
resistivity p will not. 

The  unit  of electrical resistance is the ohm, or g2, which by (7.4) has the  same 
units as volts/ampere,  so s = V / A .  The  uni t  of electrical resistivity, by (7.5), is 
the ~2-m. Table 7.1 shows the resistivities p for many  c o m m o n  materials, and 
the temperature coefficient of resistivity ~ - p-1 dp /dT  at room tempera tu re  (293 ~ 
Kelvin, or 20 ~ Celsius). ~ is given in K -1 . For t empera tures  not  far f rom 293 K, 
the straight-line approximat ion  

p(T) .~, p(293)  + d p / d T ( T  - 293) - p(293)[1 + c~(T - 293)] (7.6) 

gives p(T). 

• Resistivity of wire a 

Consider a wire of radius a = 0.05 inch (= .00127 m) and length l = 8 m. It 
passes a current I = 1.874 A when A V = 50.0 mV is applied across its ends. 
When the voltage is doubled, so is the current. (a) Is the material ohmic? 
(b) Find R and p. (c) Can you deduce the material of the wire? 

Solution: (a) The linear variation of I with A V means that the material is 
ohmic. (b) By (7.4), R = AV/1 = .02668 f2. The wire has area A =  zra2= 
5.07 x 10 -6 m 2, so, by (7.5), p = RA/l = 1.690 x 10 -8 ~2-m. (c) From the table 
of resistivities, this corresponds to copper (Cu) at room temperature. (Note: The 
gauge of a wire approximately indicates how many wires give 1 inch of thickness. 
Our wire has thickness 2a = 0.1 inch; ideally, this would make it 10 gauge, or 
#10, but in fact wire of radius 0.051 inch is 10 gauge according to the United 
States Electrical Code.) 

~ T h e  lightbulb, an apparently non-ohmic material 

In some cases, a material will appear to be non-ohmic, with a current and 
voltage difference that  are not proportional. Such is the case with the tungsten 
filaments of ordinary lightbulbs. The reason for this apparently non-ohmic 
behavior is that the Joule heating increases the filament temperature, and that 
significantly changes the resistivity. For sufficiently small currents~usual ly  so 
small that the bulb won' t  l ight-- the filament is ohmic. 

~ptional R e s i s t a n c e  of a cell membrane 

Consider a long nerve axon--a  cylindrical shell of thickness d, radius a, and 
length l, where d << a << l. (a) Find the resistance to current flow along the 
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axis, as in Figure 7.2(a). (b) Find the resistance to radial current flow (across 
the cell membrane), as in Figure 7.2(b). 

Solution: (a) Apply (7.5) with length l and area A = A a n n u l u  s - -  2read. Then 

pl 
Raxial- 2Jrad" 

(b) Apply (7.5) with length d and area A = Aradial = 2Jrat. Then 

rid 
Rradial -- 2zr al " 

In practice, a and l vary significantly from cell to cell, but p and d do not. Hence 
it is useful to define the specific resistance 

Rm ~ RradiaIAradiaI = p d .  

For cell membranes, a characteristic value of Rm is 103 ohm-cm 2. With d = 10 nm, 
this corresponds to p = 109 ohm-re. Not surprisingly, this is vastly larger than 
the 1.69 x 10 -8 ohm-m of Cu. If/~m is known, and a and l are known, then 
Rradial - pd/2Jral = Rm/2Jral can be determined. 

~ptionaJ ~ Resistance across a cell wall 

The resistivity of subcutaneous tissue fluid is about 0.78 ohm-m (not too 
far from the 4.4 ohm-m of sea water). The specific resistance Rm of the 
cell interior for a cell of thickness 100 # m  thus is Rm = pd = 0.78 ohm- 
cm 2. Since the previous example gives Rm ~ 103 ohm-cm 2 for the cell mem- 
brane (i.e., cell wall), the resistance of a cell mostly is due to the cell wall. 
If we model the human arm by A = 20 cm 2 area with resistivity p = 109 
ohm-m, to have a resistance of R = 10 s ohm requires, by (7.5), an effective 
length l = R A / p  = 2 x 10 -~ m. This corresponds only to about 200 cell walls 
100 # m  thick, much shorter than the length of an arm (about 40 cm). When 
an electric current passes along an arm, it cannot take a straight-line path, 
which corresponds to about (40 cm)/(100 ~tm)= 4000 cell walls. The cur- 
rent finds its way to at least three separate physiological systems: the blood 
system, the lymph system, and the nervous system. The blood system, with 
highly conductive blood and relatively wide veins and arteries, has the lowest 
resistance of these, and thus carries most of the current. Nevertheless, the 
nervous system carries some of this current, one reason humans are suscepti- 
ble to electric shocks. The medicinal procedure known as acupuncture, where 
needles placed at one part of the body affect another part of the body (and 
sometimes are connected to electrodes at different potentials), may use the 
low resistance of the nervous system. 

Resistors are labeled with a 4 or 5 band code of colors. The last color gives the tolerance, 
with -I-5% for gold and 4-10% for silver; the next-to-the-last color gives the exponent; 
the other colors give the prefactor to the exponent. The numerical values for the colors 
other than gold and silver are given in Table 7.2. Comparison with this table gives that 
the 4-band code red-violet-orange-silver means 27 x 10 3 -I- 10% ~, and the 5-band 
code yellow-blue-green-brown-gold means 465 x 101 4- 5% ~. 
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Table 7.2 Code for color bands marked on resistors 

6 i iiiiiiiiiiiii!i! !!!i!i! i i!i:!!! iii! i ii!! 

Black Brown Red Orange Y e l l o w  Green Blue Violet Grey White 

7.3~2 Joule Heating 

In 1841, James Joule determined experimentally that electrical energy can be 
converted into heat, at a rate given by 12 R. As noted in Chapter R, this is called 
Joule heating. It is true whether or not R is independent of I and A V. We now 
derive this result. 

By the energy considerations of Chapter 5, when a charge dQis  taken across 
a voltage A V, the change in electrical potential energy d U  -- d Q(A V) must be 

converted to another form of energy. See 

A~) I ----------~ ) 

Figure 7.3 Resistor R and charge 
flow dQthrough it in time dt, for 
calculation of Joule heating rate. 

Figure 7.3, where the + and - refer to the 
high and low voltage sides. If the charge trav- 
eled in a vacuum, this other form of energy 
would be the kinetic energy ofthe charge car- 
riers. However, since the same current enters 
and leaves the wire, whatever is carrying the 
charge does not speed up, and thus there is 
no increase in kinetic energy. Let us assume 
that, as quickly as electrical work is done on 

the charge carriers, energy is lost in collisions with the material of the wire, so all 
the electrical work goes into heat. Then, using A V - l R, the rate of production 
of heat is given by 

. . . .  . . . . . . . .  . . . .  

~ A  toaster's resistance 

A toaster is rated at ~P - 720 W for a voltage of 120 V. What is the toaster's 
resistance? 

Solution: By (7.7), 720 W = I(120 V), so I = 6 A, and R = AV/ I  = 20 S2. 
Without information about what happens for other currents, we cannot tell if the 
toaster wires are ohmic or not. They appear to be non-ohmic because on heating 
their temperature rises significantly, which affects the electrical resistivity p. By 
(7.5), that affects the electrical resistance. 

7.4 Local Form of Ohm's Law 

Energy conservation, applied to a particle moving from point A to point B, is a 
global statement that does not specify the details of how the particle goes from 
A to B. Newton's law, however, provides a local statement about the motion of 
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the particle all along its path from A to B. (Thus, Newton's law provides more 
detailed information than provided by energy conservation.) So far, we have only 
a global statement of Ohm's law, involving the voltage difference between two 
terminals connected to a material. We now seek a more local statement of Ohm's 
law that will apply pointwise throughout the material. 

7,4,1 Ohm's Law Recast 

If Ohm's law holds, then if A V doubles, so does I, leaving R unaffected. A 
doubling of both A V and I can be accomplished by doubling both/~ and J. This 
leads us to write what we call the local form of Ohm's law: 

Here the factor c~ is called the electrical conductivity and is independent of/~ for 
ohmic materials. (Earlier, c~ denoted charge per unit area; context will usually 
define its meaning.) Equation (7.8) automatically satisfies the first part of Ohm's 
law, that current flows from high voltage to low voltage, This is because J points 
along the direction of the current, and E points from high voltage to low voltage. 
Let us see how cr of the local form of Ohm's law relates to fi of the global form 
of Ohm's law. 

Consider a wire (e.g., for a toaster) of conductivity or, cross-section A, and 
length I. For example, see Figure 7.3. Let it carry a uniform current density J 
along its axis. Then, by (7.3), the total current is I = J A Moreover, the electric 
field is uniform over the length of the wire. Hence, taking A V to be positive, and 
choosing the limits of integration to make f ~. d~ positive, A V = f / ~ .  d~ = El 
across the wire. Use of J = ~ E, the scalar form of (7.8), then leads to 

I - J A - (cr E ) A - ~ ( - ~  ) A - ( A V) cr AI (7.9) 

Since (7.4) and (7.5) yield I = A V(A/pl) ,  comparison with (7.9) yields 
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Thus conductivity and resistivity are inversely related, one favoring and the other 
hindering conduction. 

~ A  copper wire 

Consider a #10 Cu wire (A = 5.07 x 10 -6 m 2) at room temperature, where 
p - 1.690 x 10 .8 ohm-m. Let E = ]/~l = 0.05 V/re. Find the conductivity 
of copper, and the current density and the current passing through the wire. 

Solution: Eguation (7.10) gives c~ = 1/p = 5.91 x 107/ohm-m, so (7.8) then 
gives J = ]J] = alE] = 2.96 x 106 A/m 2. Equation (7.3) then gives I = J A =  
15.0 A. 
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7.4.2 Determining Resistance in General 

If the connections to an object change, the resistance will change. This is 
clear from the example of the cell membrane, where there is both a paral- 
lel and perpendicular resistance. The resistance is different between adjacent 
fingers on one of your hands, and between the index fingers on both of your 
hands. 

Therefore, consider an ohmic material for a general geometry. Equation (7.4) 
can still be used to determine R from experiment because we measure both A V 
and I. But how do we determine R from theory? We must use the general forms 
a v - f # .  d~ (making sure that the limits of integration give A V positive) and 

I - f J .  i zdA Thus (7.4) becomes 

!~/, i!!ii~!! i�84 iil i i i 

(general definition of r e s i s t a n ~  ~ i t  i 

which must be positive. When the local form of Ohm's law, (7.8), also applies, the 
numerator and denominator both double if the voltage doubles, so the resistance 
is ohmic. Moreover, if either J or/~ can be determined, then by (7.8) the other 
can be determined. Hence, both the numerator and denominator in (7.11) can 
be calculated theoretically. For complex geometries, /~ is not easily calculated, 
so the electrical resistance can only be measured. 

Equation (7.11) has the scaling property that, if distances are increased a 
factor of two, then the numerator (proportional to a length) doubles and the 
denominator (proportional to an area) quadruples, so the resistance halves. Recall 
that (7.5), for a wire, has this property; if the length scale doubles, then the length 
l doubles and the area A quadruples. More generally, consider two conducting 
objects with the same shape, and made of the same material (e.g., solid copper 
ducks). When measured with respect to corresponding points on those objects 
(e.g., feet), the ratio of their electrical resistances equals the inverse of the ratio 
of their characteristic length scales. 

• Comparing the resistance of two similar ducks 

Consider two solid copper ducks of similar geometry. The foot-to-foot resis- 
tance of the large one is R l a r g  e - 0 . 0 4  f2. If the large one is 30 cm tall, and the 
small one is 10 cm tall, determine R s m a l l .  

Solution: By the scaling property of resistance (inversely with the length), the 
small one has triple the resistance of the large one, so R s m a l  I - O. 12 f2. 

R e s i s t a n c e  for radial current flow 

Determine the resistance for a cylindrical geometry with current-conserving 
radial flow from r - a  to r = b. The conductivity is a and the object has 
length l along its axis. See Figure 7.2(b). 
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Solution: Equations (7.11) and (7.8) and the example of Section 7.2 give 

R = A V  l f  bJ. dr=lf  b _  
I = -[ ~, .d-~--- --f cr -~  Jrdr 

a i ar 1 lnb 
a I ~ d r -  2Jrla 7 = 2zcla a 

This satisfies the scaling property that, if all distances double, then the resistance 
halves. 

7,5 Resistors in Series and in Parallel 

We now apply Ohm's  law to combinations of resistors. The two most common 
cases are resistors in series and in parallel. The resistors need not be wires; they 
may be as complex as copper ducks, just as long as they satisfy Ohm's  law, (7.4). 

7,5,1 Resistors in Series 

Consider two resistors R1 and R2 in series, as in Figure 7.4. This is analogous, in 
ordinary fluid flow, to two water hoses placed in series. For fixed pressure head 
at the faucet, the water flow will decrease relative to the case with one hose 
because the fluid must successively feel a drag force from each hose. Hence the 
resistance to flow increases. Similarly, the equivalent resistance R of R1 and R2 
in series should be greater than either R1 or R2. Let us see if this is the case. 

In order that  charge not continually build up anywhere in the circuit, the 
same current I must  flow through each of them. This is a manifestation of the 
law of charge conservation. Thus 

I = I~ = I2. ( 7 . 12 )  

Moreover, because voltage is additive, the sum of the voltages across each 
resistor is the total voltage across the combination. Thus 

A V =  /XV~ + A�89 (7.13) 

(Here, A V = V~ - Vc, A V1 = V~ - 14, and A �89 = 14 - V~.) The equivalent re- 
sistance R is given, from Ohm's  law, by R = A V / I .  As expected, R is greater 

R1 R2 
A V = A V I + A V 2  a l ~ / k ~ I  ~ V ~  I c 

1 = 1 1 = 1 2  0 ~ ~ ~ 0 + - 
~ J ~ J 

A V 1 = 11R 1 A V 2 = I2R 2 

Figure 7.4 Two resistors in series. The same current passes 
through each and through the equivalent resistance. The voltage 
across the equivalent resistance is the sum of the voltages across 
each resistor. 
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than either R1 or R2 because, for fixed current  I, the net  voltage drop exceeds 
that  across either resistor. We now determine R explicitly. 

Applying Ohm ' s  law to the system as a whole, and to each resistor separately, 
yields 

zxv zxv~ zx�89 
I -- I1 -- 12 = . (7.14) 

R '  R I '  R2 

Rearranging the equations (7.14), and put t ing them into (7.13), yields 

I R - 11R~ + 12 R2. (7.15) 

Dividing (7.15) by I, and using (7.12), the effective resistance R is given by 

i ! 

Indeed, R is greater than either R1 or Re. Since A V1 = I R1 = A V(R1/R),  and 
R1 < R, by using A V as the input  and A V1 as the output ,  this circuit can be used 
as a voltage divider. 

Recall the case of fixed current  flow along the axis of a wire, wi th  R given 
by (7.5). It makes sense that  the length l appear in the numera tor  because in 
this case doubling the length at fixed current  also doubles the voltage; it is like 
adding two wires in series. 

Note  that, for resistors in series: (1) the current  is the same through each 
resistor and is the same as through the combination;  (2) by (7.16) the largest 
resistance dominates, and the combined resistance is larger than the largest re- 
sistance; (3) the voltage across each resistor is proport ional  to its resistance. 

~ Toaster and wire in series 

Consider a wire having R1 - 0.1 f2 and a toaster having R2 = 20 f2. See Figure 
7.4. A voltage A V -  120 V is available. Compare the current through the 
toaster alone and when it is placed in series with the wire. 

Solution: For the toaster alone, I = A V/R2 = 120/20 = 6 A. For the toaster 
in series with the wire, (7.16) yields R = 20.1 f2, and I = A V/R = 120/20.1 = 
5.97 A, which is nearly the same as for the toaster alone. For this reason, we us- 
ually neglect the electrical resistance of the connecting wires in a circuit. How- 
ever, if the connecting wire's length were larger by a factor of 100, then its 
resistance would increase by a factor of 100, to 10 S2, which is not negligible. 

I ~ ~ ~ ~  Toaster and in series person 

Because of a bad connection, a person having R1 - 5 x 104 S2 is in series with 
the R2 = 20 S2 toaster. Together, they are subject to 120 V. See Figure 7.4. 
(a) Determine the current through the system. (b) Assess both the effective- 
ness of the toaster and the likelihood that the person feels a shock. 

Solution: (a) Clearly, the person dominates the resistance of this circuit (R1 >> 
R2), so R of (7.16) is very nearly R1 = 5 x 104 S2. Then I = AV/R .~ 120/(5 x 
104) --2.4 x 10 -3 A = 2.4 mA. (b) The voltage across the toaster is I R2 .~ 
0.048 V, so low that it is unlikely to operate effectively. The voltage across the 
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person is approximately 120 - 0.05 = 119.95 V, certainly large enough to cause 
a shock. Actually, it is current, rather than voltage, that causes problems for the 
human body. A current even as small as 1 mA can cause a significant shock and 
should be avoided. 

7 .5 .2  Resistors in Parallel 

Consider two resistors R1 and R2 in parallel, as in Figure 7.5. We may think of 
R2 as a bypass to R1. An analogous situation in fluid flow comes from medicine, 
where a clogged coronary artery is bypassed by an artificial artery. From the 
increased net flow, we expect that the equivalent resistance R of the combination 
is less than either R1 or R2. Let us see if this is the case. 

Bythe path independence of the  voltage, Ra and R2 are subject to the common 
voltage difference 

A V - -  AV~ -- AV2. (7.17) 

Here, A V = V a -  G. 
In order that  charge not accumulate anywhere in the circuit, including the 

vertices a and b, the current I entering and leaving must  be the same as the 
sum of the currents flowing through each. This is a manifestation of the law of 
conservation of charge. Thus 

I - I~ + 12. (7.18) 

The equivalent resistance R is given, from Ohm's  law, by R = A V/I .  As ex- 
pected, this is smaller than either R1 or R2 because, for fixed voltage drop A V, 
the currents through each resistor add. We now explicitly determine R. 

In (7.18), using (7.4) for each resistor yields 

zxv zxv~ AV2 
= J - - .  (7.19) 

R R1 R2 

av=av~  =av2 

I = 11 + 12 + 

A V 1 = I1R 1 

R1 

12 R2 

J 

A 17 2 = I2R 2 

b -O 

Figure 7.5 Two resistors in parallel. The same 
voltage difference is across each resistor and across 
the equivalent resistance. The current through the 
equivalent resistance is the sum of the currents 
through each resistor. 
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Dividing (7.19) by A V, and using (7.17), the inverse of the effective resistance 
is given by 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

Indeed, Ris less than either R1 or/(2. Since I1 - AV/R1 -- I(R/R1), and R < R1, 
by using I as the input and I1 as the output, this circuit can be used as a current 
divider. 

For some purposes, it is useful to think in terms of what is called the conduc- 
tance 

1 
G - . (conductance) (7.21) 

R 

Its unit, the mho, is the same as an inverse ohm. For resistors in parallel, the 
conductances add, just as for capacitors in parallel the capacitances add. 

Recall Example 7.9, which obtains R for radial flow between two cylinders. 
It makes sense that the length l appears in the denominator because in this case, 
doubling the length at fixed voltage difference also doubles the current; it is like 
adding two wires in parallel. 

Note that, for resistors in parallel: (1) the voltage difference is the same 
across each resistor, and is the same as across the combination; (2) by (7.21), the 
smallest resistance dominates, and the combined resistance is smaller than the 
smallest resistance; (3) the current through each resistor is inversely proportional 
to its resistance. 

~ W i r e  and toaster in parallel 

Let the 0.1 S2 wire (R1) and the 20 fa toaster (R2) of Example 7.10 be placed 
in parallel, and let the combination be connected to a source of fixed current 
l = 6 A. See Figure 7.5. Find the voltage across the combination, and the 
current through each. 

Solution: By (7.20), the resistance of the combination is 0.0995 ~2, which is 
nearly that of the wire alone. Further, A V = I R = 0.597 V, much less than the 
120 V needed to drive such a current through the toaster alone. Most of the 
current flows through the wire (I1 = A V/R1 = 5.97 A), rather than the toaster 
(12 = A V/R2 = 0.03 A). The wire is the path of least resistance. 

~ W i r e  and cladding in parallel 

If a bare wire has a resistance of RI - 0 . 1  fa, and it is given an insulating 
cladding of R2 = 5 x 108 S2, which resistance dominates? See Figure 7.5. 

Solution: By (7.20), since R2 >> R1, R ~ R1. Hence the resistance of the combi- 
nation is totally dominated by the wire itself. Clearly it is a good approximation 
to neglect the effect of the cladding. Again the wire is the path of least resistance. 
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7.5.3 

Figure 7.6 Combinations of series and parallel circuits. 
Parallel and series resistors are replaced by equivalent 
resistances until there is only a single equivalent 
resistance. Not all circuits can be analyzed in this way. 

More Complex Circuits 

Many, but not all, complex-looking circuits made up only of resistors can be 
analyzed in terms of resistors in series and in parallel. From Chapter 6, this also 
is true for circuits made up only of capacitors. Figure 7.6 presents a resistor 
circuit that can be so analyzed. The voltage across a resistor R is proportional to 
R (A V = I R), whereas the voltage across a capacitor C is inversely proportional 
to C (A V = Q~ C). Therefore it should not be surprising that the rules for series 
and parallel addition are interchanged on going from resistors to capacitors. 

Even if a circuit can be analyzed using the method illustrated in Figure 7.6, the 
equivalent resistance alone does not reveal what is happening in the individual 
parts of the circuit. 

~ A set of three resistors 

Consider a circuit with a resistor R1 = 8 S2 in one arm, and R2 = 4 S2 and 
R3 = 2 S2 in the other arm. See Figure 7.7(a). The connection b between R1 
and R2 is at - 6  V, and the connection c between R1 and R3 is at 18 V. Find 
the currents through each resistor, and the voltage at connection a between 
R2 and R3. 

Solution: Even before finding the equivalent resistance of this circuit, we can 
answer certain questions. First, the voltage across R1 is A V1 = Vc- G = 1 8 -  
(-6) = 24 V, so by Ohm's law the current through R1 is 11 = AV1/R1 = 24/8 = 
3 A. Since voltage is path independent, A 171 = 24 V is the same as the total voltage 

R 1 = 8f~ 
l] R 1 = 5.0 X 104Q 

I I / ~ "1 . . . .  
-O -~ ~ O- 
6V b . . . .  v N ~ A A A  J -20v - L. ,AAAA~A A A ]  18v lOOV 

~ V V V ~ V V V V - -  Y y y V  

R 2 = 4f~ R 3 = 2f~ R 3 = 0.1f~ 

(a) (b) 

F i g u r e  7.7 Two resistor circuits: (a) two parallel arms, one arm being complex, (b) two 
series arms, one arm being complex. 
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across the lower arm, containing Rz and R3 in series. The combination of Re and 
R3 in series is, by (7.16), an equivalent resistance of R23 = R2 + R3 = 4 + 2 = 

6 S2. Thus, by Ohm's law, the current through the lower arm is 123 = Iz = 13 = 

24/6 = 4 A. Hence the voltage across R2 is A�89 = IzRz  = 4 . 4  = 16 V. Since 
point b connecting R2 and R1 is at - 6  V, then point a connecting RE and R3 
is at V~ = - 6  + 16 = 10 V. Mternatively, the voltage across R3 is A ~ = 13 R3 = 
2 �9 4 = 8 V, and since point c connecting R3 and R1 is at 18 V, then point a is at 
Va = 18 -- 8 = 10 V. Note that the equivalent resistance of R1 and R23 in parallel 
is, by (7.20), Req--(RI-1 + R231) - 1 - -  (24/7) s2, so the total current I passing 
through Req is given by I = 24/(24/7) = 7 A. As should be the case, this equals 
the sum of the currents through each arm: 11 + 123 = 3 + 4 = 7 A. 

~ Another set of three resistors 

To Example 7.11, add a wire of R3 = 0.1 s2 in parallel to the person of R1 = 
5 • 104 f2, so together they are in series with the toaster of Rz = 20 f2. A 
voltage AV = 120 V is placed across the combination. See Figure 7.7(b). 
Find the current through the system. Assess both how effective the toaster 
would be and the likelihood of the person feeling a shock. 

Solution: Here, the wire (R3) has such a low resistance that it serves as a path of 
least resistance, "shorting" out the person (R1). By (7.20), the resistance of this 
combination in parallel is very nearly the same as the wire itself, so R13 ~ R3 = 
0.1 f2. By (7.16), the combination thus has a resistance R = R2 + R13 ~ 20.1 ~2, 
so I ~ 120/20.1 = 5.97 A. This current goes through the toaster, which should 
operate normally. The voltage across the wire and the person is A V13 = I R13 
I R3 = 0.6 V. This is so low that the person should not feel a shock. The current 
through the person is I2 = 0.6/5 • 10 4 = 1.2 x 10 -s A. The rest of the 5.97 A 
flows through the wire. This is the basis of how ground wires protect users of 
electrical devices, even when there are "shorts." 

Chapter  8 discusses how to treat  circuits that  are too complex to be analyzed 
as combinations of resistors in series and in parallel. 

7.6 
D~lVt.J~la 

Meters: Their Use and Design 

Today, currents and voltages from long-lived emfs, as well as capacitance and re- 
sistance and other  electrical quantities, are often measured with a single device, 
called a m u l t i m e t e r .  Changing its settings changes the internal circuitry. Digital 
mul t imeters  (with liquid crystal displays) are a relatively recent advance involv- 
ing complex circuitry. They are "black boxes" to most  of their users. Whereas  the 
resistance of an analog mul t imeter  (with a needle dial) varies with the dial setting, 
the resistance of a digital mul t imeter  in vol tmeter  mode  has a fixed resistance 
(usually about  10 Mr2). 

Analog mult imeters  use the fact that  a current  can deflect a magnetic needle. 
They are still commonly  available, and they use circuits that  the s tudent  can easily 
understand.  For these reasons, we describe them in some detail. Their  pr imary 
measuring circuit is a galvanometer placed in circuits that  can be adapted to 
measure currents and voltages of different magnitudes. The best galvanometers 
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can measure currents as small as a pA (10 -12 A). The inverse of the full-scale 
current is called the current sensitivity and is given in units of S2/V. 

~ A  galvanometer 
Consider a galvanometer with internal resistance Rg - 25 f2 that produces 
a full-scale deflection of its indicating needle for a current I0 = 2 mA. (a) 
Find the full-scale voltage difference AI~. (b) Find the sensitivity of this 
galvanometer. 

Solution: By (7.4), A V0 = IoR= 50 mV. (b) The sensitivity here is l o 1 =  
500 f2/V. 

The galvanometer of Example 7.16 will be used in the remainder of this 
section. Note that two of the three quantities R, Io, and A V0 fully specify the 
properties of a galvanometer. 

Current Measurement:  The A m m e t e r  

A device that measures current is called an ammeter. To directly measure the 
current passing through a circuit, all the current must  go through the meter. That 
is, the meter must be put  in series with the rest of the circuit. See Figure 7.8(a). 
Thus we must break the circuit at some point, and take one end of the circuit 
to one lead of the meter, and the other end to the other end of the meter. To 
disturb the system's overall resistance as little as possible (here, by minimizing 
the extra voltage drop due to the meter), the overall ammeter  resistance RA must 
be very small compared to the resistance R of the circuit whose current is to be 
measured: 

RA << R. (current measurement) (7.22) 

Internally, an ammeter  has a set of parallel (or shunt) resistors that change 
from one ammeter  setting to another. See Figure 7.8(b). Thus, with R~h the 
shunt resistance, (7.20) yields R A -  (R~ -~ + R~-h~) -~ . By suitable choice of Rsh, 
the ammeter  can be made to read any current that exceeds the full-scale de- 
flection current of the galvanometer. This is an example of a current divider, 

I ~ ~ @  I I 

R 

(a) 

Re' ~ Galvanometer  

v v v v ~  Shunt  resistor 
Rsh 
0o) 

Figure 7.8 Measuring current. (a) Circuit with an ammeter, which to 
measure current must be placed in series with the rest of the circuit. 
(b) Schematic of an ammeter circuit, with a galvanometer resistance 
(galvanometer not shown) and a shunt resistance (to permit larger 
currents to be measured without "blowing" the galvanometer). 
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ment ioned  after (7.20). To read currents that  are much  less than full scale on 
the galvanometer  requires using a more  sensitive galvanometer. 

~ Shunt resistance for ammeter 

Find the shunt resistance needed to convert the galvanometer of Example 7.16 
into an ammeter with a full-scale current of I = 100 mA. 

Solution: This requires that the galvanometer current of Ig - 2 mA correspond to 
a total current of 100 mA. Therefore the shunt resistor must carry Ish = I - Ig = 
98 mA. See Figure 7.8(b). With the equivalent resistance RA of the ammeter 
consisting of the galvanometer and the shunt in parallel, we have 50 mV= Ig P~ = 
Ish Rsh = I RA. Hence Rsh -- 50/98 = 0.5102 S2 and RA - 50/100 = 0.5 S2. 

~ Accuracy of an ammeter 

Let us use the ammeter of Example 7.17 to measure the current through a 
resistance R = 20 s2. (a) Find the current. (b) Find the percentage of error, if 
100 mV is placed across R. (c) Is this a readable current? A safe current? 

Solution: (a) The series resistance of R and RA is 20.5 ~2. (b) If 100 mV is placed 
across R alone (as in an ideal ammeter, where R~ ~al -~ 0), a current I = 100/20 - 
5 mA will flow through it. If 100 mV is placed across R and the actual meter in 
series, the meter will read I = 100/20.5 - 4.88 mA, 2.5% less than for an ideal 
ammeter. (c) Since IRA = (4.88 mA) x (0.5 S2) = 2.44 mV, this is readable but 
well below the 50 mV that produces full deflection. (Since IRA = Ig P~, we have 
Ig = 0.0976, well below the full-scale deflection of I0 = 2 mA.) If 100 V is placed 
across the combination, the 2.4 V across the meter might cause the meter to burn 
up, or the deflecting needle to bend, or a protective fuse to burn up ("blow"). 

7 . 6 ~ 2  Voltage Measurement: The Voltmeter 

A device that  measures electrical potential  differences, or voltages, is called a 
voltmeter. To directly measure the voltage difference be tween two points of a 
circuit, the leads of the meter  mus t  contact  these two points, so the meter  is in 
parallel with the part  of the circuit be tween these two points. See Figure 7.9(a). 
The vol tmeter  measures the voltage along the path from one lead, through the 
voltmeter, and to the other  lead. By the path independence of the voltage, this 
equals the voltage along a path from one lead, through the circuit, and to the 
other  lead. To disturb the system's overall resistance as little as possible (here, 
by minimizing the extra current  flowing to the meter) ,  the overall vol tmeter  
resistance Rv mus t  be very large compared  to the resistance R of the part  of the 
circuit to be measured: 

Rv >> R. (voltage measurement)  (7.23) 

Internally, an analog vol tmeter  has a set of series resistances Rser that  change 
from one vol tmeter  setting to another. See Figure 7.9(b). Thus, if Rser is the series 
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I 
v 

R 

o 
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(a) (b) 

+l-~ AV = 1 -  
I I 

N 
Series resistor Galvanometer 

Figure 7.9 Measuring voltage difference. (a) Circuit with a voltmeter, 
which to measure voltage difference must be placed in parallel with 
the rest of the circuit. (b) Schematic of a voltmeter circuit, with a 
galvanometer resistance (galvanometer not shown) and a series 
resistance (to permit larger voltages to be measured without "blowing" 
the galvanometer). 

resistance, (7.16) yields Rv = Rg + Rse r. By suitable choice of Rser, the vol tmeter  
can be made  to read any voltage tha t  exceeds the full-scale deflection voltage 
of the  galvanometer. This is an example  of a voltage divider, men t ioned  after 
(7.16). To read voltages tha t  are m u c h  less than full scale on the galvanometer  
requires using a more  sensitive galvanometer. 

~ Series resistance for voltmeter 

Find the series resistance Rser needed to convert the galvanometer of Example 
7.16 into a voltmeter with a full-scale deflection of A V = 500 mV. 

Solution: This requires that a current of Ig = 2 mA passing through Rg must pro- 
duce a total voltage drop of 500 mV across R and Rser in series. See Figure 7.9(b). 
Then the voltmeter resistance is Rv = A V~ Ig = 500/2 = 250 f2. (This equals the 
product of A V and the sensitivity.) Hence Rser = Rv - Rg = 250 - 25 = 225 f2. 

~ Accuracy of a voltmeter 

In Example 7.19, let the voltmeter be used to measure the voltage across a 
resistance R = 20 f2. (a) How accurate will the reading be if the power source 
provides a fixed 100 mV across R, even when the voltmeter is in place? (19) 
If the power source provides a fixed 5 mA current? 

Solution: (a) For a fixed 100 mV, both R and the voltmeter are subject to 100 mV, 
so the voltage reading will be completely accurate. (b) For a 5 mA constant 
current source, the parallel resistance Rpar of R and Rv = 250 S2 is 18.52 f2. Then 
I Rpar = 5 x 18.52 = 92.6 mV, a 7.5% decrease from the value I R = 100 mV 
without the voltmeter in the circuit. 

You've just completed the first part of this chapter. Next we'll discuss sources of emf. 



302 Chapter 7 e Ohm's Law 

7.7 

7.7.1 

Some Complexities of Voltaic Cells: The Car Battery 

As noted in Section 7.1, current-causing energy sources are called emfs. One 
of the most common types of emf is chemical in nature: the voltaic cell. A 
car battery consists of six voltaic cells in series. As we know from experience, 
car batteries have complex behavior. It is worth discussing and interpreting some 
commonly known facts about them so that when later we present a simple model 
for a voltaic cell, the reader will have a sense for its limitations. 

Such a discussion must include some chemistry. Each voltaic cell contains two 
electrodes (for the lead-acid cell used in car batteries, Pb and PbO2 ) separated by 
electrolyte (for the lead-acid cell at full charge, the electrolyte is a 35% solution by 
weight of sulfuric acid, H2SO4, in water). Chemical reactions at each electrode 
provide the emf for the cell. These reactions involve ions from the electrolyte and 
from the electrodes. Ions cross the voltaic cell to transfer charge to the electrodes, 
where electrons carry the charge. If we must make an analogy to a water pump, 
then the electrical pump of a voltaic cell should be thought of as localized at its two 
electrode-electrolyte surfaces. 

Starting a Car: Fast Discharge 

When you use a car battery to start the electrical motor of an automobile (which 
then starts the gasoline engine), it provides about 600 A. If the points on the spark 
plugs are wet, the car may not start, even if you continue to turn the starter key. 
After about two minutes, the battery appears to go dead. However, if you wait 
a few more minutes, the battery (if it was well charged initially) will recover. If 
during the wait, you wipe the moisture off the spark plugs, the car then will start. 

What is happening here? Initially, the ion density in each voltaic cell of the 
car battery was nearly uniform. After about two minutes of this fast discharge, 
the ions near the electrodes have been used up by chemical reactions at the elec- 
trodes. (See Figure 7.10(a), which depicts the ion density in a single voltaic cell. 
The Pb electrode is negative and the PbO2 electrode is positive.) At this point, 
there are no ions adjacent to the electrodes, so there is no chemical reaction, and 
negligible emf. However, after waiting a few minutes, ions from the bulk diffuse 
to the electrodes, giving a new density that is not quite as large as initially, but 
certainly large enough to start the car. Figure 7.10(b) shows the profile after a 
long wait. 

Figure 7.10 Ion density profile for a car battery initially at full charge, 
subject to a partial discharge: (a) fast discharge, (b) fast discharge followed 
by a long wait. 
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Figure 7.11 Ion density profile for a car battery, for 
a slow and complete discharge. 

7~7o2 Leaving the Car Lights on Overnight: Slow Discharge 

Now consider what happens if you've left the car lights on overnight. As will 
be shown in Chapter 8, the car lights draw about 6 A. This rate of discharge is 
sufficiently slow that ions can be provided from the bulk of each voltaic cell at a 
rate fast enough to keep up with the chemical reactions at the electrode, so the 
ionic density profile falls nearly uniformly. See Figure 7.11. Hence, after slow 
discharge, when the battery appears to be dead, it really is dead. 

7~7~3 Fast Recharge 

Now assume your car battery has gone dead, and you now start up your car 
with jumper cables and a good battery. (The circuit for this is discussed in 
Chapter 8.) You drive the car for a few minutes and then park it, but just to 
make sure that the battery still has some "juice," you try to start the car again. It 
works. You go into the house. Hours later you return to your car, and it won't 
start. What went wrong? 

During that five-minute drive you charged up the battery by increasing the 
density of ions near the electrodes, but not in the bulk of the electrolyte. See 
Figure 7.12(a). When you started the car to test it for "juice," you depleted 
many of these ions near the electrode. And the hours-long wait gave the ions 

Figure 7.12 Ion density profile for a car battery initially discharged: 
(a) after a fast charge, (b) after a fast charge and a waiting period so 
that the ion density has "relaxed" to a more uniform distribution. 
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that remained near the electrode enough time to spread out to the bulk of 
the electrolyte, giving a rather uniform and rather low ion density, even near 
the electrodes. See Figure 7.12(b). Thus, when you needed a high density of 
ions near the electrodes, they weren' t  there, and the battery wouldn' t  start 
the car. 

In practice, there are always plenty of ions available in the electrolyte. The 
true limitation on the ability of a lead-acid cell to provide electrical power is the 
number  of Pb and PbO2 ions on the electrodes, in contact with the electrolyte. 
Chemical reactions convert them to PbSO4 on the electrode surfaces, so new Pb 
and PbO2 ions must  diffuse to the electrode surfaces in order to provide new 
reactive material. This relatively slow process limits the amount  of power a car 
battery can provide. 

Battery rechargers provide perhaps 2 to 6, or even 12 amps; this is not enough 
to start a car. You have to use the recharger to build up a "charge" on the battery 
itself before you can start the car. Note that a good car battery loses nearly 1% per 
day of its "charge" to non-current-producing chemical reactions at the electrodes; 
this is why batteries eventually go dead even when they are disconnected. 

Recently manufactured, and more compact, car batteries have a greater rate 
of self-discharge than less compact batteries manufactured previously. If not 
charged up before a car owner leaves for a few weeks, such batteries are often 
found to be dead when the car owner returns. The same thing occurs if they are 
not used regularly. 

7.8 

7.8.1 

Emf and Ohm's Law 

Current-producing chemical reactions drive electric charge across the electrolyte 
of a voltaic cell, putting an excess of charge on one electrode and a deficit of 
charge on the other electrode. This buildup of charge on the electrodes tends to 
oppose the current flow with a "back voltage" A V. (A V is also called the terminal 
voltage.) The value of A V depends on the "load" attached to the electrodes of the 
cell. On an open circuit, I = 0; the value of A V for which I = 0 is defined as the 
emf C of the cell. That is, E ---- A 1/i=0. The chemistry provides C, and the physics 
(electric charge driven by chemical reactions to the cell's electrodes) provides 
the A V in opposition to s 

When A V ~ E, a cell can also drive an electric current, and the cell must be 
described by more than its emf E. 

A Source o f  Emf  Has Emf  S and  In terna l  Resistance r 

Figure 7.13(a) shows a specific circuit where the source of emf is a voltaic cell. 
One electrode of the voltaic cell is drawn longer than the other, to indicate that, 
within the cell, the emf E tends to drive current I > 0 from the smaller to the 
larger electrode; here, to the right. In order that A VIi=0 = C correspond to zero 
current flow, A V > 0 means the higher voltage must be on the right, to oppose 
the current flow. This sign convention for voltage is opposite that  for a resistor, 
where the voltage drives the current. 

Let us apply some theoretical reasoning to the energetics of the source of 
emf. Consider small deviations of A V from E, for which there is a small nonzero 
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Figure 7.13 Determining the emf of a battery or other 
source of emf. (a) The large electrode is taken to be 
positive, and the small electrode is taken to be 
negative. The electrolyte, which contacts both 
electrodes, is represented by the internal resistance r. 
Both the current and the voltage difference are 
measured. (b) Current versus voltage difference for a 
source of emf. The current goes to zero when A V 
equals the emf C, and the internal resistance r is 
determined from the slope. 

current I. In Figure 7.13(a), during a time dt, charge d Q  = I dt enters the source 
of emf at the left, and (as long as charge doesn't build up within the source of 
emf) an equal charge exits at the right. 

Here is what the source of emf does: (1) it raises the voltage across the cell by 
A V so that the electrical potential energy ofthe charge d Qincreases by (A V)d Q; 
(2) because it has its own electrical resistance r, called internal resistance, it also 
provides the Joule heating energy I2rdt = I rdQ.  These two types of energy 
must come at the expense of the source of emf and must  be proportional to dQ.  
Calling the proportionality constant D, the source of emf provides energy DdQ.  
This goes into energies (A V ) d Q a n d  I rdQ.  Hence 

D d Q -  (A V ) d Q +  I rdQ,  so D - k V + Ir. 

Since D must be consistent with A V -  $ for I -+ 0, we deduce that D -  $. 
Thus we expect that  

$ - A V + Ir. (7.24) 

Now compare with experiment. The typical experimental form of the I ver- 
sus A V curve is given in Figure 7.13(b). Consistent with (7.24), for A V near $, 
Figure 7.13 (b) satisfies 

i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii~!~iiiiiiiii!iii!!~!!ii!iiiiii!~{iiii~iiiiiiiiiii~!iiii~iiiiiii~ii~iiiiiiiiiiii!iii!i~i~i!!!i!iiiiiiiii!ii~ii!i~ii~i~i~iiiiii~iiii~i!iii!!iiiiiiiii~iiiiiiiii~i~i!iiiii~i~iii~ii~i~! 

We will assume that (7.25) applies for all A V, not merely for A V near $. (For 
complex sources of emf, r can vary with I and A V.) Equation (7.25) is equivalent 
to (7.24). 

We also will assume (7.25) to hold for sources of emf other than voltaic 
cel ls~such as batteries of voltaic cells, thermoelectric devices or photovoltaic 
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cells. From (7.25), for a given emf g and A V, r determines how large a current 
the emf will provide. A 12 V car battery can provide hundreds of amps, but  a 
12 V electronics battery can provide only a few amps; the car battery has the 
smaller r. The maximum current a cell can provide spontaneously occurs for 
A V = 0, and by (7.25) is g/R. 

I • • • •  Characterizing an emf 

Let I = 0  for AV- -1 .45  V, and let I = . 2 5  A f o r  AV----1.35 V. F indg  
and r. 

Solution: By (7.25), since I = 0 for A V = 1.45 V, we have ca = 1.45 V. Next, 
since I = .25 A for A V = 1.35 V, (7.25) yields r - 0.4 ~2. 

7.8.2 

Z&3  

Potent iometers Measure Emf 

Just as R characterizes a resistor, so g and r characterize a source of emf. From 
(7.25), measurement of I versus A V yields g. This leads to the principle of the 
emf-measuring device called the potentiometer. 

Consider the right arm of the circuit in 
+ + + + + 

I 

~0 i r 0 R r 
1 

- - - O +  

c 

D m - -  

Figure 7.14 Potentiometer circuit. 
The known, stable emf g0, and the 
unknown emf g are opposed to 
each other. The variable resistance 
R is adjusted until the current I 
through the unknown emf is zero. 
The voltage difference across the 
unknown emf then equals c a. 

Figure 7.14. It contains a voltaic cell of un- 
known emf g and internal resistance r, and 
there is a voltage difference A V in opposition 
to g. Usually the arrow associated with the 
direction of the chemical emf is not specified 
because that information is contained in the 
relative size of the two electrodes. The upper 
arms of the circuit have positive charge, and 
the lower arms have negative charge, since 
both voltaic cells tend to drive current from 
bottom to top. The upper arm acts as a reser- 
voir at a positive potential, and the lower arm 
acts as a reservoir at a negative potential. We 
do not address the difficult question of how 
to obtain the charge distribution around the 
circuit that produces the electric field and the 
electrical potential. 

By (7.25), when the current I is zero, the total emf acting on the right arm 
in Figure 7.14 is zero, and A V - g. In practice, for potentiometers a very stable 
chemical emf E0, whose specific value isn't important, drives current through a 
variable resistance R (represented in Figure 7.14 as a d i a l~ the  arrow), and R is 
adjusted until I = 0. The measured value of A V then corresponds to g. 

Sometimes a variable resistor, as in Figure 7.14, is referred to as a potentiome- 
ter, or "pot," for short. It is specified by its maximum resistance. 

On H o w  Emf's Drive Current 

Consider a situation, as might occur for a wire of copper, where there is only 
one type of charge carrier (electrons), but  the average force F acting on the 
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electrons is partly electrical (q/~) and partly nonelectrical (F'). For example, the 
wire might not be at a uniform temperature, so there might be a tendency for the 
electrons to drift tohigher (or lower) temperature. Write the total average force 
per unit charge as F / q  - (E + E'), where E' - F ' /q  is due to the nonelectrical 
force. Now (7.8) must be generalized to 

- a(/~ +/~').  Ohm's law (local) (7.26) 

When the effect of all sources of emf are included, Ohm's law becomes 

I - ~ i  gi Ohm's law (global) (7.27) 
R ' 

where the sum is over each type of emf Ci along the path of the current, and the 
resistance R might be due to many resistances. See Figure 7.15. When properly 

E1 .~ /~2 ~ [ 

Figure 7.15 Two 
(localized) sources of 
emf, within a region of 
total resistance R. 

interpreted, (7.27) includes both (7.4) for a wire and 
(7.25) for an emf. When applied to a circuit as a whole, 
(7.27) contains no contribution from the electrostatic 
force (due to/~) since A V -  0 for a circuit as a whole. 
Hence, for a circuit as a whole (but not for part of a cir- 
cuit), voltage change does not contribute to the net emf. 
Only the nonelectrostatic forces drive current around 
a circuit. 

Z & 4  Some Nonelectrostatic Types of Emf 

Besides nonelectrostatic emf from voltaic cells, the many possible types of emf 
include 

1. Electromagnetically induced electric fields (Faraday's law of electromagnetic 
induction), to be studied in Chapter 12. This is a true electric field because 
F / q  is independent ofthe type of charge carrier. This can drive current around 
a circuit, which is why the power company makes electrical generators based 
on it. 

2. Chemical-specific diffusion force due to chemical density gradients within 
an ionic solution (this force is purely statistical in nature; the diffusion force 
acting on air molecules defeats gravity's attempts to pull the atmosphere to 
the surface of the earth). Because it depends on each ion seeing its own density 
gradient, this is charge carrier specific and is not a true electric field. Diffusion 
causes the density to even out in Figures 7.10(a) and (b) and 7.12(a) and (b). 

3. Thermoelectric force due to thermal gradients, usually within a wire. Because 
this is charge carrier specific, it is not a true electric field. In our previous 
considerations, this effect was neglected because it was assumed that the 
wire temperature was uniform. 

Thermoelectric Effect Consider  a circuit of two metals, with the two junctions 
at different temperatures. See Figure 7.16(a). If one metal is split in two pieces 
(so there is no current flow), there will be a voltage across the split. Switching 
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Figure 7.16 Thermoelectric effect, where a nonuniform temperature across a 
material produces a voltage difference between its ends. (a) A ring geometry, 
with two materials, one of them split. Their two contacts are maintained at 
different temperatures. If the split is closed, a steady-state current will flow, 
either clockwise or counterclockwise (according to the materials and the 
temperatures at which they are maintained). (b) The Peltier effect, where 
current flow causes a temperature gradient to develop at the junction between 
two materials. According to the direction of current flow, either heating or 
cooling can occur. 

the junction temperatures switches the voltage. If there is no split, then a current 
flows. The thermoelectric effect, although small, is stable. Because of that stabil- 
ity, Ohm used it as a source of emf, rather than the chemical emf from a battery. 
In 1834, Peltier discovered the inverse effect, wherein a current flowing through 
a circuit of two metals will heat or cool the junction, according to its flow direc- 
tion. See Figure 7.16(b). The Peltier effect is used to cool small computers, and 
refrigerator-coolers driven by the 12 V output  of automobile batteries are now 
commercially available. 

• Gravity as an emf 

For a particle of charge q and mass M, the effective field is E' - m~,/q. In the 
atmosphere, consider both a small ion of mass m and a large water droplet of 
mass M, both with the charge q = 2e. What is the relative magnitude of the 
effective fields acting on the ion and the droplet? 

Solution: They are in proportion to the mass, so the effective field on the ion is 
much smaller than for the droplet. 

• Muons, and emfs electrons, 

The muon, an unstable particle with the same charge but approximately 207 
times the mass of the electron, does not have the same chemical binding as 
the electron. Do the muon and the electron have the same emf? 

Solution: Because the release of chemical energy at the electrodes of a voltaic cell 
would be different for muons than for electrons, despite their identical charges 
the muon and electron emfs would differ. This example shows that the emf of a 
voltaic cell cannot be due to a true electric field. 
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7~ Energy Storage by Voltaic Cells 

We now discuss voltaic cells in more detail. 

7~9o! Electrolytes and Electrodes Make Up Voltaic Cells 

Circuits with wires and electrolytes have two wire-electrolyte interfaces, the elec- 
trodes, where chemical reactions transfer electric charge from electrons to ions, 

or vice versa. See Figure 7.17, 
where the electrodes are Zn and 
Cu. The Zn should not be directly 
in contact with the CuSO4 solu- 
tion, or else the Zn surface will be- 
come covered with a blackish sub- 
stance, so it is impractical to have 
a single electrolyte solution in this 
case. One way to separate the Zn 

Figure 7.17 A simple voltaic cell, with Zn from the CuSO4 solution (P. Heller, 
and Cu electrodes. The electrolyte is actually private communication) is to use 
two separated solutions of ZnSO4 and two blotters, one soaked in ZnSO4 
CuSO4. In spontaneous operation, Zn atoms and placed directly against the Zn, 
from the Zn electrode tend to go into and the other soaked in CuSO4 so- 
solution as Zn 2+ ions, driving other Zn 2+ ions lution and placed directly against 
into the CuSO4 region. This drives Cu 2+ ions the Cu. (Thus, near the Cu elec- 
onto the Cu electrode. For these processes to trode the electrolyte is CuSO4 so- 
occur, the Zn electrode must gain electrons lution, and near the Z n  electrode 
and the Cu electrode must lose electrons, the electrolyte is ZnSO4 solution.) 
Hence the Zn electrode is more 
electronegative than the Cu electrode. The ZnSO4 blotter should be rel- 

atively thick so that the Cu 2+ ions 
cannot easily diffuse across it. Zn 2+ 

ions from Zn go into solution preferentially over Cu 2+ ions from Cu. Thus, at 
the Zn electrode, Zn 2+ ions go into solution, and at the Cu electrode, the CuSO4 
provides a source of Cu 2+ ions that come out of solution and plate onto the Cu 
electrode. (When CuSO4 solution is in contact with a Zn electrode, Zn goes 
into solution as Zn + ions and Cu + ions plate onto the Zn electrode as Cu. Dis- 
solved oxygen then reacts with the Cu to yield Cu20, presumably the blackish 
substance.) 

The electrode-electrolyte-electrode combination is called a voltaic cell. It 
produces what is called a chemical emf. (If the cell provides energy, or "discharges," 
as in Figure 7.17, it is called a galvanic cell; if it absorbs energy, or "charges," it 
is called an electrolytic cell. We will use voltaic cell for both.) Batteries use voltaic 
cells, both in series (for higher voltage) and in parallel (for higher current). Voltaic 
cells have the following fundamental properties: 

1. They store a finite amount of energy Ecell, proportional to the number of 
ions that can react at the electrodes, often called their "charge" Qc~lZ. Qc~ll is 
limited by the least abundant active component. Of two cells made of the 
same materials (e.g., a AAA cell and a D cell), the larger D cell has the larger 
charge. 
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7 .9 .2  

2. Their emf, which drives electric current, is due to chemical reactions at 
the two electrode-electrolyte interfaces. These interfaces serve as "surface 
pumps," and constitute the "seats of emf'  of the voltaic cell. AAA and D 
cells, having the same chemistry, have the same emf. 

3. Their electrical resistance is dominantly determined by the material and ge- 
ometry of the electrolyte. The D cell, with a much larger electrode area than 
the AAA cell, provides a larger current than the AAA cell, which means it 
has less internal resistance. 

For a voltaic cell nearly all the voltage change occurs at the surface pumps, located 
at each of the two electrode-electrolyte interfaces. Only for large electric currents is 
there a significant voltage drop across the electrolyte separating the electrodes. 

Energy of  a Voltaic Cell and Its Rate of  Discharge 

As indicated, Ecell is proportional t o  Qcell. The proportionality constant, as will 
be shown in Section 7.9.3, is the emf s Hence we write 

= (energy stored by vokaic cell) ~ 2 ~  

C depends on the chemical reactions at the two electrode-electrolyte interfaces. 
When the electrodes are the same, they pump with equal strengths in opposite 
directions, so there is no net ems On the schematic of the voltaic cell of Figure 
7.13(a), C2 from electrode 2 tends to push current out of the larger plate into 
the wire, and C1 from electrode 1 tends to push current out the smaller plate 
into the wire. Since E2 and C1 oppose, the net emf is 

=~l  ~1" (net emf of voltaic c e i l ) i ~  iil i 

It immediately follows from (7.28) that the rate of change of the energy of a 
cell is given by 

d E cell d Qcell 
= C ~ .  (7.30) 

dt dt 

When the cell discharges, so d Qceu/dt < O, it causes a current I to flow in the ex- 
ternal circuit. Taking I > 0 when the cell is discharging, we have I = - d  Qce11/dt. 
From (7.30) and the principle of energy conservation, the power 7 ~ provided to 
the rest of the circuit is given by 

V s (rate of discharge of voltaic ~e!l) (~ ~ i~ 

This can go into charging up a capacitor, or heating up a wire, or both. 

~ Properties of an AA cell 

Consider a AA alkaline voltaic cell with s = 1.2 V, charge Qcell = 2.45 
A-hr - 8820 C, and negligible internal resistance relative to a resistor R = 
4 f2. Take it to have volume V~11 = .0432 cm 3. Find (a) the cell's energy, 
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(b) its energy density Ucell , (C) its rate of discharge through R, and (d)how 
long it will discharge, assuming this constant rate, before it is "dead." 

Solution: (a) By (7.28), EcdZ = 10,584 J. (b)  Ucell --  Ecell/gcell = 2.45 x 108 J/m 3. 
(c) Applying Ohm's law to the circuit as a whole, where the net emf is due only 
to the voltaic cell, the current is I = E/R = 1.2/4 = 0.3 A, so (7.31) gives 72 = 
0.36 W. (d) The time T to totally discharge is given by T = Ecell/T 2 = 29,400 s, 
or 8 hours and 10 minutes. 

7.9~ Charging a Capacitor with a Voltaic Cell 

Now consider how a voltaic cell charges a capacitor. See Figure 7.18. By (6.20), 
the capacitor energy is given by 

Ecap = ~--C. (7.32) 

When the cell and the capacitor are connected, the cell will discharge, and 
the capacitor will charge. If the cell has an initial charge t~(~ and the capacitor -'M~cell i 
Q(0) = 0, then by charge conservation Q~ell - Q(0) _ Q after the capacitor had cell 
received a charge Q. In equilibrium, as a function of Q the total energy E~tt + 
Ecap is a minimum. Thus, using (7.28) and (7.32), 

d [,,q / Q(O) Q2 
O-- d~(Scellnt-Ecap)- -d- ~ , cell-- Q) qt---~l - ( -~q- Q)  �9 (7.33) 

Equation (7.33) implies that in equilibrium the voltage drop across the 
capacitor is 

A V =  Q =  g. (7.34) 
C 

v 

dQ 

~ r C ~  
Q 

-Q 

- - +  

l 
AV 

Figure 7.18 Charging a 
capacitor with a voltaic cell. 

This agrees with (7.25) for I = 0, thus justifying 
our use of g in (7.28) through (7.31). Within 
experimental error, measurements of the g of 
(7.33) with an electrometer, and the g of (7.25) 
with a potentiometer, should yield the same value. 
Note that, on connecting the capacitor to the emf, 
the capacitor gains energy Q 2 / 2 C  = Cg2/2, but 
the voltaic cell loses energy F Q = Q2 /C  = CE 2. 
The difference goes into heating the connect- 
ing wires, as happens when two capacitors are 
connected. 

• Charging a capacitor 

Let g - 1.2 V, r = 0.4 S2, and C = 12 #F. Find A V, Q, and the capacitor 
energy. 
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Solution: The capacitor voltage is A V = g - 1.2 V, its charge is Q = CA V = 
14.4 #C, and its energy stored is Q2/2C = 8.64/zJ. Note that the specific values 
of both C and r are irrelevant to A V, and that the specific value of r is irrelevant 
to any of the system's final properties. The next chapter, however, shows that 
the value of the resistance R in an R C circuit is relevant to the rate at which the 
capacitor charges up. Not surprisingly, the larger the C (e.g., the greater the area 
of the capacitor plates) and the larger the R (e.g., the thinner the wire), the longer 
it takes to charge up. 

7.10 Voltaic Cells in Simple Circuits 

Now consider voltaic cells in circuits where there is current flow. 

7o10.1 

7.10.2 

Ideal (Resistanceless) Voltaic Cell 

By (7.25), a voltaic cell with emf g and internal resistance r, with a voltage 
difference across its terminals of A V, has a current I - (g - A V) / r .  Thus A V = 
g -  l r. For any finite current l, as r - ,  0 this implies 

A V -  g. (ideal source of emf) (7.35) 

Hence, when the internal resistance of a voltaic cell can be neglected, the terminal 
voltage is the same as the emf, no matter what  the current. Another way to say 
this is that, for an ideal voltaic cell, the voltage gain A V on crossing from the 
negative electrode (the small plate) to the positive electrode (the large plate) 
equals g. An ideal voltaic cell is drawn without  the resistance r. 

Real voltaic cells always have an internal resistance, but  when the other re- 
sistances in a circuit are much larger than r, the latter may be neglected. We will 
assume that the internal resistance associated with each electrode of a voltaic cell 
is negligible compared to the resistance of the electrolyte. Thus the voltage drop 
across each electrode-electrolyte interface will equal the emf. Charge distributes 
itself in such a way that the voltage jump across each electrode provides an emf 
that cancels the emf of the chemical reaction at the electrode. Specifically, if 
there is an emf gl associated with electrode 1, the voltage drop across electrode- 
electrolyte interface 1, even when there is current flow, will be A 1/1 = gl. (This 
neglects resistance in the electrode and at the interface.) 

"Shorted" Voltaic Cell 

In Figure 7.19(a), the voltaic cell drives current from the positive electrode to 
the exterior circuit to the negative electrode. In this figure the opposite ter- 
minals of the voltaic cell are directly connected, or "shorted," so A V = 0 in 
(7.25). If (7.25) is valid even for A V not close to s then I -- s  This is the 
largest current that  a voltaic cell can provide spontaneously. It cannot provide 
this current for very long because it rapidly depletes the ions in the vicinity 
of the electrodes; the present discussion, with fixed R, is valid only for slow 
discharge. 
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r 
T 

g} r R AV 

(a) (b) 

Figure 7.19 Two circuits for discharging a voltaic 
cell: (a) "shorting"--directly connecting the two 
electrodes of the cell, (b) connecting the 
electrodes with a resistor in series. 

7.10,3 Voltaic Cell in Series wi th  a Resistor 

Now consider a circuit consisting of a resistor R and a voltaic cell (g, r). See 
Figure 7.19(b). Let the voltage across R be A V, and let the current I flow 
through R from the positive to the negative side. For R, the only emf is A V, so 
(7.4) yields 

AV 
I = - - .  (7.36) 

R 

From (7.36) for the arm of the resistor, and (7.25) for the arm of the voltaic cell, 
eliminate I, solve for A V, and then solve for I. This gives 

g R  g 
A V  = R '  I - . (7.37) 

r +  r + R  

When a cell discharges, as is the case here, the terminal voltage A V is less than 
the chemical emf g. However, when a cell charges, so I < 0, by (7.25) A V > g. 

Another way to obtain the second part of (7.37) is to apply Ohm's law to 
the circuit as a whole. This can be done because the same current goes through 
each resistance. We treat the circuit as having the resistance Reff = r + R of two 
resistors in series. For the circuit as a whole there is no term in A V because 
A V = 0 for the circuit as a whole. Then, by (7.27) the chemical emf g alone 
drives the current, given by I = g/Raft. 

This circuit corresponds to what Ohm actually studied. He measured the 
deflection of a galvanometer for a circuit of fixed emf g and fixed resistance r in 
series with a resistor R whose length and cross-sectional area he varied. 

~ Voltage profile for a closed circuit 

Figure 7.20(a) shows a circuit of a voltaic cell, including the effects of each 
electrode. Take C2 = 1.4 V and gl = -0 .6  V, with R = 0.4 S2 and r = 0.1 f2, 
and set V = 0 at point a. (a) Find the emf of the voltaic cell. (b) Find the 
current through the circuit. (c) Plot the voltage profile on going around the 
circuit. 
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Figure 7.20 A battery may be thought of as two surface pumps s and s (one at 
each electrode-electrolyte interface) and an internal resistance r. (a) A circuit 
with a battery discharging through a resistor. (b) The voltage profile across the 
circuit. The net voltage increase at the electrodes compensates for the net voltage 
decrease across the resistances, both internal and external. 

Solution: (a) By (7.29), ~q = & -~ql = 2 V. (b) By (7.37), I = 2/(0.1 + 0.4) = 
4 A. (c) To plot the voltage profile requires the voltage changes across the resistors, 
given by Ir = 0.4 V and I R = A V = 1.6 V. Because the connecting wire has 
negligible resistance, the adjacent circuit points a and d have the same voltage, 
so ~ = Va = 0 V. Lets start at a and go counter clockwise. Since the current 
flows clockwise, and current flow through wires goes from high to low voltage, 
c has a higher voltage than d by I R, so Vc = ~ + I R = I R = 1.6 V. Because 
the connecting wire has negligible resistance, ~ = V~ = 1.6 V. At b there is a 
downward voltage jump of 1.4 V (to exactly oppose the C2), to 0.2 V just within 
the electrolyte at electrode 2. Then the voltage rises by Ir = 0.4 V on crossing 
the internal resistance r, to 0.6 V. Finally, there is a downward voltage jump of 
0.6 V on crossing electrode 1 just within the electrolyte at electrode 1, giving the 
starting value of 0 V at a. See Figure 7.20(b). (You might find it helpful to trace 
the voltage changes going clockwise from a.) 

Note the jumps in voltage that occur at each of the electrode-electrolyte inter- 
faces. Also note the linear variations across the resistances. Since in this example 
both chemical emfs tend to drive current from a to b through the interior of the 
cell, both of the corresponding electrode voltage jumps tend to drive current from 
b to a through the interior of the cell. (Diffusion effects, discussed earlier, make 
the voltage profile across the electrolyte within a real voltaic cell more complex 
than a straight line.) 

7~10,4 Voltaic Cell on Open Circuit 

Figure 7.21 (a) depicts a voltaic cell (C, r)  in a circuit whose switch is open. It 
may be though t  of as being connected  to a very small capacitance C, where  the 
capacitance is associated with the ends of the switch. By (7.34), this corresponds 
to A V = C, so tha t  for a voltaic cell on open circuit, the terminal voltage is the same 
as the emf. 
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Figure 7.21 A battery may be thought of as two surface pumps E2 and gl (one at 
each electrode-electrolyte interface) and an internal resistance r. (a) A circuit with 
a battery and a resistor on open circuit. (b) The voltage profile across the circuit. 
The net voltage increase at the electrodes compensates for the net voltage decrease 
across the open switch. 

• Voltage profile an open for circuit 

In Figure 7.21(a), take g2 = 1.4 V and & = - 0 . 6  V, with R = 0.4 S2 and 
r = 0.1 s2, and set V = 0 at point a. (a) Find the emf of the voltaic cell. 
(b) Find the current through the circuit. (c) Plot the voltage profile on going 
around the circuit. 

Solution: (a) By (7.29), g = E 2 -  El = 2 V. (b) Since the circuit is open, no 
current flows, so I = 0. (c) The voltage drops across r and R are zero. As discussed 
earlier, across the switch A V = g, so A V = 2 V. See Figure 7.21 (lo). Note the 
jumps in voltage that occur at each of the electrodes, and the change in voltage 
across the switch. When the switch is open, it acts like a capacitor of very low 
capacitance; small amounts of charge (equal and opposite) go to the two sides of 
the switch, producing a voltage difference. 

You've just completed the second part of this chapter. When you're ready, we'll move 
on to charge carriers within wires and voltaic cells. 

7.11 Drag Force 

One of the last topics in Chapter  6 was the decrease of electrical potential energy 
when two conductors, initially at different voltages, are connected by a conduct- 
ing wire, and charge is transferred until the voltages equalize. Just as parachutists 
in the air are subject to the force of gravity and a drag force, so electrons in a 
wire are subject to the electrical force and a drag force. In both cases, this leads 
to a limiting velocity. For electrons in most materials, the relationship between 
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Although materials properties such as the dielectric constant K, the dielectric breakdown 
field Ed (compare Section 6.7), and the electrical conductivity cT can be accepted as 
measureable macroscopic properties that simply are, it is the goal of science to deduce 
macroscopic properties from more microscopic models. 

drag force and this limiting velocity is a simple proportionality. We will show 
that such proportionality leads to Ohm's  law. 

7 .11 .1  Drag Force 

Consider an object of mass m acted on by a constant downward force F and a 
drag force Far~g. Let y be the downward direction, and let the velocity in this 
direction be v, with v - 0 at t ime t - O. See Figure 7.22. By Newton's  law of 
motion, 

d v  
m-~f -- F + Fdrag. (7.38) 

The drag force Fdrag opposes the velocity (i.e., resists the motion). For low ve- 
locity motion through a fluid, drag is proportional to velocity. We assume such 
proportionality in the present case. The coefficient of proportionality has units 
of mass divided by time, which we write as m/r,  where r is called the relaxation 
time. (If our object is a massive parachutist, r is due to many collisions with the 
tiny molecules in the air. If our object is an electron in a metal, or an ion in an 
electrolyte, r can be due to a single collision; then r may be called the collision 
time.) Thus 

V 
Fdrag - -  - m -  . (7.39) 

17 

Because Fdrag is the rate of decrease of momen tum due to collisions, and my 
is the momentum,  r -] is the rate of decrease of momentum,  divided by the 
momentum.  For an object in air (a parachutist or an oil drop), if the air becomes 
denser, collisions become more frequent, and r becomes shorter. For an electron 
in a metal, if the temperature of the metal is raised, collisions also become more 
frequent, and again r becomes shorter. 

Consider a single electron in a metal, without  an external force to give it a 
net acceleration. For a time much less than t,  the electron would move rapidly 
in a random direction. After a t ime on the order of t,  the electron would collide 

rag 

Fg = mg 

Figure 7.22 Forces acting on a spherical particle of mass m, moving 
downward under gravity with velocity ~, and subject to air drag. 
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with a massive ion in the metal, going off at about the same high speed, but in 
another random direction. The velocity then averages to zero. 

Using (7.39), (7.38) can be written as 

dv v 
m~-~ - F - m-.r (7.40) 

7~11~2, Terminal Velocity 

To find the velocity at large times, called the terminal velocity v ~ ,  we do not 
need the full time dependence of the solution to (7.40). After enough time 
elapses, the velocity v increases to the point where the drag force - m v / r  is large 
enough to balance the constant force F so that d v / d t  = 0. Said another way, 
(7.40) becomes 0 = F - mvo~/r ,  or 

FT 
v~ = ~ .  (7.41) 

m 

For a parachutist at terminal velocity, none of the power provided by grav- 
itational potential energy goes into increasing kinetic energy. Where does this 
energy go? Into heating the atmosphere. This power is given by the force of 
gravity mg times the terminal velocity v~ = g v. Thus 

72 - m g v ~  - mg2r  - ~ ,  v ~  - gr .  (parachutist) (7.42) 

Similarly, as shown in the next section, electrons heat up the wire in which 
they move. Detailed study yields an equation analogous to (7.42) from which r 
can be deduced. 

~ Parachutist 
Consider a parachutist of mass 80 kg and terminal velocity 5 m/s. Estimate 
(a) the relaxation time r; (b) the rate of heating of the atmosphere. 

Solution: (a) For a parachutist, in (7.41) F =  mg, so F / m  = g. Taking the value 
v~ = 5 m/s, and g = 9.8 m/s2~ 10 m/s 2, (7.41) yields that v~ = gr, so r = 
v ~ / g  ,~ 0.5 s. This is an appropriate value (perhaps you have seen movies in which 
parachutists quickly reach terminal velocity on opening their parachutes). Thus 
the relaxation time r is also the characteristic time for the terminal velocity to 
be reached. (b) Equation (7.42) gives 72 ~ (80)(10)(5) = 4000 W. This example 
does not constitute an endorsement of skydiving. 

Z 1 1 ~  
[ . 2 , J i r . ] i ~ l l  

Measuring the Electron Charge: Millikan's 
Oil-Drop Experiment 

This discussion of terminal velocities leads to an important story in the history 
of science~Millikan's 1909 determination of the q u a n t u m  of  charge e. Millikan 
studied the falling of charged oil d rops~the  mass in Figure 7.22 is more like an 
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-Fri~ion vs. Frictionless, Aristotle vs. Galileo 

In your mechanics course it may have been noted that the ancients (in particular, Aristo- 
tle) believed that an object moves only when an external force is applied to it. When the 
frictional forces finally were minimized or eliminated, scientists (in particular, Galileo) 
saw that this is not correct. The Aristotelian view, although not fundamental, neverthe- 
less gives a very good description of what happens to charge carriers inside an ohmic 
conductor, where there are unavoidable frictional forces, and the average velocity of 
the charge carriers is proportional to the electrical force. 

oil drop than a parachutist. He made two measurements on each oil drop, whose 
charge q and mass m were unknown beforehand: (1) its terminal velocity under 
gravity L (2) the special field/~s needed to keep the drop stationary, so q Es+ 
m~ - O. Here is the complex train of reasoning" (1) For a droplet of unknown 
radius R and known mass density poil, the mass is m-(4JrR3/3)Poil. From 
the theory of fluids, with r/ the known viscosity of air, Fdrag- mv/r -6zrrlRv, 
so 67rr /R-  m/r - (47rR3/3)(poit/r). Hence r - (2/9)(PoilR2/rl). Measurement 
of v~ = gr  gave r -  v~/g, and thus R. R and poit gave m -  (4zrR3j3)Poil. 
(2) Measuring the field needed to keep the droplet stationary yielded E s, and 
]gl/]Esl gave q/m. Finally, m and q/m gave q. The charge was found to take on 
many values, both positive and negative, but it was always an integer multiple of 
1.6 • 10 -19 C. This was taken to be the magnitude of the charge e of the elec- 
tron. From J. J. Thomson's 1897 electron deflection experiments in cathode ray 
tubes, the ratio e/m was known to be 1.75 • 1011 C/kg, for all cathode materials. 
Hence the electron mass was found to be 9.1 • 10 -31 kg. 

Historical Note From Faraday's work in the 1830s, the q /m ratio was known for 
ions in electrolysis (measure the charge q passing through the circuit and divide 
by the mass m of the electroplated material). Since atomic weights were known, 
and estimates of Avogadro's number were becoming available in the 1900s, at 
that time it was possible to estimate ionic masses m, and thus to estimate the 
charge q in the ionic q/m ratio. By atomic neutrality, the electron charge also 
would be on the order of this value. However, there was no direct measurement 
of the unit of charge until Millikan's work. Recall that the nuclear model of the 
atom was not established until two years later, in 1911. 

7,12 Conductivity of Materials--I 

This section uses a drag model to derive the local form of Ohm's law, with 
an explicit form for the conductivity a that explains the difference between 
conductors and insulators. Current in a wire is carried by many electrons, moving 
at an average velocity. Let us first study the more general problem of the number 
d N  of objects that cross a given cross-section per unit time dt. This defines the 
number current dN/dt.  From the number current and the amount of charge (or 
mass, etc.) that each object carries we can determine the charge current (or mass 
current, etc.). A change in sign for a current means a change in its direction (e.g., 
if rightward is positive, then leftward is negative). 
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7 . 1 2 , 2  Electric Current through Uniform Wire 

Since each of the wire's N electrons has a charge - e ,  by (7.43) the electric 
current  is 

= d N  
I - d Q  e = - e n A v a .  (7.44) 

d t  d t  

By (7.44), from a measu remen t  of I and a knowledge of (n, A,  e), we can deter- 
mine va. Also by (7.44), if the negatively charged electrons go to the right, the 
electric current  goes to the left. For no drift (va - 0), there is no current  (I - 0). 

~ Electron velocity a copper drift in wire 

#10 copper wire (typical building wire) has a radius a of 0.05 inch 
(= .00127 m). (a) Taking n = 8.48 x 1028/m 3, find the drift velocity for a 
10 A current. (b) Find how long it will take an electron, on average, to cross 
1 m of this wire. 

Solution: (a) The wire has A = na  2 = 5.07 x 10 -6 m 2. From (7.44) a 10 A 
current then has IVd] = I / n e A  = 1.45 x 10 -4 m/s. (Don't confuse area A with 
amperes A!) (b) t = d/va = 6900 s, or nearly 2 hours 1. 

7.12,3 Current Density for Electrons 

Related to the electric current  I is the electric current  per  unit  area J, or current  
density. By (7.3), for uniform ] ,  its componen t  along I is given by 

I 
-- -- (7.45) J A" 

Placing (7.44) in (7.45) gives J - - n e v a ,  which yields, on including its direction, 

J - --ne~d. (7.46) 

Observe that, for electrons, J is opposite to fla. Negatively charged electrons 
moving r ightward means both  that  the right side becomes more  negative and 
that  the left side becomes more  positive. 

7.12,4 For the Drag Model, J Is Proportional to E 
. . r  - . r  

Applying (7.41) to electrons, and including direction, so vo~ --+ Vd and F --~ - e  E,  
yields 

e T  -* 
~d -- - - - E .  (7.47) 

m 
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Placing (7.47) into (7.46) then yields 

( e' r )~ = ne2"c~, (7.48) J - ( -ne )  - - -~ ~ . 

By (7.48), the drag model with independent charge carriers predicts that the 
current density j is proportional to the electric field E. Hence, for a conductor 
in equilibrium, where J = 0, we have/~ = 0, as assumed in our discussion of 
electrical conductors in equilibrium (Section 4.6_). Even if the charge carriers are 
not independent, the proportionality between J and/~ remains valid. 

Comparison of (7.48) and (7.8) yields a specific, drag model-dependent form 
for the conductivity (due to Debye), written as 

The factors in (7.49) have the following origin: n is the charge carrier density, 
e is their charge, e /m gives their acceleration per electric field, and r gives the 
time they can accelerate in the field before colliding with a massive ion and losing 
their memory of how they had been moving. 

~ The relaxation time for copper 

For copper at room temperature, a previous example gave p = c r  - 1  --~ 1.7 x 
10 -8 S2-m, and from yet another example, n = 8.48 x 1 0  28 electrons/m 3. 
Find the relaxation time, r, for the conduction of electrons in copper. 

Solution: From fi, n, and e = 1.6 x 10  -19 C, m = 9.1 x 10  -31 kg, (7.49) yields 
r = 2.5 x 10 -14 s. Thus we have finally obtained the relaxation time r for the 
conduction electrons in copper, at room temperature, even though we could not 
determine it by a measurement on any individual electron. 

Equation (7.49) explains that the difference in conductivities between a con- 
ductor and an insulator is due to the vastly different values of their charge carrier 
density n: good conductors have a high density of charge carriers, and poor conductors 
have a low density of charge carriers. 

7.12o5 Joule Heating: Microscopic Viewpoint 

The conductivity has already been obtained for the drag model, but it is also 
instructive to obtain the conductivity by considering the rate at which an indi- 
vidual electron contributes to the heating of the wire. This is given by the scalar 
product of the electric force - e E  and the drift velocity vd. Application of (7.47) 
yields 

- ( 7>el -- ( - e  E) . Vd -- ( - e  E) . - eET)m -- e2E2rm -- mv~r . (one electron) 

(7.50) 
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7,12.6 

[Compare this with (7.42) for the rate of heating of the atmosphere by a 
parachutist.] For N -  nA] electrons in the wire, (7.50) yields, with E - A V~ l, 

# -  rnAl~ r V 2 
= nAle  2 ~ r__ _ (A V) 2 (wire) / ~ *r-lt&] 

m m (7.51) 

Equations (7.7) and (7.9) can be combined to give/~ - I(AV) -- (AV)2~A//. 
Comparison with (7.51) gives the same ~ as (7.49). 

Limitations of  the Model  

A number of assumptions are made by the drag model, most of them not provid- 
ing significant limitations. First, it assumes that the charge carriers would all have 
zero velocity in the absence of an electric field. That is not really true: they can 
have nonzero velocity either from thermal fluctuations (i.e., random collisions 
of the electrons with one another or with the nuclei of the solid) or because the 
current-carrying electrons (i.e., the conduction electrons) are in delocalized or- 
bitals, characterized by relatively high energies and velocities. The characteristic 
velocity of the highest energy-occupied state in some metals can be as high as 
3 x 106 m/s~on  the order of 1/100th of the speed of light! Thus, even without 
an electric field, electrons are zipping around incredibly quickly. However, just 
as many are moving one way as the other, so they carry zero net electric cur- 
rent. An alSplied electric field shifts their average velocity from zero to the drift 
velocity vd, which is typically negligible (~ 10 -4 m/s from a previous example) 
compared to the large characteristic (but random) electron velocity (~ 106 m/s). 
The drag model also assumes that the state, or orbital, of each charge carrier is 
just like every other. Despite these apparent limitations, by interpreting r as an 
average over the charge carriers, we can use (7.49). 

On the other hand, the drag model also assumes that the electric field/~ is 
uniform. If E changes significantly over a distance that is shorter than the average 
distance an electron travels between collisions (the mean-free path ;~), then the 
local relations (7.47) and (7.48) will not be valid. The breakdown of the local 
form of Ohm's law can occur for very pure metals at low temperatures. 

7.13 
) n t i o n a l  

C o n d u c t i v i t y  o f  M a t e r i a l s - - - I I  

Figure 7.24 illustrates the full temperature dependence of the conductivity 
for a few characteristic types of materials, including glass, ordinary salt (NaC1), 
the intrinsic (pure) semiconductor Si, the semimetal graphite, the metal Cu, the 
metal Pb (which goes superconducting), and the high-temperature supercon- 
ductor YBa2Cu307. 

One of the goals of the theory of condensed matter (which includes all liquids 
and solids) is to explain, in detail, the temperature dependence of the resistiv- 
ity of all matter. This is not a trivial problem. John Bardeen, Leon Cooper, and 
J. Robert Schrieffer received the Nobel Prize in 1972 for their theory of the 
phenomenon of superconductivity. Nevertheless, Sir Neville Mott and Phillip 
Anderson were awarded a Nobel Prize in 1977 for their work on the much older 
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Figure 7.24 Temperature dependence of the 
conductivity cr for some representative types of 
material: metals (Cu and Pb), insulators (NaC1 and 
glass), a semiconductor (Si), a semimetal (graphite C), 
and the high-temperature superconductor YBa2Cu307. 
For T < 7 K, Pb is a superconductor, and for T < 92 K, 
YBa2Cu307 is a superconductor. In the insulators, 
conduction takes place by motion of the ions or by 
site-to-site hopping of electrons in localized orbitals. 

phenomenon (hearkening back to Stephen Gray's 1729 discovery) that most 
materials are either conductors or insulators. Moreover, the 1956 Nobel Prize 
went to John Bardeen, William Shockley, and Walter Brattain, for their discovery 
of the transistor effect in the semiconductor germanium. Thus, researchers who 
have studied all types of electrical conductors have received Nobel Prizes. 

What follows is a discussion, largely based on (7.49), of the electrical prop- 
erties of materials. 

Two Ordinary Means of  Electrical Conduction 

One conduction process involves delocalized orbitals, as in metals. The other 
conduction process involves electrons hopping between localized orbitals, when 
there is enough thermal energy. Two mechanisms can produce localized orbitals, 
or localization. Mott localization occurs when electrons interact with one another, 
via the Coulomb interaction, in such a way that they prevent one another from 
moving. Anderson localization occurs when structural disorder in the material 
causes deep attractive wells from which the electrons have difficulty escaping. 
When localization occurs, a material has a low density of charge carriers n; thus, 
by (7.49), it is a poor conductor. In Franklin's experiments on the location of 
electric charge on the Leyden jar and on glass panes, discussed in Chapter 1, the 
orbitals associated with the glass were localized. 

7~13.2 Metals 

For ordinary metals, the density n of charge carriers is nearly independent 
of temperature, but the characteristic relaxation time r decreases as the 
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temperature increases because collisions become more frequent. From (7.49), 
such a temperature-dependent r explains qualitatively why, in Cu and Pb, the 
conductivity ~ decreases with increasing temperature. The decrease of r with 
temperature is striking. It is understandable only when we take into account 
that the electrons carrying the electric current have orbitals that extend over 
the entire crystal. At very low temperatures, the low-energy orbitals are nearly 
all occupied, so there are not many orbitals in which the electrons can scatter. 
Thus r becomes very large at low temperatures, decreasing as the temperature 
is raised. Below some temperature that depends on the purity of the sample, r 
saturates because all the scattering is due to collisions with impurities. 

7~13~3 Semiconductors 

For intrinsic (pure) semiconductors at zero degrees Kelvin (absolute zero), the 
delocalized orbitals with the lowest energy are all filled, forming the equivalent 
of a filled atomic shell. The full set of such orbitals is called an energy band. When 
the band orbitals are all occupied, the electrons in them cannot carry a net electric 
current. Moreover, the band gap--the energy to excite an electron in the highest 
energy occupied band (the valence band) to an orbital in the next higher energy 
band (the conduction band)~is on the order of 0.5 eV or more (depending on 
the material). Hence the carrier density n is zero, so by (7.49) the conductivity 
is zero. However, as the temperature is increased, the next higher band becomes 
more occupied, thereby increasing n. This effect dominates any decrease in r 
with increasing temperature and explains why, for pure semiconductors, the 
conductivity ~ increases with increasing temperature. 

For nonintrinsic (doped) semiconductors, such as silicon (Si) doped with gal- 
lium (Ga), the energy to excite electrons from orbitals around the Ga-dopant 
is much less than in pure Si, so the carrier density n increases with increasing 
temperature much more rapidly than in pure Si. Thus the conductivity at first 
increases with increasing temperature. Once all the orbitals localized around the 
dopant have been thermally excited, the remaining temperature dependence of 
the conductivity is due to the decrease of r with increasing temperature. 

A major reason semiconductors are useful is that, even at a fixed com- 
position and temperature, their conductivity can be changed significantly. For 
example, shining light on them increases their conductivity. The light energy 
excites an electron from the valence band to the conduction band, thus mak- 
ing more electrons in the conduction band, and more "holes" in the otherwise- 
filled valence band; both electrons and holes can conduct electricity. The elec- 
trical conductivity of a semiconductor can also be changed by applying a large 
enough electric field to attract or repel a significant number of electrons from the 
sample. 

7.1-3.4 Superconductors Have a Resistanceless Means 
to Carry Electric Current 

One of the more puzzling topics in the electrical resistivity of metals has been 
the problem of superconductors, which lose their electrical resistance below a 
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characteristic critical temperature T~. Kamerlingh Onnes discovered this phe- 
nomenon in 1911, when he cooled mercury (Hg) below 4.2 K. See Figure 7.24, 
which shows the resistivity versus temperature for lead (Pb) and for the high- 
temperature superconductor YBa2 Cu3 07. The 1986 Nobel Prize in Physics went 
to Alex Miiller and Georg Bednorz for finding a new class of materials with a 
relatively high T~ near 35 K. Materials with Tc's as high as 135 K have been found; 
they can be cooled on immersion in readily available liquid nitrogen, which is 
fluid from 21 K to 77 K. 

When a system goes superconducting, besides the usual mode of conduc- 
tion via delocalized orbitals, which leads to electrical resistance, it develops a 
special superconducting mode of conduction. For steady current flow (dc, or 
direct current), this superconducting mode truly has no electrical resistivity. 
Because the system carries current using the "mode of least resistance," for di- 
rect current it uses the superconducting mode and does not use the normal 
means of carrying current. However, at finite frequencies (i.e., for an emf that 
oscillates in time, such as that provided by the power company) the current- 
carrying effectiveness of the superconducting mode is limited, in proportion to 
the frequency, by the inertia of the electrons. In that case, the normal means of 
carrying current~with its associated electrical resistance~is partially used, its 
current being added in parallel to the current provided by the superconducting 
mode of carrying current. Later we will discuss the magnetic properties of su- 
perconductors and show they imply that superconductors do indeed have such 
a new "mode" of zero dc resistivity. We do not yet have a good theoretical un- 
derstanding of the temperature dependence of the resistivity for the high T~ 
materials. 

The special mode of conduction in superconductivity involves (1) pairs of electron or- 
bitals (known as Cooper pairs) with opposite momentum, become slightly correlated, 
something like having distant dancing partners, and (2) the average motion of each 
electron pair is the same, something like having all pairs of distant dancing partners 
simultaneously circling around a large dance hall at the same rate. Individual behavior, 
which is responsible for electrical resistance, is not present in this correlated motion. 

7..~!3~5 Non-Ohmic Behavior 

At low current density J, all nonsuperconducting materials are ohmic. However, 
for large J, Ohm's law is no longer satisfied; the J at which this occurs depends 
on the material. Generally, the lower the carrier density n, the lower the critical 
current Jc at which the system becomes non-ohmic. Thus, J~ is high for metals 
but low for semiconductors. Non-ohmic behavior has many applications. With a 
so-called reverse bias voltage, we can nearly turn off the current; with a so-called 
forward bias voltage, we can produce a very large current. This is illustrated in 
Figure 7.1 (b). Such an equivalent of a valve is called a diode. The first diode was 
based on the cathode ray tube. This is a vacuum tube having a negatively charged 
cathode that emits electrons, and a positively charged anode that absorbs them. 
The cathode is heated to increase the rate of emission. 
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If an intermediate metallic grid screen is added to the diode, small changes 
A Vg in the grid voltage (the input) can produce large changes AI in the current 
to the anode (the output). This is the basis of the electronic amplification device 
called the triode. See Figure 7.25. 

The first amplifiers and nonlinear devices used vacuum tubes. They were 
bulky, slow to respond, expensive, fragile, and unreliable. In 1948, Bardeen, 

Brattain, and Shockley produced the first 
G r i d  s c r e e n  
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Figure 7.25 Fundamental parts 
of a vacuum tube triode, which 
has a non-ohmic response. 
Although modern electronics 
does not use vacuum tubes, they 
are more easily visualized and 
understood than the 
corresponding modern devices. 

semiconductor amplifier, called a transistor. At 
low voltages, the resistance was high, and at 
high forward bias voltages, the resistance was 
low: much smaller than for a vacuum tube. 
Thus there was a transfer of resistance; this is 
the origin of the word transistor. Semiconduc- 
tor triodes employ the functional equivalents 
of the cathode (emitter), the anode (collec- 
tor), and the grid (base). In 1958 and 1959, 
Jack Kilby and Robert Noyce independently 
showed that it was possible to fabricate and 
interconnect tiny transistors, resistors, and ca- 
pacitors on a single semiconductor chip. This 
was the integrated circuit. The compactness, 
speed, complexity, and low price that thus 
became possible have changed the world of 

electronics and made possible microcomputers (e.g., in automobiles, microwave 
ovens, and copying machines), powerful personal computers, and rapid and reli- 
able worldwide communications. Kilby (but not the deceased Noyce) shared of 
the 2000 Nobel Prize in physics. 

:7~I ] ,6  Quantum of Conductance 

Electron orbitals actually are waves. On atoms, they are localized because of the 
electrical attraction to the nucleus, but conduction electrons are in orbitals that 
extend over the entire crystal. In 1957, Landauer showed that, if the length of a 
narrow wire connecting two bulk conductors is smaller than the size of the or- 
bitals that carry electric current across the wire, then the electrical conductance 
is the same thing as wave transmission. Whenever the wave properties of elec- 
trons become important, the system must be described by quantum mechanics, 
and Planck's quantum constant h = 6.624 • 10 - 3 4  J-s can appear. In the present 
case, because C2/j-s - C2/(C-V-s) - ( C / s ) / Y -  A / V -  1/~2, the quantity 

e 2 

-h- = 0.36 • 10-4(~'~) -1 (7.52) 

has the same units as an inverse ohm. Thus it might come as no surprise that, 
for very small systems, the electrical conductance G = R -] is on the order of 
e2/h. What is more interesting, and somewhat surprising, is that for very small 
systems and very low temperatures, the electrical conductance has plateaus at 
integer and some rational multiples of e2/h. This is discussed in Section 10.7. 
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Problems 

7-1 .1  A 300-ohm resistor is placed side by side 
with a vertical D cell (1.5 V), the top side of the 
D cell being positive. (a) How much current flows 
through the resistor? (b) The top end of the resistor 
is connected to the top end of the D cell. See Figure 
7.26. How much current flows through the resistor? 
(c) The bottom end of the resistor is now connected 
to the bottom end of the D cell, while keeping the 
previous connection in place. How much current 
flows through the resistor? 

Figure 7.26 Problem 7-1.1. 

7 -1 .2  A 300-ohm resistor is placed side by side 
with two vertical D cells, the top sides of the 
D cells being positive. (a) How much current flows 
through the resistor? (b) The top end of the resis- 
tor is connected to the top end of one D cell. How 
much current flows through the resistor? (c) The 
bottom end of the resistor is now connected to the 
bottom end of the other D cell, while keeping the 
previous connection in place. See Figure 7.27. How 
much current flows through the resistor? 

Figure 7.27 Problem 7-1.2. 

7-2 .1  A 12 V car battery provides 6 A to the head- 
lights for half an hour while the tire is replaced. 
Find the amount of charge transferred and the rate 
at which electrons are transferred. 

7-2.2 The electric current to the screen of a com- 
puter monitor is 300 #A. To how many electrons 
per second does this correspond? 

7-2,3 You are to electroplate 20 g of Ag using a cell 
of AgC1. (a) How much charge must flow through 
the circuit to do this? (Both the Ag + and the C1- 
must be included.) (b) If the current is 150 mA, 
how long does this take? The atomic weights of Ag 
and C1 are 107.9 and 35.5, respectively. 

7 - 2 . 4  On an assembly line, 45 cardboard boxes 
per minute pass a checkpoint. Each cardboard 
box contains 24 boxes of Flakies breakfast cereal. 
Each box of Flakies contains about 9600 individual 
Flakies. Find the "Flakies current:" the rate at which 
Flakies pass the checkpoint. 

7 - 2 . 5  In a cyclotron, a proton moves in an orbit of 
radius 4 cm at velocity 8 x 107 m/s. Find the average 
electric current due to the proton. 

7 - 2 . 6  For a situation with spherical symmetry, a 
radial current flux and constant total current I cross 
any concentric sphere. Find Jr in terms of I and the 
radius r. 

7 -2 .7  Every 60 ms, a charge 0.8 C uniformly 
crosses a 28 mm 2 area, traveling in the xy-plane at 
clockwise 20 ~ to the x-axis. Find (a) I; (b) dI/dA; 
(c) J; (d) the current crossing a 2 mm 2 area whose 
normal is at a clockwise 70 ~ angle to the x-axis. 

7 - 2 . 8  There are strong analogies between elec- 
tric current flow through wires, fluid flow through 
pipes, and heat flow through solids. For each of 
these, to the best of your knowledge indicate what 
is flowing and what is causing the flow. 

7 - 2 . 9  Based on a two-fluid model (one positive 
and one negative), in Oersted's time the term "elec- 
tric conflict" was used to describe electric current 
flow. Would the fluids flow in the same direction? 
Discuss the complications associated with calcu- 
lating the electric current due to two oppositely 
charged carriers. (This can occur in semiconductors 
and in electrolytes.) 

7 - 2 . 1 0  A hose is aimed at a box with a narrow 
hole of area 2.4 mm 2, and water collects at the bot- 
tom of the box (of cross-section 48 cm 2) at the rate 
of 6.7 mm/s. If the angle that the hose makes to the 
narrow hole is varied, the collection rate can get as 
high as 9.2 mm/sec. Find (a) the mass current of 
water into the box; (b) the mass current per unit 
area initially entering the box; (c) the mass current 
per unit area in the stream of the hose; (d) the angle 
that the hose made initially to the small hole. 
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7-2.11 12 A flows radially inward toward the axis 
of a 24 cm long cylinder. If the current is constant 
crossing each concentric cylinder, find the current 
per unit area for a radius of 8 ram. 

7-3.1 Consider the following I versus V data for 
one particular circuit element: (2 A, 8 V), (4 A, 
20 V). (a) What  is the resistance at each voltage? 
(b) Is the system ohmic? 

7 - 3 . 2  A 2.58 A current flows through a uniform 
resistor, across which a voltmeter reads 438 mV. 
(a) Find its resistance. (b) If the resistor is ohmic, and 
the voltage across it is doubled, find the new current 
and the new resistance. (Assume a fixed tempera- 
ture.) (c) A resistor made of the same material is 
larger by a factor of 4.6 in all directions. Find its 
resistance. 

7-3.3 Consider Equation (7.4). Let a wire of re- 
sistance R = 5 ~ be along the x-axis, its right end 
at a higher voltage than its left end by A V = 10 V. 
(a) If leftward current is considered to be positive, 
find the numerical value of l, including its sign. 
(b) If rightward current is considered to be positive, 
find the numerical value of I, including its sign. 

7 - 3 . 4  (a) A gold wire of length 8 cm has radius 
0.24 mm. Find its resistance. (b) Repeat for a copper 
interconnect (for integrated circuits) that is 120 nm 
thick, 0.5 cm wide, and 0.8 cm long. 

7 - 3 . 5  Consider a Cu cable of cross-sectional area 
5.4 cm 2. (a) Find its electrical resistance per meter. 
(b) Find the resistance of 4 km of this cable. 

7 - 3 . 6  A 0.5 nF parallel-plate air capacitor is filled 
with a fluid of resistivity 12 ~-m. Determine the 
resistance between the plates. 

7 - 3 . 7  A cylindrical sample of soil is of length 
18 cm and radius 1.4 cm. Its end-to-end electrical 
resistance is 2470 ~. Determine its electrical resis- 
tivity. 

7 - 3 . 8  A piece of copper at room temperature has 
length 8 cm and radius 4 mm. Find its resistance. 
At 20 K above room temperature, find its length, 
radius, and its resistance. L ~ L0(1 + c~L A T) relates 
room temperature lengths L0 to lengths at nearby 
temperatures. The coefficient of thermal expansion 
c~L of Cu is 1.7 • 10 -s K -~ 

7 - 3 . 9  Alternate slices of iron and carbon (of the 
same radius) are to be used to make resistors that are 
nearly temperature independent.  If the iron slices 
are to be 2.4 mm long, find the desired length of 

the carbon slices. Use c~ - 6.5 • 10 -3 K -1 for iron. 
Consider the carbon to be graphite. 

7 - 3 . 1 0  A wire is drawn out through a die so that 
its new length is twice as great as its original length. 
If its original resistance was 0.4 ~, find its new 
resistance. 

7-3,11 A 420 mA current flows through an elec- 
tric cable with 60 strands of wire, each of resistance 
1.2 #~ .  (a) Find the current in each strand. (b) Find 
the applied voltage difference. (c) Find the cable 
resistance. 

7 - 3 . 1 2  A microwave oven is rated at 1400 W for 
120 V power. What  current does it draw, and what 
is its resistance? 

7 - 3 . 1 3  (a) Find the resistances of a 60 W bulb for 
use in the home and a 60 W bulb to be used with a 
12 V car battery. (b) Which is higher? 

7 - 3 . 1 4  (a) Find the resistances of a 60 W bulb 
and a 100 W bulb intended for use in the home. 
(b) Which is higher? 

7 - 3 . 1 5  A ventricular defibrillator, attached by 
low-resistance paddles placed above and below the 
heart, provides 20 A and 10 s W. (a) Find the voltage 
drop across the paddles. (b) Find the electrical re- 
sistance. (Normally, the body's electrical resistance 
is much larger, but here the contact area of the elec- 
trodes is very large, and the electrical contact is very 
good.) 

7 - 3 . 1 6  Assume that a 60 W lightbulb (at 120 V) 
has a room temperature resistance of 120 ~. 
(a) Find the current and power usage when the bulb 
is first turned on. (b) Find the resistance and current 
when the bulb is at operating temperature. 

7 - 3 . 1 7  A 5 W portable radio using four resistance- 
less 1.5 V batteries in series was left on from 9 am 
to 11 am. (a) Find the total energy consumption. 
(b) Find the average current. (c) Find the amount  
of charge that passed through the circuit. 

7 - 3 . 1 8  A space heater produces 1400 W at 120 V. 
Find (a) its resistance; (lo) the current; and (c) the 
cost to run it for two hours, at 8.9 cents/kW-hr. 

7 - 3 . 1 9  Nichrome wire is used for a heating ele- 
ment  to produce 500 W at 120 V. (a) Find its re- 
sistance. (b) Find the ratio of its length to its cross- 
section. Take fi -- 1.00 • 10 -6 ~-m. 

7 - 3 . 2 0  Two cows are 100 ft away from a tree, the 
body of one facing the tree and the body of the other 
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sideways to the tree. A lightning bolt hits the tree. 
Assume that the current spreads out radially along 
the surface. Which cow is likely to get the larger 
shock, and why? 

7-3.21 A 120 V motor uses 15 A while lifting 
a 1 O-ton elephant vertically at a rate of 20 cm/s. 
(a) Find the rate at which it provides power lifting 
the elephant, in horsepower (1 hp = 745.7 W). (b) 
Find its efficiency of power use (efficiency is useful 
energy or power divided by the total energy or 
power). (c) Does this efficiency make sense? 

7-3.22 Under normal circumstances, the resis- 
tance of the body is on the order of 10 s f2. (a) Find 
the current flow for A V =  120 V. (b) With sweaty 
hands, the resistance might be as low as 2000 f2. (b) 
Find the current flow for A V =  120 V. (c) Assume 
that the resistance between a pair of forceps, on the 
left and right sides of the heart during surgery, is 
8 f2. Find the stray voltage difference to cause a po- 
tentially fatal current of 200 mA. 

7-4.1 A 24 A current flows rightward through 
an A1 wire with cross-sectional area 2.4 mm 2 and 
length 1.9 m. (a) Find the electric field in the wire, 
in magnitude and direction. (lo) Find the voltage 
drop across the wire, and indicate which side has 
the higher voltage. 

7 -4 .2  Two solid brass Frankenstein monsters differ 
in weight by a factor of 6.85. A 25 A current passes 
through the less massive one when 6 V are placed 
across its electrodes. Find the electrical resistances 
of both. 

7-4.3 A solid copper sphere has radius 1 cm. A 
second solid sphere of uniform but unknown com- 
position has radius 2 cm. Electrodes are placed 
at opposite poles of each. The first sphere has a 
resistance 1.21 times that of the second sphere. 
(a) Estimate the resistivity of the material of the 
second sphere. (b) Of what might the second sphere 
be made? 

7-4.4 (a) Show that the resistance of a uniform 
(homogeneous is the technical term) spherical shell 
of radii a < b and conductivity ~, for radial cur- 
rent flow, is R = (a -] - b-]) /4rr~.  (b) Show that, 
as b - a = d ~ 0, and taking A = 4zra 2 ~ 4;rb 2, R 
reduces to (7.5). 

7 -4 .5  An otherwise solid spherical steel shell of 
inner radius 1.4 mm and outer radius 2.2 cm has a 
small hole to accommodate a 46 cm long Cu wire 
of diameter 0.04 cm and a thin layer of insulation. 

The copper brings a 2 A current uniformly to all 
parts of the inner surface. See Figure 7.28. (a) As- 
suming that the current density is uniform in both 
the copper and the steel, calculate the resistance of 
the copper and of the steel. (b) Calculate the volt- 
age drops across each. You may use the result of the 
previous problem for a spherical electrode. 

Figure 7.28 Problem 7-4.5. 

7 -4 .6  For Cu wire, here are some gauge numbers, 
their diameters (in inches), and their safe current 
(in amperes): (4, 0.20431, 95), (6, 0.16202, 75), 
(8, 0.12849, 55), (10, 0.10189, 30), (12, 0.080808, 
20), (14, 0.064064, 15), (16, 0.050820, 10), (18, 
0.040303, 5). Find the product of the gauge and 
the diameter. (In an early definition of gauge, this 
product was a constant. Presently, gauge also is de- 
termined by the desire to have a multiple of five 
value for the maximum safe current.) 

7 -4 .7  Ampere actually considered that the elec- 
tromotive force acted within a wire, whereas the 
chemical emf is localized at the electrodes of 
the voltaic cell. If there is no chemical emf in 
a wire, what causes electric current to flow in a 
wire? 

7-4.8 In previous chapters, we took/~ 0 inside 
a conductor. In this chapter, we take/~ r 0 inside a 
conductor. Explain the difference. 

7 -4 .9  Explain how the local form of Ohm's law 
implies that current flows along the direction from 
higher voltage to lower voltage. 

7-4.10 Consider a 10-foot length of copper tub- 
1 inch and an ing with an inner diameter (ID) of 

s inch. Find the electrical outer diameter (OD) of g 
resistance for (a) axial current flow and (b) radial 
current flow. 

7-5.1 Resistors R1 = 4 f2 and Rz = 9 f2 are in 
series. A current of 3 A passes through R2. Find 
(a) the equivalent resistance R of the combination, 
(b) the voltage drops across R1 and R2, (c) the 
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total voltage drop, (d) the current through R1, and 
(e) the current through the combination. 

7-5.2 Resistors R1 = 4 f2 and R2 are in series. A 
current of 3 A passes through R2 and the voltage 
drop across the combination is 33 V. Find (a) R2, 
(b) the voltage drops across R1 and R2, (c) the cur- 
rent through R1, (d) the current through the com- 
bination, and (e) the equivalent resistance. 

7-5.3 Resistors R1 = 4 f2 and R2 are in series. A 
voltmeter reads 14 V across R~ and 21 V across 
R2. Find (a) R2 and (b) the current through Rl and 
R2. For the combination, find (c) the voltage drop, 
(d) the current, and (e) the equivalent resistance. 

7-5.4 Resistors R1 = 4 f2 and R2 = 8 f2 are in par- 
allel. A current of 3 A passes through R1. Find 
(a) the current through R2 and (lo) the voltage drops 
across R1 and R2. For the combination, find (c) the 
voltage drop, (d) the current, and (e) the equivalent 
resistance. 

7-5.5 Resistors R1 = 4 fl and R2 are in parallel. A 
current of 3 A passes through R] and a current of 
8 A passes through R2. Find (a) R2 and (b) the volt- 
age drops across R1 and R2. For the combination, 
find (c) the voltage drop, (d) the current, and (e) 
the equivalent resistance. 

7-5.6 Resistors R1 = 4 ~2 and R2 are in parallel. A 
voltmeter reads 2 V across R1. An ammeter reads 
4 A through R2. Find (a) R2 and (b) the current 
through R1. For the combination, find (c) the volt- 
age drop, (d) the current, and (e) the equivalent 
resistance. 

7-5.7 Resistors R1 and R2 are in parallel, and 
together they are in series with R3. A 10 A cur- 
rent passes through the combination, a 4 A current 
passes through R1, 12 V is across R3, and 16 V is 
across R2. Find (a) each resistance, (lo) the currents 
through R2 and R3, and (c) the voltage across R1. 
For the combination, find (d) the voltage drop and 
(e) the equivalent resistance. 

7-5.8 Resistors R~ = 6 Fa and R2 = 8 f2 are in par- 
allel, and they are in series with resistors R3 = 3 f2 
and R4 = 9 f2. (a) Find the equivalent resistance. 
(b) If 2 A passes through R1, find the voltage drop 
across the combination. 

7-5.9 Two students were each given four 1 f2 resis- 
tors and told to connect them up to yield an equiva- 
lent resistance of 1 f2. Their circuits were different. 
Draw each circuit. 

7-5.10 You are told to find sets with the mini- 
mum number of integer-valued resistors that in var- 
ious combinations will provide integer-valued resis- 
tances from 1 to 6. (a) How many sets do you find, 
and what are they? (lo) Repeat for 1 to 7. 

7 -5 .11  Design a three-way lightbulb using two fil- 
aments that operate singly or in series to produce 
60 W at its lowest setting and 150 W at its highest 
setting. Find the two resistors and the intermediate 
setting. Assume 120 V power. 

7 - 5 . 1 2  Consider a set of identical flashlight bulbs 
and a D cell ofnegligible resistance. Answer in terms 
of brighter;, same, or less bright. Consider the follow- 
ing cases: (1) Bulb A is placed in series with the 
D cell. See Figure 7.29(a). (2) Bulb B is in parallel 
with bulb A, and together they are in series with 
the D cell. See Figure 7.29(b). (a) Compare the 
visual intensity of bulb A in cases (1) and (2). 
(b) In (2), how does the intensity of bulb B com- 
pare to that of bulb A? (3) Bulbs A and B are 
placed in series with each other and the D cell. See 
Figure 7.29(c). (c) How does the intensity of bulb 
A compare with its intensity in (1)? Now bulb C is 
placed in parallel with bulb A. See Figure 7.29(d). 
(d) How does the intensity of bulb A change? 
(e) How does the intensity of bulb B compare to 
that of bulb A? 

A oj 
(a) (b) 

(c) (d) 

Figure 7.29 Problem 7-5.12. 

7-5.13 In the previous problem, let the D cell 
provide 1.5 V, and let R = 0.5 f2 for each bulb. 
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Find the currents and visual intensities in each case, 
taking the intensity of each bulb to be 20% of 12 R, 
and assuming the bulbs to be ohmic. 

7 - 5 . 1 4  Consider a circuit with an unknown resis- 
tor R2 leading to resistors R1 = 6 f~ and R3 = 3 ~ in 
parallel with one another. See Figure 7.7(b). In the 
present problem, let the common point between all 
three resistors be at Vb = - 4  V, and let the other end 
of R2 be at Va = 16 V. If 11 = 4 A through R1, find 
(in any order) (a) R2, (b) the currents through the 
other resistors, and (c) the voltage V~ at the other 
end of the connection between R1 and R3. 

7 - 5 . 1 5  (a) Compare the rules for resistors in par- 
allel and for capacitors in parallel. (b) Compare 
the rules for resistors in series and for capacitors in 
series. (c) What fundamental relationships cause R 
and 1/C to be analogous? 

7 - 5 . 1 6  To repair the base of the bulb-holder for 
his lamp, Steven used a stainless steel dinner knife, 
but he forgot to turn off the power. The dinner knife 
accidentally contacted both the side and the base of 
the lamp-socket. (a) Would you expect a fuse to 
blow? (b) Would you expect Steven to get a shock? 

7 - 5 . 1 7  Researchers on artificial lightning, before 
setting off a bolt from their 20-foot-high apparatus, 
are warned 10 seconds early so that they can stand 
on one foot. Otherwise, they might receive a shock 
across their legs, more or less in proportion to the 
separation between their legs. Explain. 

7 - 5 . 1 8  To protect yourself against lightning 
strikes when on a mountain, Flora recommends that 
you lie down on the ground so that you present no 
sharp peak that the lightning might strike. Dora, on 
the other hand, recommends that you crouch with 
your feet together, because that way you are not too 
high and if a lightning bolt strikes nearby, the path of 
the ground current that flows along the surface will 
have to choose between your nearly fixed foot-to- 
foot resistance and a minimized ground resistance. 
Discuss. 

7-6 .1  Consider a galvanometer of resistance 20 
and full-scale deflection of 50 /zA. (a) To what 
voltage does this correspond? (b) Find its current 
sensitivity. 

7 -6 .2  (a) Find the shunt resistance needed to con- 
vert a galvanometer of resistance 20 ~ and full-scale 
deflection of 50 #A into an ammeter with a full- 
scale current of I = 10 mA. (b) This ammeter is 

used to measure the current through an unknown 
resistor R, where the power source provides a con- 
stant 1.452 V, no matter what the load. If the am- 
meter reads 8.4 mA, find R and the current without 
the meter in the circuit. 

7 - 6 . 3  (a) Find the series resistance needed to con- 
vert a galvanometer of resistance 20 fl and full-scale 
deflection of 50 /zA into a voltmeter with a full- 
scale voltage of A V = 100 mV. This now is used 
to measure the voltage across an unknown resis- 
tor R, where the power source provides a constant 
152 mA, no matter what the load. Ifthe meter reads 
84 mV, find (b) R and (c) the voltage without the 
meter in the circuit. 

7 - 6 . 4  Consider an emf C with internal resistance 
r that is in series with a resistor R. You are to deter- 
mine R using a voltmeter with resistance Rv and an 
ammeter with resistance RA. The ammeter is placed 
in the circuit. (a) Let the voltmeter be connected 
across R alone. Show that 1 / R = I / A V - 1 / Rv. (b) 
Let the voltmeter be connected across R in series 
with the ammeter. Show that R = A 17/I - RA. 

7 - 6 . 5  A multimeter contains a galvanometer with 
sensitivity 25,000 ~/V, which on its most sensitive 
scale reads 100 mV. (a) If, on its 10 V scale, it reads 
6.5 V across a 200 fl resistor, find the voltage read 
by an ideal voltmeter (assuming the current through 
the circuit is fixed). (b) Give the fractional error. 

7-6.6  A multimeter contains a galvanometer with 
sensitivity 25,000 ~/V, which on its most sensitive 
scale reads 20 mA. (a) If, on its 2 A scale, it reads 
1.4 A across a 200 f2 resistor, find the current it 
would read with an ideal ammeter (assuming the 
voltage across the resistor is fixed). (b) Give the 
fractional error. 

7-7 .1  Describe the spacial profile of the ion distri- 
bution within one cell of an automobile battery that 
has been completely discharged, and then is given 
a quick charge. 

7 - 7 . 2  (a) Why does a battery go dead when it just 
sits on a shelf?. (b) Consider a 125 A-hr battery that 
loses chemical charge at a constant rate of 0.05 A. 
Estimate the amount of time it takes to lose 80% of 
its "charge." 

7-7.3 Lead-acid cells usually go bad because of 
sulfation of PbSO4 on both electrodes (at nearly 
1% of the chemical charge per day) closing up the 
pores of both electrodes (large pores give a large 
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reaction area, and thus a large current). Compare 
the chemical charge consumed this way with the 
chemical charge consumed by starting a car four 
times a day, each time with a draw of 600 A for 
1 s. Assume that the fully charged battery holds a 
charge of 100 A-hr. 

7-7.4 Bertie, who usually bikes to work, often 
finds that his automobile battery with 80 A-hr 
capacity is in need of recharging. When that hap- 
pens, he usually puts it on a trickle charge of 2 A 
overnight (about 10 hours). Within a few weeks, his 
battery has gone dead again. What better charging 
regimen might you recommend to him? 

7-7.5 An automobile alternator can provide a cur- 
rent of 130 A when the car is driven at high- 
way speeds. The car battery has a capacity of 
120 A-hr, but it has been completely discharged. 
After a jump-start, how long must the car be driven 
before it becomes half-charged? 

7-7.6 Bertie has been advised by his mechanic 
that a solar-powered trickle-charger would pre- 
vent his infrequently used car battery from go- 
ing dead. In "bright sun," the charger can provide 
its maximum current of 0.9 A; at all times the 
"charge" on the battery decays at a rate of 0.04 A, 
due to non-current-producing chemical reactions. 
For a 12-hour day, what fraction of bright sun 
light must be provided to just compensate for the 
loss due to these non-current-producing chemical 
reactions? 

7-8.1 On open circuit, a high-resistance volt- 
meter reads 1.36 V for a voltaic cell. When a low- 
resistance ammeter reads 0.4 A, the voltmeter reads 
1.24 V. Find the emf and internal resistance for the 
cell. 

7 -8 .2  Consider a black box containing two leads. 
It is made part of a circuit. When an amme- 
ter reads 0.24 A to the black box, the voltmeter 
reads 2.47 V across the black box. When the am- 
meter reads 0.38 A, the voltmeter reads 2.14 V. 
Find the emf and internal resistance for the black 
box. 

7-8 .3  When a person with a metal filling in a tooth 
places a piece of aluminum foil in her mouth, and 
the foil contacts the filling, she notices a strong 
"metallic" taste. (a) What are the elements in the 
electric circuit that is completed when contact is 
made? (b) What is the source of energy for this 
effect? 

7-8.4 Here is a set of I versus A V data taken for an 
emf: (0.41 A , - 5 . 6  V), (0.09 A , - 3 . 2  V), ( -0 .19  A, 
0.8 V), (0.51 A, 3.2 V). Estimate C and r with 
an eyeball fit to this simulated data. (Note: There 
is no unique answer, only a range of reasonable 
values.) 

7-9.1 A 12 V car battery is rated at 120 A-hr. 
(a) To what charge in Coulombs does this corre- 
spond? (b) How long can this provide a 2 A current? 
(c) How long can this provide 60 W? 

7-9 .2  A Li/SO2 D cell has Q.cell--8 A-hr and 
~" = 3.3 V. (a) Find its energy storage. (b) Find its 
rate of discharge through a 6 f2 resistor. (c) Find 
how long the discharge will last. 

7-9 .3  A zinc-carbon AA cell has E cell ---- 34 56 J 
and ~a = 1.2 V. (a) Find the charge stored, in A-hr. 
(b) Find its rate of discharge through a 12 f2 resistor. 
(c) Find how long the discharge will last. 

7-9.4 It is conventional to use the term battery to 
describe both the 1.5 V AAA device used for flash- 
lights and the 12 V device used for automobiles. 
One is a single voltaic cell, and one is a true battery 
of voltaic cells. Which is which? 

7-10.1 Consider a voltaic cell of internal resis- 
tance r = 0.15 f2, open circuit voltages across the 
left and right electrodes of magnitude 0.6 V and 
1.2 V, and a net emf of C = 1.8 V. It is in a circuit 
with a resistor R = 0.75 f2, as in Figure 7.20(a). Let 
Va = 0.5 V. Assume that the connecting wires have 
zero resistance. (a) Sketch the voltage around the 
circuit. If the voltaic cell has a "charge" of 1.2 A- 
hr, find (b) how long it will take to discharge, and 
(c) how much energy it has initially. 

7 - 1 0 . 2  Repeat the previous problem if everything 
is the same, except that the net emf is C - 0.6 V. 

7 - 1 0 . 3  For a voltaic cell with C2 = 1.3 V, E] = 
0.3 V, and r = 0.2 92, connected to a resistor R = 
0.3 ~2, the current flows clockwise. (a) Find the cur- 
rent flow for this circuit. (b) Plot the voltage profile 
around the circuit, taking V = 0 at electrode 1. 

7 - 1 0 . 4  A lemon cell (two different metal elec- 
trodes placed in a lemon) is tested with two volt- 
meters. One voltmeter, with resistance 20,000 ~2, 
reads 0.65 V. The other voltmeter, with resistance 
1000 ~2, reads 0.43 V. Find the internal resistance 
of the cell and its emf. 
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7-11.1 Consider two well-separated water drop- 
lets of M = 10 -2~ kg, one with an excess elec- 
tron and the other with a deficit of an electron. 
They are near the surface of the earth in a down- 
ward electric field of magnitude E = 100 V/m. 
(1) Find the total force on each, including both 
electricity and gravity. (2) Let the droplets have the 
same velocity for the same net force. Assuming that 
r = 2.0 x 10 -9 s, find their terminal velocities. 

7-11.2 A marble of radius 0.8 cm and density 
2.5 g/cm 3 falls through a container of shampoo, 
with density 1.0 g/cm 3. If the marble reaches a ter- 
minal velocity of 0.9 cm/s, find the viscosity of the 
shampoo. 

7-11.3 In the Millikan oil-drop experiment, 
Farag = -6rrl/Rv. Including the effect of the buoy- 
ancy of air (to be more accurate), the effective 
mass of the droplet is meff= (Poll- Pair) (4 rr /3 ) R3. 
(a) Show that r ~ R 2. ( l o )  Let Poil = 0.92 g/cm 3, 
flair ~ 1.293 x 10 -3 g/cm 3, and 1lair = 0.0182 X 
10 -3 N-s/m 2. Find r /R  2. (c) Find the value of R 
that will give v~ = O. 1 mm/s. 

7-11.4 A nighttime video accidentally records a 
flaming meteorite crashing into the ocean with a 
terminal velocity of 64 m/s. (a) Estimate r for the 
meteorite. (b) If the meteorite is approximated as 
a sphere made of iron, estimate its radius. (c) Esti- 
mate its mass. 

7-12.1 For a current density of 5.6 A/cm 2, how 
long would it take an electron to cross a 25-foot- 
long extension cord? Hint: What is the cord likely 
to be made of? 

7-12.2 A 20 cm long rod with 4-mm-by-4-mm 
cross-section carries 4 A when a voltage differ- 
ence of 0.5 V is placed across its ends. (a) Find 
the resistivity. (b) Find the electric field within 
the rod. (c) Estimate the drift velocity of the 
charge carriers, taken to be of density n = 4.5 x 
1028/m 3. 

......... i)i,i,i I .... 7-12.3 A plasma globe has an inner radius 
.... ~:i~":(, ............ of 0.6 cm and an outer radius of 9 cm. 

The total radially outward current is 25 #A and 
is due to a uniform density n of charge carriers of 
charge e, with drift velocity 40 m/s at the outer 
radius. Find n and the drift velocity at the inner 
radius. 

7-12.4 At a proton storage ring, a beam of pro- 
tons is uniformly distributed around a ring of 

circumference 1050 m and moves at nearly the 
speed of light. It produces a current of 40 A. The 
beam is then directed to a 75 kg block of copper 
of specific heat Cv = 0.093 cal/g-K, whose temper- 
ature rises by 0.215 K on absorbing the beam. (a) 
Find the time it takes for the Cu to absorb the beam. 
(b) Find the rate of temperature increase of the cop- 
per block while it absorbs the kinetic energy of the 
proton beam. (c) Find the number of protons in 
the beam. (d) Find the kinetic energy of the proton 
beam. 

....... ~ .... 7-12.5 A disk with a uniform distribution 
~ii~'i~'~ii',i ................ of surface charge ~, and of radius a, turns at 

an angular velocity co. (a) Find the effective electric 
current dI of the charge between r and r + dr. (b) 
Find the total effective electric current l. 

7 - 1 2 . 6  Consider a 0.3 mm diameter wire made of 
semiconductor with two charge carriers, electrons 
and holes (having charge +e). (a) If 5.4 x 101~ elec- 
trons/sec pass one way and 2.4 x 10 is holes/sec pass 
the other way, what is the total electric current? 
(b) If the electron density is twice the den- 
sity of the holes, and the electron drift veloc- 
ity is 4 x 10 -3 m/s, what is the hole drift 
velocity? 

7 - 1 2 . 7  An electrostatic generator is provided 
850 nA by a belt that moves with velocity 8 m/s 
and is 4.4 cm wide. Find the charge per unit area on 
the belt. 

7-12.8 (a) Find the maximum safe current densi- 
ties for gauge #4, # 1 O, and # 16 wire. (b) To what 
drift velocities do these correspond? See Problem 
7-4.6 for information about gauges. 

7-12.9 Our analysis of current flow through a 
wire can be applied to traffic flow along a highway. 
A tunnel of length L and width w (proportional to 
the number of lanes) is like a wire of length L and 
area A~ The areal density of cars nc is like the volume 
density of charge carriers n. The average velocity of 
cars vc is like the drift velocity yd. Show that the 
number of cars per unit time crossing the width is 
given by ncV~W. 

7-13.1 Arrange in order of increasing density of 
conduction electrons: conductors, insulators, semi- 
conductors. 

7-13.2 Consider a typical metal. (a) Explain 
why its conductivity decreases with increasing 
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temperature. (b) Explain why the greater the num- 
ber of impurities, the lower the conductivity at low 
temperatures. 

7 - 1 3 . 3  Suggest why semiconductors show non- 
linear behavior at smaller current densities than do 
metals. 

7 - 1 3 . 4  Explain how, by having an additional low 
resistivity mode of conduction, superconductors 
can bypass the finite resistivity of its conduction 
electrons. 

(4zrkxc~) -1 . (Since current normally is confined to a 
wire, the analogous capacitance problem must have 
a material whose large dielectric constant confines 
the electric field lines to the same region as the wire, 
or else the geometry must be very simple, such as 
concentric spheres, concentric cylinders, or parallel 
plates.) 

7-G.1  Consider a slab-shaped wire of cross- 
sectional area A along the horizontal that is much 
less than the cross-sectional area A' along the ver- 
tical. See Figure 7.30. (a) Sketch the current flow 
pattern for current flow along the horizontal, from 
a to a'. (b) Repeat for current flow along the ver- 
tical, from b to b'. (c) Which case should have the 
larger resistance? 

J 

Figure 7.30 Problem 7-G. 1. 

Figure 7.31 Problem 7-G.3. 

7 - G . 4  Consider two nonconcentric spherical elec- 
trodes of radii a and b, at a large separation r >> a, b. 
(a) Show that C =  Q / ( G -  G) = [k(a -1 + b -1 - 
2r-1)] -1. (b) Show that, for the resistor case, R = 
(1/a  + 1 / b -  2/r)/(4Jrc,) .  

....... ~,iiiiiiiill ..... 7 -G .5  Consider a reduced portion of two 
.............. concentric spheres, given by the difference 

between a spherical cone of radius b and one of 
radius a, of common half-angle 0. See Figure 7.32. 
(a) Show that, for g > > l ,  C = Q / ( V a - V b ) =  
(1 - cosO)[~k(a -1 - b-l)] -1 (b) Show that 
R = (a -1 - b-1)/[2rrc~(1 - cos0)]. (c) Why must 
x>>l?  

7 -G.2  (a) The voltage across a wire is quadru- 
pled. If the drift velocity had been 2 x 10 -4 m/s, 
find the new drift velocity. (b) The voltage across 
the accelerating grid screen in a TV tube is quadru- 
pled. If the velocity of the electrons hitting the 
screen had been 4 x 106 m/sec, find their new ve- 
locity when they hit the screen. Hint: Recall that 
for a TV tube, the electrons have relatively low 
velocity on emission by the cathode and before 
acceleration. 

7-G.3 When the electric field lines for a resistor 
and for a capacitor are the same, the resistance 
R of one and the capacitance C of the other are 
related. (a) For the capacitor problem, with the 
voltage in the dielectric decreased by the factor g 
(the dielectric constant) appropriate to that mate- 
rial, show that A V = Q / C  = f E .  hdA/(4~rkKC).  
See Figure 7.31(a). (b) For the resistor prob- 
lem, show that A V = I R = ( f  J .  hdA) R = cr ( f  E .  
hdA)R.  See Figure 7.31(b). (c) Show that R C  = 

Figure 7.32 Problem 7-G.5. 

7 - G . 6  (a) Discuss the changes in the field lines if 
the spherical cone resistor from a to b is cut off 
to yield a flat base. (b) For small cone angles 0, 
calculate the resistance. Assume a uniform resistiv- 
ity p. (c) Is your approximation valid for all cone 
angles? 

7 -G .7  Compute the product of resistance and 
length for radial flow between two infinitely long 
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cylinders with uniform resistivity p, radii a < b, and 
angle c~ rather than 2Jr. See Figure 7.33. 

Figure 7.33 Problem 7-G.7. 

7-G .8  For a wire, when the electric field is due 
only to electric charge, we can write E = -V~b. In 
that case, the local form of Ohm's law becomes 
J = a/~ = - o r  V0. For heat flow, Fourier showed 
that the heat current Q(an energy per unit time per 
unit area) satisfies Q =  -KVT, where K is the ther- 
mal conductivity and T is the temperature. Hence 
there are similarities between heat flow and current 
flow. By analogy with (7.5), find an expression for 
the thermal resistance RH =- AT/ IQ for a wire of 
length l and cross-section A, where IQ = I QIA is 
an energy per unit time. 

7 -G .9  Ohm actually measured a magnetic needle 
deflection X = a/(b + x), where a and b were fit- 
ting constants, and x was the length of his wire. This 
he took to be proportional to the current through 
the wire wrapped about the needle in this primitive 
form of galvanometer. During a given run, where 
he would change x but not anything else, the val- 
ues of a and b did not change. To what extent does 
such a form establish what we now call Ohm's law? 
Hint: What does this result say about linearity in the 
emf? In the current? On the dependence on prop- 
erties of the wire? 

7-G.10 In 1820, Ampere wrote that "The cur- 
rents of which I am speaking are accelerated until 
the inertia of the electric fluids and the resistance 
which they encounter..,  make equilibrium with the 

electromotive force, after which they continue in- 
definitely with constant velocity so long as this force 
has the same intensity." Thus Ampere commits 
himself to these ideas: (a) a two-fluid model of elec- 
tricity; (b) that inertia matters in determining the 
drift velocities of the "electric fluids;" and (c) that  
resistance (in the sense of drag) matters in deter- 
mining the drift velocities of the "electric fluids." 
Which, if any, of these views are correct for ordinary 
metals? 

7-G. 11 Assume that the solar wind is due to a uni- 
form spherical flux of protons, which undergo no 
collisions. (a) If their speed is 550 km/s just outside 
the sun, what is their speed at the earth? (Neglect 
electric fields and the earth's gravity, but include 
the sun's gravity.) (b) If their net current is I just 
outside the sun, and there is no charge buildup be- 
tween the earth and the sun, what is I at the earth? 
(c) How does their density vary with distance from 
the sun? (d) If their density is 8.5/cm 3 at the earth, 
what is their density just outside the sun? (e) Com- 
pute I. (f) Compute the current density at the earth 
and just outside the sun. (g) If the sun starts out un- 
charged on January 1 of this year, and then becomes 
charged negatively because of the solar wind, how 
large an electric field would there be at the earth on 
January 1 of next year? (h) Does this model appear 
to be realistic? 

7-G.12 Heating rust (Fe203) in the presence of 
CO yields Fe203 + 3CO = >  2Fe + 3CO2. Thinking 
only in terms of weight, why is this process called 
reduction? Why is the inverse process, or the process 
4Fe + 302 = >  2Fe203, called oxidation? Given the 
ionic states Fe § and 0 -2, discuss electron trans- 
fer to the iron under oxidation and reduction. (Al- 
though heating rust in air is ineffective at reduc- 
ing the iron, some oxides can be reduced simply by 
heating them in air.) 

7-G.13 A resistor with the color code violet-red- 
orange-silver is connected to a 12 V battery. (a) Find 
the radial resistance. (b) Find the expected current. 
(c) Find the largest anticipated current. 



"This induced me to hold the animal [a dead frog] in one hand and take Mr. Rialpi's hand 
with the other so as to form a sort of electric circuit [Rialpi-Galvani-metal hook-frog-silver 
plate], and request him at the same time to tap the silver plate or simply touch it with his 
free hand. Not without wonder we saw the usual contractions [of the frog's leg], which 
however again disappeared and reappeared when we unclasped hands or rejoined them." 

~Luigi Galvani (1791 ) 

"[The apparatus either] works without stopping, or its charge is again automatically 
restored after each sparking. In other words it has an inexhaustible charge . . . .  [The pile] 
consists of a plate of silver in contact with one of zinc, and is connected with the next pair 
through a sufficient layer of moisture, which should better be salt water than plain . . . .  " 

Alessandro Volta, 
announcing his invention of the voltaic pile (1800) 
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Batteries, Kirchhoff's Rules, 
and Complex Circuits 
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Chapter Overview 

Section 8.1 provides a brief introduction. Section 8.2 reviews some of the history of 
Galvani's discovery of the galvanic cell (which is now called the voltaic cell), and of 
Volta's invention of the voltaic pile (which is now called the battery). (Neither of these 
workers understood the science of their very real discoveries.) Section 8.3 discusses a 
battery of identical voltaic cells, and Section 8.4 discusses the relative cost of electrical 
power obtained from batteries and from the electric company. Section 8.5 considers 
the distinct issues of maximizing the actual amount of power transfer (relevant to 
high-power applications) and maximizing the efficiency of that power transfer (rel- 
evant to low-power applications). Section 8.6 presents Kirchhoff's rules. Section 8.7 
presents some nontrivial applications of Kirchhoff's rules, including the jumper-cable 
problem. Section 8.8 considers the short-time and long-time behavior of circuits with 
both capacitors and resistors. This is a prequel for the discussion, in Section 8.9, of 
the charge and discharge of RC circuits. Section 8.10 considers the charge on the 
surface of a circuit, which produces the electric field within the volume of the circuit. 
It also shows how the buildup of surface charge on a wire can be analyzed in terms of 
parasitic capacitance in parallel with the resistance of the wire; the sharper the turns 
on the electronic superhighway, the slower the circuit can respond. Section 8.1 1 con- 
tains an optional discussion of the bridge circuit. Section 8.12 presents an optional 
discussion of plasma oscillations, a collective of motion of the electrons in metallic 
conductors. Section 8.13 provides a brief Interlude, summarizing the material already 
studied, and indicating what yet has to be treated. It discusses the limitations on the 
validity of a circuit analysis, which assumes instantaneous action at a distance rather 
than including the finite speed of light, and discusses what happens when we first 
throw a switch in a circuit, or when we send an electrical signal down a cable. A full 
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treatment requires that we pursue the relationship of electricity to magnetism, and that 
we study electromagnetic radiation. This provides a lead-in for the remainder of the 
book. 

Introduction 

The concept of an electric circuit did not exist when the only type of emf was 
electrostatic. Moreover, not until Volta's invention of the voltaic pile, or battery, 
could large electric currents be sustained. In this chapter, as we progress to 
the study of complex circuits, we first study the properties of the battery as 
a combination of individual voltaic cells. 

Most circuits cannot be analyzed solely in terms of series and parallel resis- 
tors with a battery here or there. To deal with bridge circuits, or systems with 
multiple arms containing sources of chemical emf, or systems with both resis- 
tors and capacitors, we must apply the ideas of the previous chapter in a more 
systematic fashion, using Kirchhoff's rules, first stated around 1850. This sys- 
tematic approach to circuits uses solely the macroscopic properties of circuits: 
resistances, capacitances, and emfs (both electrostatic and nonelectrostatic). 

p? Discovery Must Include Reproducibility: 
It Need Not Include Understanding 

The history ofthe voltaic cell and ofthe battery illustrates that a great discovery or 
invention can be made even when the discoverer or inventor does not understand 
how the phenomenon or device works. 

The anatomist Galvani, in 1780, noticed that frogs' legs went into spasms 
when stimulated by an external electrostatic source. However, it took him much 
effort to make the work reproducible. By 1786, he had learned that frogs' legs 
would also go into spasms when made part of a circuit with two dissimilar 
metals. He concluded that the frogs' legs themselves were a source of "animal" 
electricity, of the same nature as ordinary electricity. He thought in terms of the 
discharge of something like a Leyden jar internal to the frog, which through an 
unknown biological process could recharge. Galvani's explanation was wrong, 
but he had made a great discovery, which he published in 1791. It had taken 
him many years to make the effect reproducible. Galvani is the father of the field 
of electrophysiology. 

The physicist Volta~already renowned for the discovery of methane, for 
the invention of the electrophorus (see Chapter 1), and for his studies of 
capacitance~began to study Galvani's effect. He realized that the frogs' legs 
were serving as sensitive detectors, rather than as sources of electricity. By 1792, 
he had established that the two metals ("dry conductors") were necessary to 
cause an electric current to flow, but that the frog's leg was not. It simply served 
as what he called a "moist conductor" (i.e., an electrolyte, like salt water). He 
went on to discover the electrochemical series (e.g., silver electrodes are higher 
in voltage by 1.55 V than zinc electrodes). He also made the observation that 
placing intermediate metals in the circuit (e.g., between the silver and the zinc) 
had no effect on the current produced. 
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Figure 8.1 A simple battery. (a) A single voltaic cell 
consisting of a piece of Zn and a piece of Ag separated by 
wet pasteboard (which provides ions). (b) A battery 
consisting of many such voltaic cells in series. Note that the 
Zn electrode on the bottom right, and the Ag electrode on 
the bottom left, have no effect on the net emf. 

In 1800, Volta invented what came to be known as the voltaic pile, a battery 
of voltaic cells connected in series, which made the effects that he had been 
studying much more intense. See Figure 8.1. One of his early piles had 32 Zn-Ag 
voltaic cells in series, with about 50 volts across the terminals of the pile, a 
powerful battery indeed. Almost immediately, other scientists used the voltaic 
pile to decompose water, collecting hydrogen at one electrode and oxygen at the 
other. Thus was born the subject of electrochemistry. 

Using his considerable experimental skill, in 1797, Volta discovered another 
effect related to voltaic cel ls~the contact potential between two dissimilar met- 
als. Unlike the chemical emf, which is associated with transfer of both elec- 
trons and ions, the contact potential is associated with transfer only of electrons. 
The contact potential is a measure of the work function of a metal. (Recall 
that the work function is the energy to remove an electron from a metal. It 
is related to the energy to remove an electron from an isolated atom of that 
metal.) 

Although Volta was aware that oxidation occurred at the silver electrode, he 
focused only on the electric current aspect of his cells, considering the associated 
flow of chemicals to be a mere side effect of no fundamental significance. His 
view was that the contact potential at the metal-metal interface was the power 
source that drove the electric current in his cells, and that the electrolyte served 
only to bring the other ends of the metals to the same electrical potential. In 
other words, to Volta the voltaic cell was a perpetual motion machine. (This 
was some 50 years before conservation of energy was an established principle.) 
He was wrong, but his reputation, justly deserved on the basis of his many 
contributions to the science of electricity, kept the scientific community from 
seriously challenging his viewpoint for many years. Even after Faraday's work on 
electrolysis established that the electrical and chemical effects are inextricable, 
many prominent scientists continued to accept the contact potential as the energy 
source for the voltaic cell. 

A simple experiment would have demonstrated that Volta was wrong about 
the source of energy in the voltaic cell. As 1915 Nobel Laureate in physics 
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W. L. Bragg (in Electricity, Macmillan, New York, 1936, p. 50) wrote: 

The energy for driving the current [in Galvani's frog experiments] comes from 
the slight chemical action between the metals and the muscles or nerves they 
touch. In Volta's Pile it comes from an action of the liquid upon the metals 
themselves, and if you look at illustrations of his pile you will see that there is 
an extra silver plate at one end and zinc plate at the other which are really 
unnecessary and do not help to increase the strength of the pile. 

See Figure 8.1. As Bragg indicates, removal of these extra plates would have 
yielded no change in the chemical emf, in contradiction to Volta's view. 

Ultimately, it was accepted that the energy source for the voltaic cell was 
chemical in origin. However, there was no full-fledged theory until chemistry 
itself had become more developed, toward the end of the 19th century. A full 
discussion of voltaic cells, including what happens within the electrolyte and the 
electrodes, must consider both their chemical and their physical aspects. Physi- 
cists and chemists are still trying to develop a quantitatively accurate microscopic 
theory of the voltaic cell. The hardest part is the description of what happens at 
the electrode-electrolyte interface. 

3 Batteries Are Combinations of Voltaic Cells 

Identical Voltaic Cells in Series 

Consider n identical voltaic cells each with chemical emf & and internal resis- 
tance rl, in series with a resistor R. We wish to find the current and terminal 
voltage. Figure 8.2(a) depicts six of them, as would be found within a common 
9 V battery used for electronics (containing six 1.5 V cells inside; open one up 
if you don't believe this). As in the previous chapter's discussion of a resistor R 
in series with a single cell, this will be analyzed in two ways. First, Ohm's law 

/~1 61 61 61 E 1 ~e 1 

~V ~ I 

..... a V R  -- 
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Pb 

.... I 
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Figure 8.2 Identical voltaic cells. (a) A schematic of identical voltaic cells 
connected in series across a load resistor R. The net emf is proportional to the 
number of cells in series. (b) A schematic of the connections for a lead-acid 
cell, where many nominally identical voltaic cells are placed in parallel. The 
maximum current is proportional to the number of cells in parallel. 
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will be applied to each circuit element. Next, Ohm's  law will be applied to the 
circuit as a whole. 

Because electric charge is conserved, for steady current flow, all the cells and 
the resistor R have the same current I passing through them. By symmetry, each 
cell has the same voltage A Vi across its terminals. Moreover, by uniqueness of 
the voltage difference, G - G, the voltage drop across the upper arm (nA 111) is 
the same as that across the lower arm (A VR), so nA V1 = A VR. Also, by Ohm's  
law, with s and A V1 driving current in opposite directions, each cell satisfies 

I = s - A V 1 ,  AV1 _ _1 ( l ~  - V~), (8.1)  
t" 1 t l  

and the resistor satisfies 

avR 
I -  R ' A V n - - ( V b - - V a ) - - n A ~ .  (8.2) 

With this information, we can obtain the currents and voltages associated 
with the circuit. Solving (8.1) and (8.2) for A VR yields 

A V e  = I R = n A  V1 = n(s - I r l  ). (8.B) 

Solving for I and then A VR gives 

ns nE1R 
I = A V R  = (8.4) 

nrl  + R '  nrl  + R" 

Hence, the effective chemical emf s and effective internal resistance reff are 

s = ns reff = nr l .  (8.5) 

Thus, putting the cells in series increases the net internal resistance and the net 
chemical emf. It also increases the net energy that the system can provide. 

Alternatively, consider the system as a whole. The net chemical emf is due to 
n cells in series, so s = ns The net resistance is due to n internal resistances 
r and R in series, so Raft = nr  + R. From Ohm's  law applied to the circuit as a 
whole, I - s (8.4) follows immediately. Thus, for the battery as a whole, 
the emf s is n times larger than for a single cell. However, the "charge" Qeff  
is the same as for a single cell. By (7.28), the energy storage EceI! - E e f f Q e f f  is n 
times larger than for a single cell, as expected. 

~ Six identical cells in series 

Consider an electronics battery of six identical cells in series, with s = 1.5 V, 
rl -- 0.12 ~2, and charge Q1 = 240 C. (a) Find s and reff. (b) Find the current 
l through and the voltage A VR across a 2.28 S2 resistor connected to this 
battery. (c) Find the energy stored by this battery. 

Solut ion:  (a) By (8.5), s - -6(1 .5)=  9 V and raft --6(0.12) = 0.72 ~2. (b) By 
(8.4), I = 3 A and A VR -- 6.84 V. (c) By (7.28), E --- 9(240) - 2, 160 J. This is 
six times the energy storage 1.5(240) - 360 J for a single cell. 
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8~3o2 Voltaic Cells in Parallel 

Open up a 12 V car battery and you will find six 2 V lead storage cells in series. 
Moreover, each cell really consists of many (negative) Pb electrodes connected 
in parallel, interlocking with (positive) PbO2 electrodes connected in parallel. 
See Figure 8.2(b), with five Pb and four PbO2, which corresponds to a common 
motorcycle battery. This is equivalent to eight 2 V cells in parallel; both sides of 
the four PbO2 electrodes contribute. 

• Eight identical cells in parallel 

Consider eight identical cells (El, r~) in parallel, with a terminal voltage A V 
and charge Q1. (a) Find the current I and effective resistance r4f ofthe system 
in terms of gl, A V, and rl. (b) For the battery as a whole, find its effective 
charge Qeff, its effective emf Eeff, and its energy storage E relative to the values 
for a single cell. 

Solution: (a) For eight identical cells (g~, r~) in parallel, as in Figure 8.2(b), 
the current adds, so I = 8(E1 - AV) / r l  = (81 - AV) / ( r l /8 ) .  Thus r4f = rl/8. 
(lo) This use of eight cells in parallel gives an effective emf that is the same as 
for a single cell: Eeff = 8"1. However, the effective charge and the energy stored 
increase by a factor of eight: Qeff  - -  8 Q 1 ,  Eeff -- ~'effQeff = 881 Q 1  = 8E1. 

The electric eel uses a different design than a car battery: instead of cells in series, 
each cell having many subcells in parallel, the eel has many cells in parallel, each 
cell having many subcells in series. Moreover, the source of energy in the eel's 
specialized cells, called electrocytes, is not due to chemical reactions. Rather, they 
employ ion pumps  that selectively and actively transfer certain ions across the 
cell wall. Ion channels also selectively but passively permit certain ions to cross 
the cell wall. 

8...~.3~3 Terminal Voltage of  a Battery in Use 

As for an individual voltaic cell, the terminal voltage A VT of a battery i s~no t  
surprisingly~defined as the voltage across the terminals of the battery. The sign 
is chosen so that A VT opposes the chemical emf g. See Figure 8.3. By Ohm's 
law, if positive current flow is taken to be caused by the emf g, then 

i i i i i iiiiiii i i i i l  ili ii !iiii i iliii iiiiiiii!i i iii iii!iiiiii ii iiili 

SO 

A VT = 8 - Ir. (8.7) 

Equation (8.6) is equivalent to (7.25) ofthe previous chapter, with A Vrelabeled 
A VT. It has also been used as (8.1). 

On open circuit, so there is no current flow, A VT = g. On discharging, where 
I > 0, by (8.7) A VT is less than g. On charging, where I < 0, by (8.7) A VT 
exceeds g. However, the terminal voltage is not always described by (8.7). This 
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Figure 8.3 
Terminal voltage 
A Vr of a battery. 

is because the voltaic cells within batteries really are more 
complex internally, as discussed in Chapter 7. 

Batteries that can be recharged (such as car batteries) are 
called secondary batteries; those that cannot be recharged 
(such as Zn-Ag cells) are called primary batteries. Chemi- 
cal reactions are not always, in practice, reversible (e.g., a gas 
might form on an electrode), or the byproduct at an elec- 
trode might get consumed by another reactant within the 
electrolyte, so not all batteries are rechargeable. In recent 
years, the shelf life of alkaline batteries has dramatically in- 

creased, in part because improvement in separator materials within the elec- 
trolyte (MnO2) has decreased internal chemical reactions. 

The "Charge" on a Battery, and Its Cost 

We now estimate the amount of "charge" that an automobile battery can provide. 
(Remember, this is not the transfer of charge from one material to another, as 
occurs with rubbing, but rather the transfer of charge around an electric circuit.) 
When the two automobile headlights are on (using about 36 W each), by (7.31) 
the current that they draw is about 2-36W/12V = 6 A. If our automobile battery 
can be discharged after about four hours, we deduce that its charge is about 
6 A-4  hr = 6 A-14,400 s = 86,400 C. Since the charge should not depend on 
how the cells are connected, it should be the same when they are in parallel, 
in which case it is clear that each of the 48 cells has a charge of 1800 C. No 
wonder that, when voltaic cells were first invented, they were such a marvel; 
contrast that with the 10 -9 C associated with static electricity from a comb 
pulled through clean, dry hair. (The original batteries did not have a charge as 
large as 1800 C, but even a charge of 10 C is enormous compared to what could 
be obtained by static electricity.) It would take a considerable time to produce 
1800 C of charge by electrostatic methods, even by some of the sophisticated 
electrostatic induction-based "charge-doubling" devices of the late 18th century. 
Moreover, such charge would be stored at high voltages, and thus be subject to 
electrical breakdown. Figure 8.4 presents terminal voltage versus time for slow 
and rapid discharge, for a lead-acid cell. Not only is the discharge time shorter on 
a fast discharge (by definition), but the terminal voltage is less, following (8.6). 
In comparing voltaic cells of the same type, a good relative measure of how long 

t 
Voltage (V) 
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Discharge time (hours) 

Figure 8.4 Characteristic discharge properties of a 
voltaic cell. 
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they will last (their charge) is their relative mass. Thus there are 1.5 V AAA 
(11 g), AA (23 g), C (66 g), and D (138 g) alkaline cells with charges of about 
1.2, 2.5, 6.8, and 14.0 A-hr of low-current  (10 mA) usage. 

~ Electricity cost: batteries versus the power company 

Find the cost per hour to run a 100 W lightbulb both for 80 D cells in series 
(to provide 120 V), at $0.50 per D cell, and for 120 V ac power, at $. 16 per 
kilowatt-hour. Neglect internal resistance. (In practice, the internal resistance 
of the batteries would dominate the lightbulb resistance, so the lightbulb 
probably would not even light.) 

Solution: For 100 W at 120 V, the current is I - 100 W/120 V=0.83  A. 80 D 
cells in series are equivalent to a 120 V dc cell. They will last a time 5.2A- 
hr/0.83A = 6.24 hr, at a cost of (80)($0.50) = $40. On the other hand, at $. 16 per 
kilowatt-hour, the electric company will charge for (100 W) (6.24 hr) = 0.624 kW- 
hr, or $1.00. Thus, for these prices battery power is 40 times as expensive as power 
from the electric company; about $12.80 per kW-hr. 

Finally, note that  heavy-duty alkaline cells last nearly twice as long for high 
current usage as do general-purpose alkaline cells although the general-purpose 
cells last nearly as long for low current usage. Typical alkaline cells use a Zn 
cathode, an MnO2 anode, and a K O H  electrolyte. 

8~ Maximizing Power Transfer 
versus Maximizing Efficiency of Power Transfer 

Now consider a battery of emf g and internal resistance r in series with a resistor 
R, and consider the power transfer to R, called the load, or load resistor. (The 
usage comes from mechanics, where we speak of machines driving a mechanical 
load.) See Figure 8.5. Two different questions often considered are (1) how to 
get the m a x i m u m  power transfer to R ( independent  of how much  power is lost 
in the internal resistance r); (2) how to get the most  efficient power transfer to 
R (thus minimizing the power loss in the internal resistance r). 

Impedance Match (R ---- r) for  Max imum Power  Transfer 

Is it possible to play tennis with a ping-pong paddle, or ping-pong with a tennis 
racket? Yes. However, no championship tennis player uses a ping-pong paddle 

I 

! R 

w 

Figure 8.5 A battery in series with a load resistor, to 
determine how to maximize power transfer and how to 
maximize efficiency. 
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(even one made of steel, so it won ' t  break). For a given ball, we must  ask the 
question "What racket gives the max imum power transfer?" (This neglects the 
issue of control.) The answer is that  we should match the impedance of the racket 
to that  of the ball. The principle of impedance matching is one of the most 
useful design principles that  a scientist or engineer can employ. More generally, 
impedance matching tells us to match a property of the power s o u r c e ~ t h e  
impedance (whatever that  is in a given s i tua t ion)~ to  the corresponding property 
of the object receiving that  power. We now establish this principle for an electric 
circuit with resistors, where impedance means electrical resistance, and we then 
apply this principle to estimate the electrical resistance of both the starting motor  
and the battery of a car. 

Consider a chemical emf  g with internal resistance r in series with a resistor 
R, as in Figure 8.5. From (8.4) with n = 1, g = El, and r = r~, the current is 

C 
I - . ( 8 . 8 )  

r + R  

Then the rate of heating 7 ~ of R is 

e~2 R e~2 R/ r 
7 2 - I2R - = ~ (8.9) 

( r + R )  2 r ( l + R / r )  2" 

Figure 8.6 plots two dimensionless quantities, 72/(g2/r) versus R/r, showing 
that  a max imum occurs near R/r = 1. Such a max imum makes sense: for small 
R/r the load (R in 12 R) is so small that  it does not use very much power, and 
for large R/r the load is so large that  the current (I in 12 R) is not very large. For 
some intermediate value of R/r we thus expect a maximum, which occurs when 
its derivative with respect to the "load" R is zero. Using the second equality in 
(8.9), 

d/~ o e 2  ~ e 2 R  E 2 ( r -  R) 
dR = (r +/)2 - 2 (r + R) ~ = (r + R) 3 " ( 8 . 1 0 )  

Clearly the max imum occurs for r - R: when this condition is satisfied, we say 
that  there is impedance matching. In this case I2R = I2r so that  the power 
provided by the battery goes equally to the load and the internal resistance. 

l 0.25 - 

p 0.20 

(e2/r) 0 . 1 5 -  

0.10 - 

0 . 0 5  - / 

0 I i I I j 
0 0.5 1 1.5 2 2.5 

R/ r  

I I I 

3 3.5 4 

Figure 8.6 Normalized power transfer to the load 
resistor, as a function of the ratio of load resistance to 
internal resistance. 
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~ Power consumption by a starting motor 

Consider a 12 V car bat tery that  provides I = 600 "cold-cranking amps" 
(CCA) on startup. Find the internal resistance r that  gives m a x i m u m  power 
to the starting motor, and find that  m a x i m u m  power. 

Solution: Starting the car is the greatest power use of the battery, so for max- 
imum power the starting motor resistance R should be impedance matched to 
the battery resistance r: R - r. With g - 12 V and I = 600 cold-cranking amps, 
(8.8) gives g = I (R + r) = I(2R), or 12 = 600(2R), so R = r = 0.01 ohm for 
both the battery and the starting motor. The power consumed by the starting 
motor, taken to be impedance matched, is 72 = 12 R = 3600 W. A rule of thumb 
in the car industry is that a battery should have about 1.5 CCA per cubic inch 
of engine. Note that an electrical motor in operation produces a so-called back 
emf that opposes the driving emf, and thus causes the current to decrease as the 
motor comes into operation. This back emf is a consequence of Faraday's law, to 
be discussed in Chapter 12. It has nothing to do with chemical emfs. 

8,5,~2 Low Internal Resistance (r ~ R) 
for Efficient Power Transfer 

There  is another,  distinct,  pr inciple  involved w h e n  we wan t  maximum efficiency 
of power  transfer, so tha t  nearly all the  energy prov ided  by the  chemica l  e m f  goes 
to the  load R ra ther  than  to the  internal  resistance r. Here,  we wan t  to m a x i m i z e  
the  ratio of the  power  to the  load (12 R) relative to the  total  power  (I2(r + R)). 
Tha t  is, we  wan t  to m a x i m i z e  

~ ~ ~ > ~ ~  ................................... ~ ' ~  ...................................... i i .................. ....................................................................................... ~ i ~  ........................................................................... i ~  �84184 �84 ii i i ii i iiii  
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w i th  respect  to r, for fixed R. It does not  take a rocket  scientist  (i.e., calculus) 
to de t e rmine  tha t  this occurs for r -~ 0. This pr inciple  is used in l ow-power  
applications. 

C u r r e n t  draw by a headlight 

Consider a headlamp, consuming 72 = I 2 R = 36 W. (a) W h a t  current must  
the bat tery produce to run the headlamp, assuming m a x i m u m  efficiency of 
power transfer? (b) Find the rate of heating of the internal resistance. 

Solution: Assume that R )> r. Then (8.8) gives I ,~ E/R, so 72 ~ s Thus R 
g2/72 = 144 /36=  4 s2. As assumed, this is indeed much more than r = 0.01 s2. 
The battery can easily provide 36 W, and the rate of heating of the internal 
resistance, I2r = I2R(r/R) ,~ 36(.01/4) = 0.09 W, is negligible. Note that I = 
C/R = 12/4 = 3 A. Since batteries are less effective at low temperatures, in cold 
climates some people turn on the headlights before trying to start their car. As 
this example shows, that can hardly warm the battery. The most effective way to 
heat the battery is to short its terminals so that all its power goes into the battery 
itself. That will provide I - C / R  = 12/0.01 = 1200 A, a huge current that can 
cause sparking and can be provided for only a few seconds at a time. 
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8.6 Kirchhoff's Rules Tell Us How to Analyze 
Complex Circuits 

Properly speaking, Kirchhoff's rules are a set of two rules that describe any sort 
of circuit with connecting wires of zero resistance, resistors R, capacitors C, 
and nonelectrostatic sources of emf ~'. However, before they can be applied to 
any circuit, the currents and voltages for that circuit must be defined precisely. 
Therefore, we precede Kirchhoff's rules with rule O. 

Rule 0 Draw a schematic of the circuit, includi 
positive mrrent flow I through ea& a~ 

In addition, if specific voltages will later appear in your analysis, define them 
explicitly. We have already applied the zeroth rule in Figure 8.2(a), Figure 8.3, 
and Figure 8.5, but it may have slipped past you that someone had to decide what 
to call positive and negative. This is like setting up a coordinate system, where you 
have to choose which direction is positive. (Precision is valuable even in ordinary 
conversation: proper names lead to less confusion than "he, " " . . . . . . . .  " sne, or ~t ;specific 
directions, like "up" or "down," are better than "this way" and "that way.") 

We now apply Rule 0 to the basic circuit in Figure 8.7(a), where only the 
nonelectrostatic emf and the resistances are given. Because a battery of positive 
emf drives current up through the battery and down through the resistors, we 
take the conventions for positive current flow as in Figure 8.709). For a given 
arm of the circuit the direction drawn for the current doesn't mean that the 
current actually flows in that direction, only that a positive current would flow 
in that direction. Similarly, because we expect that the battery will pump positive 
charge to the top, the positive voltage difference is defined as in Figure 8.7(b). 
The positive side doesn't mean that the voltage is higher there, only that a positive 
voltage would be higher there. If the battery were reversed, we could still employ 
the same sign conventions, but the currents and voltage difference would all have 
negative sign. 

For the circuit of Figure 8.7(a), there are two ways to define positive for 
each of the three currents as well as for the one voltage difference. Hence 
there are a total of 24-- 16 possibilities for defining the sign conventions; 
Figure 8.7 (b) is only one of them. All 16 possibilities will yield the same (correct) 
answers once the different sign conventions are accounted for. (We could even 

Bare circuit Circuit with sign conventions + 

e 1 i 2 r l~ e l ~  l~ iv 

(a) (b) 

Figure 8.7 Circuit to illustrate Rule 0 of KArchhoff's rules" 
define your sign conventions. (a) Basic circuit, with no sign 
conventions given. (b) Same circuit, but with a set of sign 
conventions chosen. 



8.6 Kirchhoff's Rules 347 

choose sign conventions by flipping a coin. What  counts is sticking to the sign 
convention.) 

In a complex problem, with 20 resistors and 10 batteries, there is no a priori 
way to tell how any of the currents flow or the sign of any of the relative voltages. 

It is satisfactory to arbitrarily choose a set of sign 

Recall that, for a ball starting at the ori- 
gin, at rest, and falling, if positive y is 

1 upward, then y -  - ~ g t  2" and if positive 
1 2 y is downward, then y = ~gt . In each 

case, the ball falls down, even though 
"down" is negative in one case and pos- 
itive in the other. 

conventions and then stick to them. If /9 turns 
out to be negative, then /9  actually flows oppo- 
site to the direction of positive/9. If A V7 turns 
out to be negative, then the actual sign of A 1/7 is 
opposite to positive A V7. 

For a related problem (traffic flow), defining 
the direction of positive current flow is like de- 
ciding, for a north-south street, whether to call 
northward or southward the positive direction; 
if northward is positive, then southward is nega- 

tive. Because your lab partner might not choose the same conventions, it is important 
to show in your figure your conventions for positive directions. 

ii ii ii i~ii iii i i ii 
.................. i= i== i===i=i=i==i ==i i i ii=i==i  =i==i==ii=ii=ii i ................. i ................. i!i===i=== i =i=i=i=ii=iiiii=i=i===J=i==i ....... 

(This can be done only after defining the sign conventions for current, in 
Rule 0.) For each node (or junction) of the circuit, this amounts to ensuring that 
the current into each node equals the current out of that node. This is known as 
Kirchhoff's first rule, and is often called the nodal rule, or the junction rule. That 
is, at each node, 

For Figure 8.7(b), (8.12) applied to the top node implies that I = 11 +/2 ;  applied 
to the bottom node, it implies the equivalent result I1 + 12 = I. [More generally, 
for a closed circuit with n nodes, there are only n - 1 independent applications 
of (8.12).] For Figure 8.8(a), (8.12) implies that 11 + h = / 3 .  

11 tI = dQ/dt tI = -dQ/dt 
I~ 

(a) (b) (c) (d) 

Figure 8.8 Circuit to illustrate Rule 1 of Kirchhoff's rules: apply 
charge conservation. (a) Current in = current out (11 = 12) at the 
node where three arms meet. (b) Current in= current out (/1 =/2) 
for a node that separates two parts of a single wire. (c) Relationship 
between current and charge when positive current enters positive 
plate of a capacitor. (d) Relationship between current and charge 
when positive current enters negative plate of a capacitor. 
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~ Current leaving one entering resistor and another 

Between any two circuit elements, we can take an arbitrary point to be a node. 
See Figure 8.8(b), which shows the two resistors R1 and R2. Relate 11 and 12. 

Solution: Here, (8.12) implies that 11 = 12. 

~ Current charge a capacitor and for 

Relate I in a wire leading to a capacitor having charge Q, to dQ/dt for the 
capacitor, in Figure 8.8(c) and Figure 8.8(d). 

Solution: For Figure 8.8(c), 

I -  dQ (8.13) 
dt 

gives the relationship between positive I and the charge on the positive plate of 
the capacitor. For Figure 8.8(d) I = - d Q / d t  gives this relationship because a 
positive current decreases the charge on the positive plate. 

Rule 2 Apply the path independence of the voltage: ~nce you r e ~  ~th~ ~ 
point, the voltage change on circulating around each loop in::the ~~i~i~usi b~ 

(This is often called the loop rule.) That is, for each circuit, 

~ A V  0. 
loop 

(path independence o f v o l ~ g e ) :  

Equivalently, the voltage difference between two points, via any given path, 
is independent of that path. 

Figure 8.2(a) and Figure 8.7 used the path independence of the voltage in 
defining the voltages. Applied to Figure 8.9, the path independence of the volt- 
age means that beginning at d and ending at b will give the same answer whether 
we circulate c l o c k w i s e ~ I 4 -  ~ = ( 1 4 -  V~)- (Vd-  Vc)~or counterclock- 
w i s e ~ 1 4 -  Vd = ( 1 4 -  V~)-  ( I /~ -  Va). 

To use Rule 2, we must know, for each circuit element, the relationship 
between the voltage differences across it and the current through it. For com- 
pleteness, here is a summary. 

b ~I ~ c 

R1 ,, R2 

R3 

Figure 8.9 Circuit to illustrate Rule 2 of Kirchhoff's 
rules" apply uniqueness of the voltage so that the net 
voltage change on going around a circuit is zero. 
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(a) For a resistor R (or a circuit arm with resistance R), apply Ohm's  law, (7.38), 

R ' (8.15a) 

where ~ C is the sum of all the emfs associated with that  resistor: the elec- 
trostatic voltage across the arm (which may be unknown),  chemical emfs, or 
other emfs. This common t rea tment  of both batteries and resistors implies 
that  a resistor can be thought  of as a bat tery with no chemical emf. 

If an emf  tends to cause positive I, the emf is given a positive sign; if it tends 
to cause negative l, the emf is given a negative sign. Therefore, if in one circuit a 
battery emf is reckoned as positive in (8.15a), on reversing the battery terminals 
the emf must  now be reckoned as negative in (8.15a). For a simple resistor, the 
only emf is its voltage difference A V, so if A V tends to drive current in the 
positive direction, I = A V~ R. For the battery of Figure 8.7 (b), (8.15a) gives 

a v  a v  ( c -  av)  
I1 -- 12 -- and I - 

R I '  R2'  r 

For Figure 8.9, (8.15a) gives I = C/(r + R~ + R2 + R3). 

C u r r e n t  for, and voltage around, a circuit 

In Figure 8.9, let C = 6 V, r = 4 ~2, R1 = 1 ~2, R2 = 2 ~2, R3 = 3 ~2, and 
V~ = 3.4 V. Find the current I, and 14, V~, ~ .  

Solution: r + R1 + Rz + R3= 10 f2. Hence I=(6V)/lOS2=0.6 A. Since I 
flows from b to a, by Ohm's law G is higher than V~. Specifically, 
G = V~ + I R1 = 3.4 + 0.6 = 4.0 V. Similarly, ~ = V~ - I R3 = 3.4 - 1.8 = 1.6 V, 
and Vc = ~ -  I R2 = 1 . 6 -  1.2 = 0.4 V. Alternatively, for the emf, 
I = [ E - A V ] / r = [ 6 - ( I 4 - V ~ ) ] / 4 ,  so V ~ = I 4 - 6 + 4 1 = 4 . 0 - 6 . 0 + 2 . 4 =  
0.4V. 

As shown in Section 7.10, for an ideal battery (internal resistance r -+ 0), the 
terminal voltage is the same as its chemical emf, the high-voltage side associated 
with the larger plate. The current through an ideal battery has no effect on its 
voltage since its l r value is zero. 

It is conventional to assume that the connecting wires in a circuit have negligible re- 
sistance. This is certainly not literally true; it is very wrong if we use many extension 
cords in series (i.e., to bring power to a place far from one's house). In such cases, wire 
resistance must be included. 

(b) For a capacitor, apply Volta's law, which can be writ ten as 

A V = ~  Q 
C" 

Circuits with capacitors are discussed in Section 8.8. 

(8.15b) 
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We often consider ideal batteries, which have negligible internal resistance r. As shown 
in the previous chapter, the voltage difference AV associated with such an idealized 

T T 
R 

Figure 8.10 Circuit with ideal 
batteries (having no internal 
resistance). If the emfs of 
these batteries aren't the 
same, analysis of this circuit 
will lead to contradictions. 

battery equals its chemical emf E. However, the 
internal resistance of a battery cannot always be 
neglected. Consider two ideal batteries with differ- 
ent emfs, in parallel with one another, as in Figure 
8.10. Theemfsg'l = 1 2 V a n d E 2 -  10Vwould 
give 12 V across the left arm and 10 V across 
the middle arm. This would contradict Rule 2 -  
the uniqueness of the voltage. Including either or 
both of the internal resistances would resolve this 
problem. Typically, batteries of very different emfs 
are not connected in parallel with one another: 
that will cause the higher emf battery to discharge 
rapidly, due to the low internal resistances. 

Without  having given an explicit statement of them, we used Kirchhoff's 
rules in our analysis of resistors in series and parallel, a voltaic cell in series 
with a resistor, and a battery of voltaic cells in series. The next two sections will 
analyze successively more complex circuits. The chapter concludes with a study 
of a circuit consisting of a battery, a resistor, and a capacitor. A later chapter 
will consider what happens when there is an electromagnetically induced emf 
(Faraday's law), associated with which is a circuit element called an inductor. 
Note: The number of unknown (variables) must equal the number of equations 
(constraints), or else the problem is unsolvable. 

8~7~1 

Applications of Kirchhoff's Rules 

A circuit in the laboratory certainly does not look like the clean schematics 
presented here. Instead of perfectly straight wires, real circuits have sloppily 
placed wires that run over and under one another. It can be a difficult task to 
disentangle and trace their connections. But these connections are precisely what 
are needed to apply Kirchhoff's rules. The discussion that follows assumes we 
have already analyzed the connections of our circuit. 

The examples of the present section consider some geometries that can, in 
some sense, be thought of as series or parallel circuits, even though there are 
resistors and batteries in the arms. Just as series resistors have a common current, 
so a series of batteries has a common current; for series circuit problems, focusing on 
the common current helps us to solve them. Just as parallel resistors have a common 
voltage difference, so batteries in parallel have a common voltage difference; for 
parallel circuit problems, focusing on the common voltage difference helps us to solve 
them. This section will consider both types of circuits. 

Batteries in Series (Common Current I )  

Earlier in the chapter, symmetry considerations were used to study the case of 
many identical voltaic cells in series. What  happens when the batteries are not 



8.7 Applications of Kirchhoff's Rules 351 
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81 

t 
R 
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i + 

(a) (b) 

Figure 8.11 Two batteries in series" (a) connected to a 
load resistor, (b) batteries and their terminal voltages. 

identical? Consider an arm of a circuit with two nonidentical batteries, each with 
its own internal resistance, in series. See Figure 8.11 (a), which applies Rule 0 and 
Rule 1 for the current, by indicating the direction of current flow and that there 
is a common current I passing through each circuit element. That is, defining 11, 
12, and I as the currents through the batteries and the resistor R, Rule 1 gives 

I -  11 - 12. ( 8 . 1 6 )  

Figure 8.11 (a) also indicates the two nodes + and - that can be used to 
define the voltage difference A V = V + -  V_. Although I and A V cannot be 
known without specifying the rest of the circuit (which here is the resistor R),  
a relationship between the two can be found just by analyzing the arm with the 
batteries. To do this, consider Figure 8.11 (b). By Ohm's law, with the battery 
emfs and the voltages driving current in opposite directions, 

& - AV~ 8 2 - / x V 2  
11 - , 12 - , ( 8 . 1 7 )  

/'1 /'2 

which leads to 

A 1/1 - 81 - Ir~, A 1/2 - E2 - lr2.  (8.18) 

By Rule 2-- the uniqueness of the voltage--the net voltage across the two 
batteries is the sum of the individual voltages, so 

AV--  AV~ + A�89 (8.19) 

Now, use of (8.18) in (8.19) leads to 

A V - (El q- E2) - I (r~ + r2), (8.20) 

so solving for I 

I - (,5'~ + ~ 2 )  - -  AV. 
rl +r2 

(8.21) 
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Thus, for real batteries in series, the effective emf E is the sum of the emfs, and 
the effective resistance r is the same as the sum of the resistances. This is t rue  for 
m a n y  bat ter ies  in series, not  just  two; it is t rue  even w h e n  the  arm contains ideal 
bat ter ies  (bat ter ies  wi th  zero internal  resistance) and resistors (bat ter ies  wi th  
zero emf) .  

El iminat ion of 11 and 12 in favor of A I71 and A 1/2 by equat ing  the  expressions 
in (8.17) wou ld  have led, wi th  (8.19),  to two s imul taneous  equat ions  in A II1 
and A V2. Using cur ren t  as the  variable, t reat ing four or five bat ter ies  in series is 
easy; using voltage as the  variable, it wou ld  be awful. 

Batteries in series I 

In Figure 8.11 (b), let 8"1 = 12 V, rl - - 0 . 0 l  f2, 82 = 8 V, r2 - -0 .01  ~, and 
let 10 V be across an unknown resistor R. Find the current  I and the resis- 
tance R. 

Solution: Rule 0 tells us to establish a sign convention for the current and voltage 
difference for each circuit element. Positive voltage differences are taken as shown 
in Figure 8.11 (b), and positive current is taken as circulating clockwise around 
the circuit, as in Figure 8.11 (a). Charge conservation, expressed by Rule 1, is 
automatically satisfied for Figure 8.11 (a), because the current into each circuit 
element (two batteries and one resistor) equals the current out. Rule 2, that 
the voltage is path independent, means that the A V for the left arm, to which 
(8.21) is appropriate, is the same as A V for the right arm. To obtain the current, 
(8.21) yields I = [(& + C2) - AV]/(r~ + r2) -- [(12 + 8) -- 10]/(0.01 + 0.01) -- 
500 A. Now, for the resistor R, A V drives ! so, according to Ohm's law, 

AV 
I = (8.22) 

R 

This gives R = A V/I = 10 V/5OOA = 0.02 ~. 

~ Batteries in series II 

Now let A V be unknown, and let the batteries be connected to a known 
resistor R = 0.06 f2, as in Figure 8.11 (a). Find I and A V. 

Solution: Rules 0, 1, and 2 were already satisfied in the earlier discussion. All that 
is left is application. Substituting numerical values into (8.20) and (8.22) gives 

A V =  (12 + 8) - I(0.01 + 0.01) and A V =  I(0.06). 

Eliminating A V then gives 2 0 -  I(0.02) = I(0.06), so I = 20/0.08 = 250 A. 
Then A V = I R = 250(0.06) = 15 V. 

~ Batteries in series Ill---reversing a battery 

In Example 8.9, let C? be reversed, and replace R by a 10 V battery ofnegligible 
internal resistance (an ideal battery). Find the current I. 

Solution: Rules 0, 1, and 2 were already satisfied in the earlier discussion. We 
can use (8.21) if we change the sign of E2. This gives I = (12 - 8 - 10)/0.02 = 
- 3 0 0  A. The sign change means that the current actually flows counterclockwise 
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in Figure 8.11 (b). As long as we include the sign of the current, we don't have to 
redraw the figure. 

These examples yield rather large currents, characteristic of those produced on 
starting a car. 

8~7~:2 Batteries in Parallel (Common Voltage A V) 

Section 8.3.2 considered the case of many identical voltaic cells in parallel. What 
happens when the cells in parallel are not identical? Consider an arm of a cir- 
cuit with two nonidentical batteries, of known emfs and internal resistances, in 
parallel with each other. See Figure 8.12(a). As usual, our goal is to relate I and 
AV. 

By the path independence of the voltage~Rule 2~each  arm has the same 
voltage drop A V across it, so 

AV- -  AV1 -- AV2. (8.23) 

Next, by Ohm's law applied to each battery, 

~1 -- A V  ~ 2 -  A V  
I ~  - , 12 -- . (8.24) 

/'1 /'2 

The nodal rule~Rule  l~app l i ed  to either of the two common nodes yields 

I = Ia + 12. (8.25) 

Using (8.24) in (8.25) yields 

(~1 -- A V )  (c~2-- A V )  
l - l a  4-12- + 

r l  /'2 
_ C 1  + ~  - A V  ~ +  . 

/'2 /'1 
(8.26) 

Elimination of A V1 and A �89 in favor of Ia and 12 by equating the expressions 
in (8.24) would have led, with (8.25), to two simultaneous equations in Ia and 

l I  

11 I2 

61t rl 62t r2 
1 

{i 

O +  

T 
AV 

O ~ 

11 

r 1 8 t  R 2 r2 

(a) (b) 

Figure 8.12 Two batteries in parallel" (a) with terminal 
voltage A V; (b) connected to a load resistor. 
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12. Using voltage as the  variable, t reat ing four or five batteries in parallel is easy; 
using current  as the  variable wou ld  be awful. 

~ Batteries in parallel I 

Consider the same batteries and resistors as in Example 8.9: El = 12 V, rl = 
0.01 ~2, C2 = 8 V, r2 - 0 . 0 1  ~2. Now take A V = 10 V. (This 10 V can be 
produced by a 10 V emf, or by an emf of more than 10 V in series with a 
resistor, but  not by any resistor alone.) Find the current I that  flows through 
the circuit. Find the current through each battery, and indicate if they are 
charging or discharging. 

Solution: The analysis of (8.23) through (8.26), which satisfies Rules 0, 1, and 
2, applies here. Equation (8.26) requires the quantities 

g2 12 8 El t - t - 2 0 0 0 A  and 1 1 1 1 - - t = ~ -4- = 200 ~-1. 
rl r2 0.01 0.01 rl r2 0.01 0.01 

Using these in (8.26) gives I = 2 0 0 0 -  10(200) - 0 ,  so there is zero net cur- 
rent flow. Note that Ii = 1200 - (10/0.01) = 200 A and 12 = 800 - (10/0.01) = 
- 2 0 0  A; battery 1 is discharging and battery 2 is charging. 

~ Batteries in parallel II 

In Example 8.12, let A V be unknown, but  due to a known resistor R -  
0.005 fa, as in Figure 8.12(b). Find the current through the resistor, the volt- 
age across the resistor, and the current through each battery. Verify current 
conservation. 

Solution: The analysis of (8.23) through (8.26), which satisfies Rules 0, 1, and 
2, applies here. Substituting numerical values into (8.26) and (8.22) gives 

I - 2 0 0 0 -  200AV and 
AV 

I - = 200AV. 
0.005 

Eliminating I gives 2 0 0 0 - - 2 0 0 A V =  200AV, so A V - - 2 0 0 0 / 4 0 0 - - 5  V. 
Then I = 5/0.005 = 1000 A, 11 = 1 2 0 0 - ( 5 / 0 . 0 1 ) -  700 A, and 12 = 8 0 0 -  
(5/0.01) = 300 A. Note that 11 + I2 = I = 1000 A; current is indeed conserved. 

For batteries in parallel, it is useful to th ink  of each ba t te ry  as a current source, 
where  ba t tery  1 in (8.24) provides a source current  J1 - & / r l ,  and so on. Wi th  
this interpretat ion,  the  two batteries in parallel have an effective source current  
if,  and effective resistance 7~, where  

1 1) 
f f -  J1 + J2 -- g] + - - ,  - + (8.27) 

r-T r2 ~ ~2 " 

No te  tha t  a large e m f  wi th  a large resistance can be less effective at p roducing  
current  than  a modera te  emf  wi th  a small resistance. 
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Using (8.27), rewrite (8.26) as 

AV 
1 - j -  ~ .  ( 8 . 2 8 )  

T4 

Thus, for real batteries in parallel, the strength J of the effective current source is the 
sum of the effective currents produced by each emf, and its effective resistance T4 is the 
same as the emf resistances in parallel. This is true for many batteries in parallel, 
not just two. 

~ T h e  jumper-cable problem 
Consider two batteries in parallel, with the net current I going through the 
resistance R, which represents the starting motor of the car with the "bad" 
battery. Figures 8.13(a) and 8.13(b) give equivalent circuits that can both 
represent this problem. One of the batteries is "good" (1) and one is "bad" 
(2). The car with the bad battery is started by using jumper cables to put 
the good battery in parallel with the bad battery. This configuration is similar 
to that of Example 8.13, but for computational purposes we will use values 
more appropriate to the jumper-cable problem. 

Note that the last jumper-cable connection should be to the car-body 
ground, which is connected to the ground post of the battery. If there is a spark 
on connection, it will be far from the battery, where outgassing of (explosive) 
H2 can occur when the battery becomes overcharged or undercharged. 

An earlier estimate, for a good car battery of emf & - 12 V, gave 0.01 s2 
for the internal resistance of the battery (and of the starting motor of the car), 
so let rl - R = 0.01 S2. To model the bad battery, note that when a battery 
goes bad it loses some emf, but more important is that its internal resistance 
goes up significantly. (Of course, it loses charge, but that doesn't appear in 
our circuit equations.) To be specific, take r2 - 1.0 s2. Also take battery 2 to 
have only five good 2 V cells, so g2 - 10 V. 

Applying (8.27) to this problem, J -  1210 A and g -1  _ 101 mhos. 
[A mho is an (ohm)-1.] Then (8.28) yields I - 1 2 1 0 -  101AV, and (8.22) 
yields I - (A V/O.O 1) = 1 O0 A V. Elimination of I gives 1210 - 101A V = 
100 AV, so A V -  1210/201 --6.02 V (accurate to three decimal places). 
Then (8.22) yields I = 6.02/0.01 = 602 A, and (8.24) yields 1 1 -  1 2 0 0 -  
6 . 0 2 / 0 . 0 1 -  598 A and 1 2 -  1 0 - 6 . 0 2 / 1 -  4 A. Note that 11 + 12 I -  
602 A, so that current is conserved. 

(a) (b) 

Figure 8.13 Two circuits with three arms. They look different, but for R2 = 0 
they are identical from the point of view of circuit analysis. They are 
equivalent to the circuit used when jumper cables are used to start a car with 
a "dead" battery. In that case, the load resistor R represents the resistance of 
the starting motor. (a) R in the middle arm. (b) R in the right arm. 
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By the previous chapter, the batteries provide power at a rate 7 ) = g I 
when I > 0 corresponds to discharge. Thus ~Pl = gl I1 = 7176 W and ~P2 = 
g212 = 40 W, giving a net discharge rate of 7216 W. The rates of heating of 
the resistors are I21rl = 3576 W, I~r? = 16 W, and 12 R = 3624 W, so the net 
rate of heating is 7216 W. In one second, the batteries use 7216 J of chemical 
energy, and 7216 J of heat is produced. Energy, too, is conserved. 

Alternative analysis: We can also solve for the circuit of Figure 8.13(a) 
by using current conservation at the upper node (11 + 12 = I) and requir- 
ing zero voltage change on going around each loop. Going clockwise around 
the left loop beginning in the lower-left corner yields 0 = gl - 11 rl - I R, or 
0 = 12 - I1 (0.01) - I (0.01). [Here a voltage gl = 12 V is gained on crossing 
the electrodes of the battery, 11 rl = 11 (0.01) is lost on crossing the internal 
resistance r, and I R = I(0.01) is lost on crossing the resistor R.] Similarly, 
going counterclockwise around the right loop gives 0 = - I2(R + r2) + g2 - 
I R, or 0 = - 12 (0.01 + 1) + 10 - I (0.01). This yields a total of three equa- 
tions for the three unknowns, and thus is a well-defined problem. 

~ A  mixed circuit 

Now consider the circuit given in Figure 8.14. Here, the resistors are given 
and one of the emfs is given. Our  goal is to find the unknown emf and the 
current through each resistor. 

By Rule 1--charge conservat ionBthe current lr leaving point a, passing 
counterclockwise through the right circuit, and then reentering a from above, 
must be the same throughout the circuit. Applying Rule 1 again, no current 
can enter or leave a from the left. Again by Rule 1, no current enters or leaves 
point b from the right. Hence the same current must enter b from the left and 
leave it going upward. This means that the circuit on the right (which includes 
point a) and the circuit on the left (involving point b) are independent. 

Circulating clockwise around the circuit on the right gives a voltage change 
A V = 0, by Rule 2, since we return to our starting point. But with current Ir 
in this circuit, this voltage drop must be 8 Ir. Hence / r  = 0; there is no current 
flow through the circuit on the right. 

16f~ 

2A 

e 1 - 12 1~ 8f~ 2~ 

4 ~  

5 ,)/ 2a 

3~ 2~ 

Figure 8.14 Complex circuit to illustrate the use of all of 
Kirchhoff's rules. 
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To analyze the circuit on the left (which includes point b), first note that 
the voltage drop across the 8 s2 resistor is A V8 = 2(8) = 16 V, and that this 
must be the same as across the 16 S2 resistor, so 16 V =16116. Hence the 
current through the 16 S2 resistor is 1 A, and the total current circulating 
counterclockwise through the left circuit is II = 2 + 1 = 3 A. 

Because the wire in parallel with the 5 s2 resistor is taken to have zero re- 
sistance, the full 3 A current flows through the wire (path of least resistance). 
Thus I5 = 0, and the 5 S2 resistor has no effect on the circuit. For the 6 V, 
6 ~2 battery in parallel with the 4 s2 resistor, the common voltage is 

A ~  = 414 = 616 - 6 = 6(3 - 14) - 6. 

(Here Rule 1 says that/~ = 14 +/6.)  Solving for 14, we obtain 14 = 1.2 A, 
so A �89 = 414 = 4.8 V across the 4 S2 resistor. Then/6 = It - 14 = 3 - 1.2 = 
1.8A. 

Circulating clockwise around the left circuit beginning at point b, the 
successive voltage increases across the 3, 1, 8, and 4 f2 resistances sum 
to  3 ( 3 )  + 3 ( ~ )  + 2 ( 8 )  + 4 .8  = 3 2 . 8  v .  This must be compensated by a net 
32.8 V voltage increase on circulating counterclockwise across the electrode- 
electrolyte interfaces of E~ and E. Because, from Chapter 7, the voltage dif- 
ference across an electrode-electrolyte interface equals the emf for that in- 
terface, there must be a net counterclockwise emf of 32.8 V from E1 and E. 
Since E~ provides a 12 V clockwise emf, g must provide a 32.8 + 12 = 44.8 V 
counterclockwise emf. 

SoS Short- and Long-Time Behavior of Capacitors 

Chapter 6 considered capacitors that were charged by unspecified means. 
Chapter 7 showed that a capacitor, when connected to a battery of emf g, would 
develop a voltage difference A V = g. We now consider how a battery charges a 
capacitor in real circuits that contain resistance, and how a capacitor discharges 
through a resistor. A circuit with a resistor and a capacitor is called an R C cir- 
cuit. The present section considers the charge and current for an R C circuit at 
short times (where we start) and at long times (where we end). The next section 
considers the details of the time development from short to long times. 

Although a capacitor initially may be uncharged ( Q =  0), for short times 
after a battery is switched into a circuit the capacitor immediately can start 
the charging process. Charge can enter one plate and leave the other, yielding a 
nonzero current (I # 0) associated with the capacitor. 

At long times, if the power source is steady and there are resistors to absorb 
energy, the system will come to an equilibrium, and any point of the circuit 
will settle down to a constant voltage. Thus, the voltage A V across any circuit 
element will be a constant. For a resistor R, this means that the current l - 
A V~ R becomes a constant. For a capacitor, this means that the charge Q = CA V 
becomes a constant, so d Q / d t  ~ O. Hence, since I = d Q / d t ,  at long times there 
is no current to or from a capacitor. That is, 

i:i:iiiii:ii~iiiiiiijiiii ~:~:,,,,,,,,,,,,,,,,,,,,,~,,,,,,,~,~,,,,,~,,,,:,,,,,,,,,,,,,,,,,,,,,i: ~ iiiiiiiiJiiil ~iii J J i! ii~:iii!! i~iiiiiii iiiiii:iiiii~ii!i~ ~ ~ii:~:i:i~i:iii:iiiiii:iii:iii:~:ii:iiiiiiil ........... ~.,~,,,,,,,~"~;:.,,,,,,~ ~,~,~,,,,0,,,,,,,,,~,,,,,,,,,,,,,,,,,,,,,~o~g~me,,,Be,N,a~o~ iiii iiiiiiiii!iii iii iiii ~ i iiiiiii iiiiii!i i iiii~iiiii iii i~i~ ~2~ ~i~iiiii~i~iii~i �9 i~ili �9 i iiiii~i i iii~i ~ i ii~iii i i~i;i i!ii iiii!~iiiY~J~ i i i iiiii~i ii iil iii~i i~iiii~i;ili iii~iii isliiiiiiii i i:!i~ii!ii~i;i:iiiiii~i~i~ii i i~i i~iii ~ ,~Jiii~ii!iiii iiiii;ii~i~i i~ili~ijii iii iiii~iil;iii~:ii i i i~i!ii i i~ili iN ii!;i!ii ~ ~ i~iii~iii~ii!~i~iii~!ii~i~iiiiii~;; e ~ p ~ e ~ o r  i~ i~iii~iii~i i~i~i~iii~iii!ii!i i!i::;:iNi~:i:iiN:TN e ~ r r e ~ ]  i~i':ii'i"~ii'i~iiiiK:iii ~8 i:~ii!i~ ~ii~i~ii=~iii~iii~i~il ~ i i!i~iii~ i l ~i"i~'~ii:!i~:il ~: 

Let us see how this works for a few examples. 
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E 
R 

- Q  [Q 

I 
C 

Figure 8.15 A n  R C  
circuit with an ideal 
emf g. 

Consider an RC circuit with a resistor R, a capacitor 
C, and an ideal battery g with zero internal resistance. 
See Figure 8.1 5. 

The only emf acting on the resistor is the voltage 
A VR = Va - �89 across its ends, which by the path inde- 
pendence of the voltage is the sum of the voltages across 
the battery and across the capacitor. Because the bat- 
tery is taken to have zero resistance, its terminal voltage 
A Vr is g, tending to drive the current one way, and the 
capacitor voltage 

Q 
zx v c -  Vc- Va-  ( 8 . 3 0 )  

C 

tends to drive the current the other way. Thus (8.15a) and (8.30) yield 

d Q =  A VR = V a -  Vb = ( V a -  Vc)+ ( V c -  Vb) 
I 

dt R R R 

- A v c  + zx v r  - Q / C + c 
= = . ( 8 . 3 1 )  

R R 

Initially, the capacitor is uncharged, so Q 0 -  O, but  it has an initial current, 
given by Io - g~ R. After a long time, the capacitor has charged up, so I~ - O. 
By (8.31), it then has the charge 

- cE,  (8.32) 

in agreement with the previous chapter's discussion of charge transfer from a 
battery to a capacitor. One way of describing an uncharged capacitor is to say 
that it behaves like a "short" because there is no voltage drop across it. Once it 
develops a charge, its voltage drop is no longer zero. 

~ Short- long-time behavior I and 

Consider a circuit with a chemical emf g with resistance r in one arm, a 
resistor R in a second arm, and a capacitor C in a third arm. See Figure 8.16, 
where the currents in each arm are labeled. Find the initial and final currents, 
and the final charge on the capacitor. 

Solution: By Kirchhoff's first rule, I = 11 + I2 and I2 - d Q z / d t .  At all times, 
the voltage must be the same across C and R (Kirchhoff's second rule). Thus 

l r R 
-92 

Figure 8.16 A ba t t e ry  driving a 
resistor in parallel with a 
capacitor. 

I1R = Q 2 / c ,  so I1 = ( Q 2 / C ) / R .  Since 
Q2 = 0 initially, this says that I1 = 0 ini- 
tially; all the current flows to the capacitor. 
Hence, initially, this circuit behaves like a 
battery and a capacitor in series. The ini- 
tial current is I = /2  = I0 = g/r .  On the 
other hand, after a long time, the capaci- 
tor is fully charged, and no current flows 
through it. Hence after a long time, this 
circuit behaves like a battery and a resistor 
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in series. The final current is I = 11 = loo = g/(r + R). The capacitor develops a 
charge determined by I~ R = Q2/C. 

~ Short- and long-time behavior I! 

Consider a bridge circuit, with a capacitor C as the bridge connecting four 
resistors, as in Figure 8.17. Give a qualitative analysis of its behavior at short 
times and at long times after the switch S is connected. 

Solution: (a) For short times, the capacitor remains uncharged, so its ends are 
at the same voltage ( �89 = Vc). This means that the midpoints are at the same 

potential (i.e., the capacitor behaves 

a 

b c 

R3 / I - ~ -  R4 ( S 

Figure 8.17 A bridge circuit of 
resistors, with a capacitance across the 
bridge, and a switch to connect the 
emf g. 

like a "short"). Thus we may consider 
that R1 and R2 are in parallel, yielding 
Ra; and R3 and R4 are in parallel, yield- 
ing Rb. Then Ra and Rb are added in 
series. From this we can also find the 
current through each resistor, and by 
considering either of the nodes to the 
capacitor, we can find the current to 
the capacitor. 

(b) For long times, the capacitor 
is charged up, and no current flows 
through it. In that case, R1 and R3 are 
in series with each other, as are R2 and 
R4, and the combinations are in paral- 

lel with one another. A knowledge of the current through each arm can give the 
voltage difference across the capacitor at long times, and by (8.15b) the equilib- 
rium charge on the capacitor. 

~ Short- and behavior III long-time 

Consider a circuit with R1 = 2 S2 and R2 = 3 S2 in parallel, leading to C = 
3 #F, leading to R3 = 5 S2 and R4 = 1 S2 in parallel. See Figure 8.18. Give a 
quantitative analysis of its behavior (a) at short times and (b) at long times if 
at t = O, V~ - Vb suddenly goes from 0 to 5 V. Take all charges and current  to 
be zero until t = 0. 

Solution: (a) For short times, since the capacitor is uncharged, the capacitor has 
no effect on the circuit, so the initial behavior of this circuit is the same as the 
initial behavior of the circuit in Figure 8.17. R1 and R2 are in parallel and have 

§ 

O 
a 

R1 

R2 

R3 

R4 

Figure 8.18 A circuit with two sets of resistors in 
parallel, separated by a capacitor. 



360 Chapter 8 ~ Complex Circuits 

an equivalent resistance RI = (1/2 + 1/3) -1 = 1.2 ~2; R3 and R4 a re  in parallel 
and have an equivalent resistance Rr = (1/5 + 1)-1 = 0.833 ~2. RI and Rr are in 
series, so Requiv = RI + Rr = 1.2 + 0.833 = 2.033 ~2. Since A V = Va - ~ = 5 V, 
by Ohm's law I = AV/Requiv = 5/2.033 = 2.459 A. This goes into charging up 
C. Note that the voltage drop across R1 and R2 is A lq = I RI = 2.049 V, and the 
voltage drop across R3 and R4 is A Vr = I Rr = 2.951 V. These sum to 5 V, as 
expected. From A ~ and A Vr we can obtain the individual currents. For example, 
11 = A F/R1 = 1.025 A. [b) For long times, the capacitor is fully charged, and 
its voltage stops all current flow. It develops a charge Q = CA V, where A V = 
Va - �89 is the voltage across the system as a whole. Thus Q = (3 x 1 0 - 6 ) ( 5 )  = 

1.5 x 10 -5 C. 

8.9 Charging and Discharging- The RC Circuit 

Having discussed the short-time and long-time behavior of capacitors and resis- 
tors, we are now in a position to study their behavior at any time. 

8~9. i Charging: Numerical Integration I 

Let us rewrite (8.31) as 

d Q  C Q 
dt R RC" 

(8.33) 

This is called a first-order differential equation because the highest derivative is 
the first derivative. Equation (8.33) gives the slope at any instant of time, from 
a knowledge of the charge at that time. Therefore, assume that the charge is 
known at some time (call this t = 0). To find Q at a short time At later, the 
straight-line approximation gives 

Q(At) - Q(O) + - ~ A t ,  (8.34) 

where d Q/d t  is obtained from (8.33) using Q(0). Repeating this procedure, 
now with Q ( 2 A t ) =  Q(At )+  d Q/dtlt+AtAt, yields the solution to (8.33) at 
all times. By making the time step At shorter and shorter, we can test for 
convergence. In principle, such a numerical procedure will solve any first- 
order differential equation, even when it is more complicated than (8.33). See 
Figure 8.19. 

Take time to think about this. Solving this differential equation predicts the 
future for this circuit. That, in a nutshell, is what differential equations involving 
the time do. They predict the future. Hence they are an astonishingly powerful tool. 
We don't  need to consult an astrologer, Madame X the fortune teller, or a net- 
work of "psychic friends." We just solve the differential equation. This powerful 
idea began with physics, but  is now applied in many other areas. Economists 
(meteorologists) at tempt to predict the economic (meteorological) future 
using economic (meteorological) models expressed in the language of differential 
equations. The better the model, the better the prediction. 
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t 
Q(t) 

Q(to) - 

~A Q(to+At ) = Q(to) + ( s l o p e ) A t  + ... 

dQ 
s l o p e  = dt 

to t 

Figure 8.19 Charge as a function of time. If the charge and 
the current (which is the slope of the charge versus time 
curve) are known at time to, then the charge can be found at 
time to + At. 

8.9~ Charging: Numerical Integration II 

Another approach that can be taken to (8.33) is to think of it in terms of the 
ultimate goal of finding Q(t). Then rewrite (8.33) as 

d Q -  ~ d t -  f (Q)dt, (8.35) 

where for (8.33) f ( Q ) =  8 / R - Q / R C .  In general f (Q)  can be thought of 
as any function of Q, or for our case, as the right-hand side of (8.33). (More 
generally, the right-hand side could also depend on t, but we will not consider 
that possibility.) Now rewrite (8.35) as 

dQ 
f (Q)  

= dt. (8.36) 

The right-hand side of (8.36) trivially integrates to t. If we can also integrate 
the left-hand side, either numerically or analytically, giving some function g(Q), 
then inverting g(Q) - t will yield Q(t). 

8~9~3 Charging: Analytical Integration 

In the present case, with f (Q)  - 8 / R -  Q/RC, the integral in (8.36) can be 
done analytically. First, introduce the notation 

8 
l 0 -  ~,  (8.37) 

where RC has the dimensions of a time. [dQ/d t  and Q~ RC of (8.32) have the 
same dimensions.] Then, writing 

f (Q)  - Io 
Q 

! 

TRC 
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(8.36) becomes 

dQ 
I o -  Q / r R c  

= dt.  (8.39) 

Now take the positive quantity u - Io - Q / r R c  as the integration variable. Then 
d Q -  - r R c d u ,  and (8.39) becomes 

rRcdu  
= dt,  (8.40) 

which can be integrated easily. Writing (8.40) as a definite integral, with Q -  0 
at t - 0, and replacing u by Io - Q / r R c ,  yields 

- r R c l n ( I 0 -  Q / r R c ) l  Q - tlto �9 (8.41) 

On switching right- and left-hand sides, (8.41) becomes 

t - - r R c [ l n ( I 0 -  Q / r R c ) -  l n ( I 0 ) ] - - r R c l n ( 1 -  Q / I o r R c ) .  (8.42) 

With IorRc - ( g / R ) ( R C )  - Cs  - Q ~ ,  the solution of (8.42) for Q is 

Q =  I o r R c [ I -  e x p ( - t / r R c ) ]  = Q ~ [ 1  - 

This starts at zero charge and rises to full charge at t ime infinity, rRc = RC is the 
time it takes for a capacitor to charge to 63% of its long-time value. Differentia- 
tion of the charge, (8.43), gives 

I -  d~.=o l o e x p ( - t / r R c ) .  (8.44) 
dt  

See Figure 8.20 for both the charge of (8.43) and the current of (8.44). 

~ easurement of the capacitor charging time gives 
the capacitance 

A 2 V emf is applied to a circuit with a 450 S2 resistor and an unknown 
capacitor. After 3.8 ms, the current is 2.2 mA. Find the time constant rRc 
and the capacitance C. 

Solution: First, at t -  3.8 ms, the voltage across the resistor is I R = 0.99 V. 
Then (8.31), with g = 2  V, gives Q / C = 2 - 0 . 9 9 =  1.01 V. From (8.43), 
Q / C  = g[ 1 - exp(--t/rRC) ], so 

exp(-- t /rRC) = 1 -- Q / C s  giving t/rRC = -  ln(1 -- Q / C s  

For our example, at t = 3.8 ms, (1 - Q / C s  = 0.495, so 
r R c = - - t / l n  ( 1 - Q / C g ) = 5 . 4 0 x 1 0  .3 s. Then, by (8.38), C = r R c / R =  
1.200 x 10 .5 F. Multimeters measure unknown capacitances by such a method. 
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Figure 8.20 Charge and current as a function of time 
for a capacitor that is initially uncharged and is then 
connected in series with a battery and a resistor. 

8Q:4 Discharging: Trial Solution 

On removal of the emf [let g ~ 0 in (8.31) ], the discharge is described by the 
solution to 

dQ Q 
= (8.45) 

dt RC' 

subject to some charge Q = Q0 at t = 0. We can solve this equation by the same 
method as for the previous case, but  let us try yet another method, now that  we 
have some experience with this type of equation. 

Since exponential decay seems to be characteristic of the charging problem, 
let us assume an exponential time dependence for the decay of the charge. More- 
over, since r~c = RC was the time constant for charging, let's try it as the time 
constant for discharging. Thus, try the form 

which satisfies the initial condition that  Q -  Qo, and has the expected un- 
charged final state. However, we must  verify that  this is a solution of (8.45). 
Differentiating (8.46) yields 

I - d Q =  _ Q--9-~ (8.47) 
dt rRC 

Putting (8.46) and (8.47) into (8.45) yields 

Qo 
TRC 

- ~ e x p ( - t / r R c )  -- 
Q0 
RceXp( - t / rRc ) ,  (8.48) 
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F i g u r e  8.21 Charge and current as a function of 
time for a capacitor that is initially charged and is 
then discharged through a resistor. 

f rom which we deduce that  

1 1 

rRC RC" 
(8.49) 

This is consistent with (8.38). Thus, rRc is characteristic of the exponent ial  for 
both  charge and discharge. In discharge, rRc = RC is the t ime for the charge 
on a capacitor to reduce to 37% of its initial value. The  reason for the sign 
change in the current,  relative to the charging process, is tha t  the current  now 
flows in the opposite direction. See Figure 8.21 for both  the charge and the 
current.  

These results can be applied directly to a n u m b e r  of interesting cases, includ- 
ing a charged person who discharges to ground upon jumping  from an insulated 
platform; a person who charges when,  standing on an insulated platform, she 
touches  a Van de Graaf  generator; or the electrostatic discharge of an electronic 
chip. 

• Discharge a capacitor of 

For the circuit of the previous example, 2.9 ms after discharge begins, find 
the current, the charge, and the rate of heating. 

Solution: Since g = 2 V and C = 1.200 x 10-s F, the initial charge is Q0 = 
CC = 2.40 x 10 -s C. Since rRc = 5.40 x 10 -3 s, substitution into (8.47) for 
t = 2.9 ms yielcls I = -2 .60  mA, the negative sign indicating discharge. Either 
(8.45) or (8.47) then yields Q = 1.402 x 10 -s C. The rate of heating is then 
I2R = 3.04 x 10 -3 W. 
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Figure 8.22 RC circuit with emf g: (a) Voltage across 
capacitor read by high resistance voltmeter. (b) Voltage across 
resistor read by high resistance voltmeter. 

Applications 

Another application of the RC circuit is as a filter. Since the voltage A Vc = Q / C  
across the capacitor takes time (on the order of R C) to build up, it is sensitive 
to emfs that vary slowly relative to RC (low frequencies), but it is insensitive to 
emfs that vary quickly relative to RC (high frequencies). On the other hand, the 
voltage A VR = I R across the resistor builds up immediately, but it dies out after 
a time on the order of RC. Hence it is sensitive to emfs at high frequencies, but it 
is insensitive to emfs at low frequencies. As a consequence, in an RC circuit the 
capacitor can be used to pass low frequencies but filter out high frequencies, and 
the resistor can be used to filter out low frequencies but pass high frequencies. 
See Figure 8.22, which shows the output leads in each case, where it is assumed 
that the output resistance (also called the impedance) is so high that it draws no 
current (as for an ideal voltmeter). The emf is circled to indicate that it might be 
something other than a ba t te ry~a  power supply or signal generator, for example. 
Filters are discussed in more detail in Chapter 14. 

Related to this are two more applications of an R C circuit. If the voltage 
A Vc = Q / C  across the capacitor is thought of as the input, then the voltage 
A VR across the resistor can be thought of as a differentiator because A VR = 
Rd Q/d t  = RCd(A Vc)/dt. Similarly, if the voltage across the resistor is thought 
of as the input, then the voltage across the capacitor can be thought of as an 
integrator because A Vc - Q / C -  f I d t / C -  f A VRdt/RC. 

Note that when a capacitor discharges, its electrical energy goes into heat. We 
can see how this occurs at each instant. Consider a resistor and capacitor in series. 
In a time dt the charge d Q = Idt passes through the circuit. The capacitor loses 
energy - ( Q / C ) d Q ( n o t e  that d Q  < 0). The resistor heats up by 12 Rdt. Equating 
the loss in electrical energy to the heat loss gives - ( Q / C ) d  Q = 12 Rdt = I Rd Q, 
which leads to I -- ( - Q / C ) / R ,  as in (8.45). 

8o10 Surface Charge Makes the E Field 
That Drives the Current 

Kirchhoff's rules do not specify the surface charge that produces the electric field 
within a wire or resistor. However, from a knowledge of the circuit elements 
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(R's  and C's), we can find the current, the current density, and the electric 
field within the resistors and the wires. Then, from a detailed knowledge of the 
configuration of the wires, it is difficult (but not impossible) to find the surface 
charge distribution producing the field within the wires. 

8.10.1 Surface Charge and the Field in the Wire 

Here's the argument showing that, for steady current flow through a wire, 
even of variable cross-section, E is due to charge distributed over the sur- 
face: (1)Pick out a volume within the conductor. (2) For steady current, the 
net flux f J" d,4 of electric current density J through the surface surround- 
ing our volume is zero. (If it weren't  zero, then charge would pile up inside 
the conductor, thus making the electric field and the electric current non- 
steady, in violation of our assumption of steady current.) (3) Since E - J / ~  for 

a uniform material, by f J - d , 4 -  0 we 
have f / ~ - d A  = 0. (4) By Gauss's law, 
since J/~ d,~ = 0, the charge enclosed 
is zero for steady current. (5) Hence 
there is no charge in our volume, which 
can be anywhere in the bulk of the wire. 
(6) Therefore the charge must be dis- 
tributed over the surface of the wire. 
(The details of this surface charge dis- 

Figure 8.23 Surface charge produces tribution depend on the shape of the cir- 
the electric field that drives current cuit; as Kirchhoff knew, typically there 
through a wire. Near bends in the wire, is surface charge all over the surface of 
the surface charge can be relatively the circuit.) 
large. The electric field depends on the We are aware of no nontrivial exam- 
charge everywhere in the circuit (and, pie for which the surface charge den- 
indeed, everywhere in the universe); sity Xs can be solved exactly. However, 
do not think that the surface charge 
depicted here is solely responsible for we can estimate the order of magnitude 
the electric field that drives the current of the ~s needed to move the current 
near the bend in the wire. around a bend in a wire. See Figure 8.23. 

First, note that J - ~ E = E / p ,  where 
is the conductivity and p is the resistivity. Next, note that, if there is a surface 
charge density Xs, near the surface it looks like a sheet of charge, so it produces 
an electric field with E - I/~1 on the order of 4Jrk~:s. Thus J -~ 4Jrk~Zs; solving 
for ~s gives 

J J P (surface charge density ~s at bend) (8.50) 
Zs ~ 4Jrk~ = 4ztk" 

~ Surface charge on a wire 

For a # l 0 copper wire (radius a = 0.05 inch), carrying l 0 A, find J, and 
estimate ~s and the surface charge Qs. Compare to the case of graphite 
carbon wire. 

So lu t ion :  J = I / ( ; ra  2) = 1.972 x 106 A / m  2, s o  with resistivity p = 1.690 x 10 -8 
~-m, (8.50) gives ~s ~ 2.95 x 10 -13 C / m  2. For an area of jra2= 5.07 x 
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10 -6 m 2, this corresponds to a surface charge Qs = 1.49 x 10 -18 C, or about 
9 electrons. Had the wire been made out of a much poorer conductor, such as 
graphite carbon, with p = 3.5 x 10 -s ~2-m, the surface charge density would be 
larger by the ratio ofthe resistivities, or nearly a factor of 2000, to 18,000 electrons. 

Just as for electrical screening, surface charge is not caused by individual 
electrons moving to or from the surface, but  rather by all the electrons in the 

vicinity collectively distorting their 
] orbitals. For an electron to go truly to 

- - ~  or from the surface, it would have to 
~" go into or out of an orbital localized 

< "  ~ at the surface. That does not happen 
c for ordinary conductors. 

The electric field that causes cur- 
~ rent to flow within a wire is due to 
< ~  charge distributed over the surface 

[ and depends upon details of the cir- 
cuit. Consider different circuits with 

Figure 8.24 Three microscopically the same resistors, as in Figure 8.24 If 
different circuits having the same 
equivalent resistance, their wiring is not the same, the sur- 

face charge distribution won' t  be the 
same. This also means that  jiggling the wires of any of the circuits in Figure 8.24 
will cause some charge to rearrange. 

8~ 10~ Surface Charge and Parasitic Capacitance 

To initiate current flow through the wire, the power source must not only drive 
current through the wire, it must also drive current to charge up the surface of 
the wire. As shown earlier, this is because, within the wire, the surface charge 
sets up the field that causes current flow. These processes of current flow along 
the wire, and of charge from one part of the surface of the wire to another, are 
in parallel. Thus, the wire has a parasitic capacitance Cp that is in parallel with the 
resistance R of the wire itself. See Figure 8.25. 

Let's consider this idea within the context of the circuits of Figure 8.24. They 
all have the same resistance, but they have different parasitic capacitances Cp. 
The circuit on the far left, with its sharp corners, has the largest Cp; the circuit on 
the far right, with its less sharp corners, has the smallest Cp. Hence, the RC time 
constant for the circuit on the right is smaller than that on the left. Therefore 
the circuit on the right will "start up" and "turn off" in less time than the circuit 
on the left. 

R 

/ 

i% 

c~ 

Figure 8.25 Schematic of how a wire "loads up" with 
surface charge. When there is no current, the initial 
current transfers surface charge from one part of the 
surface to another; once the current has reached steady 
state, so has the surface charge. 
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Parasitic capacitance is not merely a subtle theoretical point. Modern computer chips use 
integrated circuits that must carry electrical signals very quickly. If the interconnecting 
"wires" (interconnects) have sharp corners, that increases the parasitic capacitance, 
and slows the response of the system, because the corners must charge up before the 
interconnect can carry a current. 

Properly, the way to determine the amount of parasitic capacitance Cp is 
to determine the additional electrical energy associated with it, via (6.21), 
written as 

1 U -  ~Cp(AV) 2. (8.51) 

Here, U represents the difference between the electrical energy when the current 
is flowing and when it is not flowing. U can be calculated using (6.25), or 

j 1 / E2d,12 ' (8.52) U -  u ~ d'12 - 8 rr k 

where d~2 is a volume element. Since the electric field is due to some complicated 
surface charge distribution, this is not easily calculated; we know of no simple 
examples. A good rule of thumb is that Cp is proportional to the length l of 
the wire: by (6.6), Cp -~ I / k  if we neglect the logarithmic factors. For a 10 cm 
long wire, this predicts Cp ~ 0.1 pF. However, this estimate need not always 
be correct. For a wire that connects two plates of a parallel-plate capacitor, if 
the wire is between the two plates, and goes normally outward from one plate, 
straight across to the other, no surface charge is needed to drive the current. 
Thus in this case, the extra electrical energy, and the parasitic capacitance, are 
both zero. Nevertheless, in almost any other situation, the parasitic capacitance 
will be nonzero. 

The Bridge Circuit 

Bridge circuits present a situation where an analysis in terms of series and parallel 
is not applicable since such an analysis does not account for some internal nodes. 
Bridge circuits require the full formalism of Kirchhoff's rules. In Figure 8.26(a), 
the resistances on the left side are R1 and R3, and on the right side they are R2 
and R4, with R5 being the bridge resistance. A current I enters the 1-2 end and 
leaves the 3-4 end. The voltage difference between these two ends is A V. Our 
object is to determine the equivalent bridge resistance 

AV 
Rbridge -- - T -  (8.53) 

First consider a special case. If the voltage at a is the same as the voltage 
at b, then 

11 R1 - 12R2, and 13 R3 - 14 R4. (8.54) 
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R1 R2 

(b) (~) 

Figure 8.26 A bridge circuit of resistors. (a) Analysis in terms of current I in and out, 
with individual currents for each arm. (b) Partial analysis where I splits up equally for 
each arm, with no current across the bridge. (c) Partial analysis where current IT 
circulates clockwise through top loop and IB circulates clockwise through bottom arm. 

Moreover, in that case no current flows through the bridge resistor, so by Rule 1 
(charge conservation) 11 - I3 and 12 - I4. The ratio of the second to the first of 
these current equations yields 

6 /4 
- = - .  ( 8 . 5 5 )  

11 I2 

Combining (8.53) and (8.54) yields 

R1 R3 
= . ( 8 . 5 6 )  

R2 R4 

When (8.56) holds, the current through the bridge resistor (R5) is zero, so its 
numerical value is immaterial, as in Figure 8.27 where it has been take to be O. 
Bridge circuits are often used to measure unknown resistances (e.g., R4) by using 

11 = I & 2  = 14 

a 

i 3 11% ~ / ~  " i 4 

I3~i14 

Figure 8.27 Circuit of Figure 8.26, with bridge 
resistor removed. 
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fixed values for two of the resistors (R1 and R3), and varying the other resistor 
(R2) until no current flows across the bridge. When that occurs, the unknown 
resistance can be obtained from (8.56). (Compare with the capacitance bridge 
discussed in Chapter 6.) 

We now indicate how to obtain the current through each arm in the general 
case, when the bridge condition is not satisfied. 

8.11.1 Standard Approach 

Solving for each of the currents through a bridge circuit with the input current 
I specified involves solving for the five unknown values of the currents through 
the resistors. This requires finding five linear equations in the five unknowns, 
driven by the known input current. These five equations come from current 
conservation at three nodes (the fourth node condition is a linear combination of 
the others) and from zero voltage change on going around any two independent 
closed loops (such as the two internal loops). 

The current equations at three nodes yield 

I = I~ + 12, I~ = 13 + Is, 12 + Is = 14, (8.57) 

and the requirements of zero voltage change on going around each of the two 
internal loops are 

11 R1 + Is Rs = I2 R2, Is Rs + 14R4 = 13R3. (8.s8) 

Once these currents are known in terms of the input current I, the equivalent 
bridge resistance Rbridge c a n  be determined by the requirement that the voltage 
drop for the equivalent resistance be the same as the total voltage drop across 
one arm, or 

A V = I R~dge = I~ R~ + I3 R3. (8.s9) 

Solving five simultaneous equations can be time consuming, especially without 
a computer. Maxwell invented the idea of loop currents to reduce the number of 
unknowns. 

8.11.2 Maxwell's Loop Current Approach 

Instead of introducing currents for each arm, and then using these currents at 
each vertex, where current is conserved, we use loop currents. These automat- 
ically satisfy current conservation. In Figure 8.26(b), consider that the known 
current l enters on top and leaves at the bottom, arbitrarily taking the current 
to split equally along each arm, with no current through the bridge resistor. This 
choice cannot be correct in general, but we can make the correct current split 
occur at the upper junction by introducing a clockwise circulating current IT 
for the top loop, and a clockwise circulating current IB for the bottom loop. 
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See Figure 8.26(c). When Ir and IB are chosen properly, the correct currents 

I I I I 
I1  - -  -~ - -  I T ,  12 --  -~ + I t ,  13 - -  ~ -- I B, 14 - -  ~ + I B, 15 - I B - l r  

(8.6o) 

are obtained. If another split for the current I had been taken, the relationships 
for the In'S would have been different, but the final results will be independent 
of the choice of variables. 

Instead of (8.58), we now find the loop equations (i.e., voltages): 

I It)R2, ( I  - Ir)Rl  + (IB - Ir)Rs - (~  + 

I _ IB)R3 ( IB-  Ir)Rs + ( I  + IB)R4 - (-~ (8.61) 

These are two equations in the two unknowns IT and 113, which can be 
solved straightforwardly. In expressing the answers, it is useful to introduce the 
definition 

D = Rs(R1 + R2 + R3 + / 4 )  -]- (/1 -+- /2 ) ( /3  -]- /4).  (8.62) 

Solving (8.61) then gives 

IB - I ( R 3 -  R4)(R1 + R2 + R5)+ R5(R1 - R2) 
2D 

Ir - I (R1 - R2)(R3 q- R4 q- Rs) + Rs(R3 - R4) 

2D 
(8.63) 

Placing (8.63) into the last of (8.60) yields the bridge current 

R3 R2 - R4 R1 
Is = I . (8.64) 

D 

Note that 15 = 0 when the bridge condition, (8.56), is satisfied. 
From (8.63) and (8.64) placed in (8.60), the currents appearing in (8.59) for 

A V are 

R5(R2 -+- R4) -Jr- R4(R1 -Jr- R2) R5(R2 -[- R4) -Jr- R2(R3 -Jr- R4) 
13=1 11 = I  

D ' D 
(8.65) 

Finally, from (8.65) and (8.59), the equivalent resistance becomes 

(R1 + R3)(R2 + R4) R1R2(R3 + R4) + R3R4(R1 + R2) 
Rb,~dge = R5 + D D 

(8.66) 
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How can we be sure of this complicated expression? If Laserbrain Software 
tried to sell you a program that claimed to solve all possible circuit problems, 
and gave (8.66) as an example of what the program could do, how would you 
test it? One way, of course, is to trace through all the algebra yourself. But it's 
easy to get the algebra wrong, right? Your grandmother would know what to do: 
perform some simple, commonsense tests to verify that this general expression 
reduces to some simpler cases where you think you know the answer. Here are 
some of these tests: 

1. For Rs = 0, (8.66) should reduce to the expected result of R1 and R2 in 
parallel, and R3 and R4 in parallel, with their combinations in series. 

2. For Rs -+ ~ ,  (8.66) should reduce to the expected result of R~ and R3 in 
series, and R2 and R4 in series, with their combinations in parallel. 

3. For R1 --* ~ ,  all the current should flow through R2, and none should flow 
through R1. 

Note on recognizing old friends. One of the most important reasoning tools 
is the method of analogy. This can be used best when you can easily recognize 
similarities and differences. An analogy can be made between circuits with re- 
sistors and circuits with capacitors. From our results for resistors, we can obtain 
the corresponding results for capacitors by replacing the resistances R by the in- 
verses of the capacitances C. This is because 1/C = A V / Q  holds for capacitors, 
whereas R = A V/ I  holds for resistors. Clearly, A V plays the same role in each 
case, Q and I play similar roles, and 1/C and R play similar roles. 

8.12 
4f IoJ  j l~.. l ll 

Plasma Oscillations 

When electrons within a good electrical conductor are disturbed from equilib- 
rium, the electric field that they produce tends to restore them to equilibrium. 
Just as a mass on a spring oscillates when disturbed from equilibrium, so too does 
the electron charge density oscillate when disturbed from equilibrium. This is 
independent of the drag effect and occurs on a shorter time scale than the mo- 
mentum relaxation time. This oscillation also occurs in a gas of atoms (such as 
on the sun) that is heated so much that it is ionized. Such a gas is called a plasma, 
and for that reason, this sort of oscillation is called a plasma oscillation. Just as the 
mass on the spring eventually stops moving because of friction, so too does the 
electron charge density on a good electrical conductor stop changing because of 
friction. 

We now obtain the so-called plasma frequency for a slab of thickness d and 
area A, and containing equal and opposite amounts of charge at density i ne .  
(The final result, however, is independent of geometry.) The positive charge (due 
to the ion cores) is assumed to be immobile. The negative charge (due to the 
conduction electrons in delocalized orbitals) is assumed to move as a unit by a 
displacement x, where x ((  d. At each end ofthe slab, a volume Ax  gets an excess 
charge + Q, where Q -- neAx. See Figure 8.28. Thus, the field inside is like that 
of a capacitor, for which the electric field is given by E = 4zrka = 4rck(Q/A) = 
4 zr kne x . 
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Massive, immovable, positive-charge background 

Figure 8.28 Slab of conductor, and uniform 
displacement (exaggerated, for emphasis) of its 
conduction electrons. In a real plasma oscillation, the 
displacement at the surface is more complex, but the 
plasma oscillation frequency is unaffected by the 
electron behavior in this relatively small region. 

The equation of motion for the displacement x of an electron (of mass m) 
within the slab is thus 

d2x 
mdt--- ~ = - e  E - -4zr  kne2x. (8.67) 

(The relatively small amount of electric charge in the surface region feels a force 
that drags it along with the rest of the charge. It is like the tail following the 
dog.) In mechanics, you have already studied the motion of a mass m attached 
to a spring of spring constant I~ its position x satisfies 

d 2 x  

m dt-- 7 = - K x  (8.68) 

and oscillates like x - A cos cot + B sin cot, with the resonance frequency 

~ o - ~ / K .  (8.69) 

Comparison of (8.67) and (8.68) yields K -~ 4Jrkne 2. By (8.69), what is called 
the plasma frequency is given by 

~ 4 Jr kne 2 
C O p - -  ~ . 

m 
(8.70) 

~ Plasma frequency of copper 

For copper, find cop. Use Example 7.29 for n. 

Solution: With n = 8.48 x 1028 m -3, as appropriate to Cu, (8.70) yields cop 
1.6 x 1016/sec. Note that cop >> r -1, where Example 7.31 estimated that r = 
2.5 x 10 -14 S for Cu at room temperature. 

A good conductor supports plasma oscillations, with the plasma period 

27T 

cop 
(8.71) 
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After a relaxation time r passes [compare (7.47) and the related discussion], the 
plasma oscillations relax to the new equilibrium configuration, with charge only 
on the surface. The plasma will oscillate on the order of r/Tp = eap r/23r times 
before it has decayed significantly. For Cu at room temperature, this corresponds 
to about 60 oscillations. 

A poor conductor (i.e., a carbon resistor), which does not support plasma os- 
cillations, within a time r will directly relax to its new equilibrium configuration. 
As for a good conductor, for steady currents a poor conductor also has charge 
only on the surface. 

8.13 
[02~li,,lj~la 

Interlude: Beyond Lumped Circuits (R's and C's) 

"It may be more interesting and instructive not to go by the shortest logical path from 
one point to another. It may be better to wander about, and be guided by circumstances 
in the choice of paths, and keep eyes open to the side prospects, and vary the route 
later to obtain different views of the same country." 

--Oliver Heaviside, Vol. 2 of Electrical Theory (1893) 

"I roamed the countryside searching for answers to things I did not understand." 
--Leonardo da Vinci 

8.13.! Where We Stand 

So far we have studied electrostatics (Chapters 1 to 6) and current-carrying 
circuits (Chapters 7 and 8). We have introduced what are called lumped cir- 
cuit elements: capacitors and resistors. Nevertheless, there are limitations to this 
method of analysis. This becomes apparent on studying the behavior of circuits 
at very short times and very high frequencies. One of these limitations is due 
to parasitic capacitance, discussed in Section 8.10. Another is that we have not 
yet included the effects of the magnetic fields, either those produced by mag- 
nets (Chapter 9) or those produced by the electric currents through the circuit 
(Chapters 10 and 11). Chapter 12 introduces yet another lumped circuit el- 
ement: the inductor, which stores magnetic energy. It also discusses another 
type of electric field, produced by a time-varying magnetic field, for which the 
field lines close on themselves. This electromagnetically induced electric field 
has a nonzero circulation, and thus can drive current around a circuit. It is the 
basis of all electrical power generators. Chapter 13 is devoted to motors and 
generators. 

8,13,2 Limitations on the Validity of  Circuit Theory 

It would seem that we have studied enough physics to understand the behavior 
of ordinary circuits. And indeed we have, as long as we understand the limitations 
to what we have studied. Our most critical simplification was to assume action at 
a distance: that the electric field is transmitted instantaneously. As we will show 
in Chapter 15, the electric field does not propagate instantaneously. Associated 
with it is a magnetic field, and together they progagate at the speed of light 
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c ~ 3 x 108m/s. A description of what happens when we switch on a circuit 
that neglects the finite speed of light will not be completely valid. 

There are additional complications. On making and unmaking circuit con- 
nections by hand, the changes are determined to a large extent by muscle move- 
ment, and this is much slower than the electronic response. When a switch is 
first "thrown," if the voltage is large enough there also can be sparking. Let us 
neglect these effects, and simply consider what must happen to get the system 
to behave in a manner that is described by simple circuit theory. 

Four Time Scales When a switch is thrown for an R C circuit, there are four 
time scales of relevance: 

1. The material-dependent time Tp corresponding to the period of a plasma 
oscillation, given by (8.71). This time is determined by the inertial mass m 
of the free electrons, their charge e, and their density n. For copper, it is on 
the order of 10 -16 s. 

2. The material-dependent relaxation time r for electrons, due to collisions with 
the ionic background of the material (on the order of 10 -14 s for copper at 
room temperature). 

3. The circuit geometry-dependent time td for an electrical signal to cross the 
circuit. For a circuit of characteristic dimension d, 

d 
td - ,  (8.72) 

c 

where c is the velocity of light (c ~ 3 x 108 m/s). For d ~ 0.1 m, td is on the 
order of 3 x 10 -l~ s. 

4. The circuit element-dependent time constant rRc. From (8.38), r R c -  RC. 
For R -  0.1 S2 and C -  10 nF, we have r R c -  10 -9 s. 

Let us now consider how these times are relevant when the power is turned 
on in a circuit. First, the information that the circuit has been closed must be 
transmitted. This is propagated at the speed of light. Hence, after a time td, the 
circuit has had a chance to adjust to the closing of the switch. During this time, 
the plasma oscillations have undergone many oscillations of period Tp << td, and 
they have died down after the relaxation time r << td. Thus, once the information 
that the switch has been closed has propagated across the circuit, Kirchhoff's 
rules and ordinary circuit theory become applicable. Hence, for circuit theory to 
be valid, we must have td << rRc, or 

d 
- << RC. (condition for validity of simple circuit theory) (8.73) 
c 

It is not difficult to design circuits that violate the preceding condition. For 
R - 0.1 ~2 and C -  10 pF, we have R C -  10 -~1 s, so (8.73) requires that d be 
smaller than c R C -  0.03 m, a somewhat restrictive condition. 
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8.13.3 What Happens for Times Too Short for Circuit Theory 
to Be Valid 

At times too short for circuit theory to be valid, the finite speed of light must be 
considered. This occurs, for example, when signals are sent using cable (which 
has both an inner wire that carries the signal, and an outer ground wire). The 
area of electrical engineering dealing with such time delays is both active and 
important. 

Consider what happens when a switch is thrown and we wish to follow the 
signal as it travels around the circuit. See Figure 8.29. Let the circuit contain 

three resistors in series with a battery and a 

h i ~ o s e  switch 

R3 R2 R] 

Figure 8.29 Circuit to 
illustrate circuit response on 
closing the switch. 

switch. When the switch is thrown, two different 
electromagnetic signals are emitted, both travel- 
ing at the speed of light. First, there is a (usu- 
ally weak) signal that travels more or less radially 
outward from the switch, at the speed of light. 
In addition there is a signal that moves along the 
wire of the circuit. (The wire can be thought of as 
guiding the wave.) As it travels along from both 
terminals of the power source, the distribution 
of surface charge density rapidly adjusts to the 
signal. If the signal reaches the end resistors Ra 
and R3 at the same time, then it begins to dissi- 

pate energy in them. Only after the signal has reached the middle resistor R2 
does the middle resistor begin to dissipate energy. However, once the signal has 
traversed the system, and circuit theory has become valid, the current will be the 
same through each resistor. Because the time to cross the circuit (10 -l~ s) is so 
small compared to our visual reflexes (not faster than 10 -2 s), for all intents and 
purposes we never notice this transient regime. Note that signals along human 
nerve axons can be analyzed in a way that is very similar to how one analyzes 
signals along a wire; however, the propagation velocity for a nerve axon is on the 
order of 10 m/s, much less than the velocity of light. 

8.13.4 A Misconception about Circuits 

From the preceding discussion, it follows that, when a power supply is switched 
on, for times much less than the very short light-crossing time ta, it provides 
power only to the part of the circuit nearest the power supply. For short enough 
times, current may only flow in the nominally resistanceless wires near the power 
supply. For somewhat longer times, the current may flow in a resistor nearest the 
power supply, but not in farther resistors. Finally, for times that exceed ta, the 
current circulates around the circuit, heating resistors and charging up capacitors, 
as described by the circuit theory of Chapters 7 and 8. Some people have the 
misconception that, in a series circuit the nearest resistor gets more current than 
the others, and thus that it "uses up" the current. Only for very short times does 
the nearest resistor get more current than the others; this is not becauses it uses 
up the current, but because the current hasn't had enough time to reach the 
other resistors. 
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8o13.5 Bringing It All Together 

N o w  t h a t  you  have a b e t t e r  u n d e r s t a n d i n g  of  t he  individual  details of  t he  electr ic  
fluid mode l ,  yo u  m a y  find it he lpfu l  to  re read  Sect ions  R. 1 t h r o u g h  R.8. 

Problems 

8-3.1 A boat battery consists of twelve 2 V "cells" 
in series. Each cell consists of ten 2 V voltaic cells 
in parallel. Each "cell" has an internal resistance of 
0.02 f2, and a charge of 10.5 A-hr. Find (a) the over- 
all emf, (b) the internal resistance, and (c) the charge 
of the battery. 

8 -3 .2  An electric eel shocks via many simulta- 
neously excited cells, called electroplaques (or elec- 
trocytes). During discharge, these cells have C = 
150 mV and r = 0.25 s2. (The emf may be thought 
of as electrostatic in origin, from the difference 
in potential between inside and outside the cell. 
Beause of the temporary opening of ion channels 
in the cell wall, this resistivity during cell discharge 
is much lower than for a cell at rest.) About 5000 
electroplaques are in series (to give high voltage), 
and about 140 of these sets of 5000 are in par- 
allel (to give high current). (a) Find the equiv- 
alent emf and the equivalent resistance of the 
electric eel's "power pack." If the eel discharges 
through a 500 s2 resistance (e.g., salt water), find 
the current that it provides. Note that it takes 
some electric eels (really, they are fish) only a few 
ms to recharge. Some have been known to kill a 
horse. 

8-3.3 A single fully charged car battery (120 A-hr) 
is to be used to start 150 cars every day. Each start 
draws an average of 80 A for 1.2 s. (a) Neglecting 
self-discharge due to non-current-producing chem- 
ical reactions, how many days will the battery last 
without recharging? (lo) If self-discharge occurs at 
a rate that will discharge a fully charged battery in 
85 days, how long will the battery last when used 
to start all 150 cars every day? 

8-3.4 The state of a discharged battery is to be de- 
termined. To be acceptable, it must be able to pro- 
vide 200 A to a starting motor with R - 0.01 S2. 
On open circuit, its terminal voltage is 12.2 V. On 
being charged by 8 A, its terminal voltage is 14.4 V. 
(a) Find its internal resistance. (b) Find the current 
that will flow through the starting motor. (c) Is the 
battery acceptable? 

8-3.5 For load resistors of 0.4 f~ and 0.8 S2, the ter- 
minal voltage of a battery reads 10.1 V and 10.4 V. 
Find its emf and internal resistance. 

8 -3 .6  You have two load resistors for use with a 
battery. With one, the current is 40 A for a termi- 
nal voltage of 10.4 V; with the other, the current is 
25 A for a terminal voltage of 10.8 V. (a) Find the 
battery's emf and internal resistance. (b) Find the 
values of the load resistors. 

8-3.7 A 2.1 V cell of internal resistance 0.05 s2 is 
charged by an ideal dc power source set at 2.36 V. 
(a) Find the rate of charging of the battery. (b) Find 
the rate of Joule heating of the battery. (c) Find the 
rate at which the battery gains energy. (d) Find 
the efficiency of the use of energy provided by the 
power source (ratio of useful energy or power to 
energy or power provided). 

8 -3 .8  A 3 V battery provides 6 W to a load for 
a 2.5 A current. Find the internal resistance of the 
battery. 

8 -3 .9  A flashlight bulb is powered by three 1.5 V 
batteries in series, each with internal resistance 
0.25 s2. The batteries each discharge their chemical 
energy at the rate 4.5 W. (a) Determine the resis- 
tance of the lightbulb. (b) Determine the current. 

8-4.1 An automobile battery recharger has two 
settings: fast (6 A) and slow (2 A). (a) At the slow 
rate, how long will it take to recharge completely 
a dead battery with a full capacity of 80 A-hr? 
(b) At 10 cents/kW-hr and 80% efficiency of power 
utilization, how much will this cost? Note: Part 
(a) is independent of the efficiency in part (b). 

8-4.2 Assume that an 80 A-hr battery is fully dis- 
charged and can take the full 40 A current pro- 
vided by the alternator when the car is moving at 
60 miles/hr. Compute the cost to recharge the bat- 
tery when the car goes at this speed, where it uses 
25 miles/gallon, at $1.40/gallon. Note: This is not 
the least expensive method to recharge a battery. 
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8-5.1 Light of intensity 0.14 mW/cm 2 shines on 
a solar cell of area 20 cm 2. When connected to a 
200 ~ load resistor, its terminal voltage is 0.15 V; 
when connected to a 400 ~ load resistor, its termi- 
nal voltage is 0.24 V. (a) Find its emf and internal 
resistance. (b) For the 200 ~ load resistor, find the 
efficiency of conversion from light energy to heat. 
(c) Repeat for the 400 ~ load. 

8 -5 .2  A 6 V battery with internal resistance r = 
1 ~ drives a 70% efficient motor that lifts a 8 N box 
at velocity 0.5 m/s. (a) Find the current. (b) Is the 
answer unique? 

8 -5 .3  A 6 V battery with internal resistance r = 
1 ~ drives an 80% efficient motor. If the motor pro- 
vides 3 W of useful energy per amp, find the current. 

8 - 5 . 4  Two 1.5 V cells, each of internal resistance 
0.4 ~, are to be used to power a small resistance 
heater. What is the maximum power they can pro- 
vide, and what is the corresponding heater resis- 
tance? 

8 -5 .5  A high-voltage transmission line cable is to 
have resistance per unit length 0.204 ~/km and 
carry an 80 A current. (a) Find the resistance of 
a 16 km length that carries power 8 km to and 8 km 
from the load. (b) Find the voltage drop across this 
length. (c) For Cu wire (mass density 8.98 g/cm3), 
what is the mass of the cable? (d) If the power is 
provided to a 12 ~ load resistor, find the efficiency 
of energy transmission. 

8 -5 .6  A 500 W immersion heater is placed in a 
quart of water at 20~ Assume a 95% efficiency 
for the heater. (a) How long will it take to raise 
the temperature to boiling? (b) How much longer 
will it take to boil away half of the water? (c) At 
16 cents/kW-h, how much does it cost to raise the 
temperature to boiling? (d) At 16 cents/kW-h, how 
much does it cost to boil away half of the water? 

8 -5 .7  Consider a 60 W lightbulb for 12 V usage. 
(a) Neglecting the internal resistance of the 12 V 
source, find the resistance of the lightbulb. (b) For 
an internal resistance of 0.01 ~, find the efficiency 
of usage of the lightbulb (to three decimal places). 
(c) Repeat for an internal resistance of 0.1 ~. 

8 - 5 . 8  Consider a power source of emf ~in that pro- 
vides a fixed power of 0.2 MW, and a power user 
of emf s To transfer this power, they must be 
connected by wires that go from the power source 
to the power user and back. Let each of these 
input and output wires have resistance R/2. Which 
would be more efficient at transferring power to the 

user, a voltage difference across the wire of 1000 V 
or of 10,000 V? 

8-6.1 In Figure 8.7(a), use the conventions that 
11 > 0 is upward through R1, 12 > 0 is downward 
through R2, I > 0 is downward through r, and 
A V > 0 to the upper side of the battery is positive. 
(a) Write down current conservation. (b) Write 
down (8.15a) for each arm. 

8 -6 .2  (a) In Figure 8.8(a), if 12 = 2 A and 13 = 
6 A, find I~. (b) In Figure 8.8(b), if 12 = 4 A, find 
I1. (c) In Figure 8.8(c), if I = 6 A, is the upper plate 
charging or discharging, and at what rate? (d) Re- 
peat (c) for Figure 8.8(d). 

8-6.3 A current source is one for which the cur- 
rent is nearly independent of load. You are given an 
emf of 1.4 V. What value of resistance R in series 
with the emf and the load would make the current 
constant to within 1% for loads of 4 ~ and 12 ~? 
See Figure 8.30. 

c R 

RL 

 /WVv 
Figure 8.30 Problem 8-6.3. 

8 - 6 . 4  Design a constant current source of 2 mA 
(• 1%), intended to be used with series loads of up 
to 100 s It uses an ideal source of emf • and a 
resistance R, whose values are at your disposal. 

8 - 6 . 5  A voltage divider consists of a fixed ideal 
source of emf E and a fixed resistance R, where the 
output voltage is taken with a high-resistance de- 
vice placed across a variable resistance r that is a 
part of R. See Figure 8.31. It is desired to produce 
a voltage source whose output varies from 0.2 V to 
2.2 V. (a) For ~a = 4 V, what range of values must 

R ....... I 

V~t 

Figure 8.31 Problem 8-6.5. 
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r~ R take on? (b) For E = 6 V, what range of values 
must r~ R take on? 

8-6.6 A voltage divider is contructed from a 2.0 V 
emf with internal resistance of 0.4 ~2 in series with 
a variable resistance R from zero to 15 ~2. The out- 
put voltage is measured across R. Find the range of 
output voltages. 

8-6.7 The current driven by an ideal battery E 
through a resistor R is 8 A. A 5 ~2 resistor is added in 
series, and the current drops to 6 A. Find R and E. 

8-7.1 Here a "good" battery charges a "bad" bat- 
tery. In Figure 8.13(b), let the battery 81 = 12 V, 
rl - 0.01 ~2 be in series with, but opposed to 82 = 
10 V, r2 = 0.08 ~2. To neglect the third arm, con- 
sider that R ~ oo. For each battery, find (a) the cur- 
rent, (b) the terminal voltage, (c) the rate at which 
energy goes into chemical charge or discharge of 
each battery, and (d) the rate of Joule heating in the 
internal resistances. 

8-7.2 For the circuit of Figure 8.13(b), take 81 = 
6 V, 82 = 10 V, r] = 0.01 ~2, r2 = 0.02 ~2, R = 
0.01 ~2. (a) From scratch, and with numbers, ana- 
lyze the circuit using Kirchhoff's rules. (b) Solve for 
the voltage across R. (c) Find the current through R 
and the currents provided by each of the batteries. 
(d) Find the rate of heating of each resistor and the 
rate at which energy goes into chemical charge or 
discharge of each battery. 

8-7.3 For the circuit of Figure 8.13(b), take & = 
6 V, 82 ~-~ 10 V, rl = 0.01 f2, r2--0.02 f2, R = 
0.01 f2. However, reverse the terminals of battery 
2. (a) From scratch, and with numbers, analyze the 
circuit using Kirchhoff's rules. (b) Solve for the volt- 
age across R. (c) Find the current through R and the 
currents provided by each of the batteries. (d) Find 
the rate of heating of each resistor and the rate at 
which energy goes into chemical charge or discharge 
of each battery. 

8 - 7 . 4  For the circuit of Figure 8.13(b), take & = 
6 V, 8 2 = 1 0  V, r ] = 0 . 0 1  ~2, r 2 = 1 . 2  ~2, R =  
0.01 ~2. (a) From scratch, and with numbers, ana- 
lyze the circuit using Kirchhoff's rules. (b) Solve for 
the voltage across R. (c) Find the current through R 
and the currents provided by each of the batteries. 
(d) Find the rate of heating of each resistor and the 
rate at which energy goes into chemical charge or 
discharge of each battery. 

8-7.5 See Figure 8.32, where a bulb B2 and switch 
$2 are placed in parallel with switch $1. Using 

responses ofbright, dim, and off, categorize the bulb 
responses for the following switch configurations: 
(a) $1 open, $2 open; (b) $1 open, $2 closed; (c) $1 
closed, $2 open; (d) S] closed, $2 closed. 

0V @ S 1 ~  j 1 2 0 V  
"--O O-  

B1 

Figure 8.32 Problem 8-7.5. 

8-7 .6  In Figure 8.33, let all the resistors be 30 ~2. 
Let 8 A enter at D and 8 A leave at C. (a) Find the 
voltage difference between C and D. (b) Find the 
equivalent resistance of the circuit. (c) If the resis- 
tors have resistance R, find the equivalent resistance 
between C and D. 

8A D 

8A 

Figure 8.33 Problem 8-7.6. 

8-7 .7  In Figure 8.33, let all the resistors be 30 ~2. 
If the squares of resistors were to repeat indef- 
initely to the right, find the resistance between 
C and D. Hint: The resistance is unchanged if 
you add one more "unit" to this infinite ladder of 
resistors. 

8 - 7 . 8  Consider the five-resistor bridge circuit of 
Figure 8.34. Each resistor has R = 6 ~2. Find the 
equivalent resistance between (a) A and B; (b) B 
and C; (c) A and D. Hint: Let current I enter 
at one node and leave at another, and find the 
voltage difference between these nodes in terms 
o f / .  

A B 

Figure 8.34 Problem 8-7.8. 

8-7.9 For an infinite square network of identical 
resistors R, find the resistance between two adjacent 
nodes. Hint: Use superposition on adjacent nodes A 
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and B. Let current I leave A and find VA -- VB; then 
let current I enter B and find V A -  VB. 

8-7.10 For the circuit of Figure 8.35, find the 
equivalent resistance between A and B. Hint: Let 
current I enter at A and leave at B, and find the 
voltage difference between these nodes in terms 
o f / .  

8-7.13 Consider a set of batteries in series, as in 
Figure 8.38. 

E1 E2 E3 

rl r2 r3 

R] R 2 R] 

R] 

Figure 8.35 Problem 8-7.10. 

8-7.11 For the circuit of Figure 8.36, find the 
equivalent resistance between A and B. Hint: Let 
current l enter at A and leave at B. 

< AV=  AV] + AV 2 + AV 3 •] 

Figure 8.38 Problem 8-7.13. 

Show that 

r AV I = , _ . , i - i  

~-]~i ri Reff ' 

s Z s  Reff= Y~ri .  
i i 

8-7.14 Consider a set of batteries in parallel, as in 
Figure 8.39. 

12~2 8~2 

t 2t" 
rl I] 

B 

Figure 8.36 Problem 8-7.11. 

O +  

,;2 

,;21 I~ 1 
O -  

8 - 7 . 1 2  For the circuit of Figure 8.37, find the 
equivalent resistance across the electrodes of the 
battery, and find the current provided by the bat- 
tery. All resistors (including the internal resistance) 
are 2 ~. 

Figure 8.39 Problem 8-7.14. 

Show that 

- - - i f - ,  j =  - , - =  . �9 / ' i  " ~  �9 

R 

R R 

6 = 6  

Figure 8.37 Problem 8-7.12. 

R=2 

8-7.15 If a resistor R is responsible for A V in 
Figure 8.39, then I - - A V / R .  Show that A V =  
J / ( R  -I + T ~ - I ) .  

8-7.16 For three batteries in parallel with a re- 
sistor R, let r] = 0.01 ~, r2 = 0.02 ~, r3 = 0.1 ~, 
R - 0 . 0 2 5  f2, s  s  s  (a) 
Find the voltage A V across R. 03) Find the currents 
through each arm. (c) Verify current conservation. 

8-7.17 For three batteries in parallel with a re- 
sistorR, l e t s 1 6 3 1 6 3  r ] -  
0.01 f~, r 2 = 0 . 0 2  f~, r 3 = 0 . 0 5  f2, R--0 .01  f~. 
(a) Analyze the circuit using Kirchhoff's rules. 
(b) Solve for the voltage across R. (c) Find the 
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current through R and the currents provided by 
each of the batteries. (d) Verify current conser- 
vation. 

8 -8 .1  In Figure 8.16, let E = 12 V, r = 2 S2, R = 
6 ~2, and C = 4.5 #F. The capacitor is uncharged 
initially. The battery is connected to the circuit at 
t - 0. (a) At t = 0 + find the initial current through 
each resistor and the charge on the capacitor. 
(b) Find the current through each resistor and the 
charge on the capacitor a long time after the battery 
is connected to the circuit. 

8-8.2 In Figure 8.16, let a resistor R2 be placed in 
the same arm as C. Let C = 6 V, r - 1 S2, R = 6 S2, 
R2 = 3 S2, C = 6 ~tF. The capacitor is uncharged 
initially. The battery is connected to the circuit 
at t - -0 .  (a) Find I, Q2, 11, and 12 just after the 
battery is connected to the circuit. (b) Find I, 
Q2, 11, and 12 a long time after the battery is con- 
nected to the circuit. (c) Sketch I as a function of 
time. 

8 - 8 . 3  In Figure 8.17, let R1 = 3 S2, R2 = 6 S2, 
R3 = 12 S2, and R4 = 6 f2, and C = 4 #F. An ideal 
12 V battery suddenly is switched on across the 
top and bot tom connections. (a) Just after switch- 
on, give the charge on the capacitor, the currents 
through each resistor, and the current to the capac- 
itor. (b) After a long time, give the final currents 
through each resistor, the charge on the capacitor, 
and the current to the capacitor. 

8 - 8 . 4  Reconsider Example 8.16 of Section 8.8 
with respective resistances of 4, 1, 3, 2 (in ohms). 
(a) Find all the currents through the resistors and 
to the capacitor. (b) Verify current conservation for 
both plates of the capacitor. 

8 - 8 . 5  Consider a resistor R and a capacitor Cp 
connected in parallel, as in our model circuit for 
parasitic capacitance (see Figure 8.25). Let a con- 
stant current source I0 bring current in at one end 
and out at the other. Initially, Qcp = 0. (a) Find 
the initial value of IR. (b) Find the final value 
of IR. 

8-9.1 An RC series circuit, as in Figure 8.15, is 
driven by an emf C = 4.2 V, with R -  5 MS2 and 
C = 2.4 #F. (a) Find the time constant. (b) Find 
the initial current and the current at long times. 
(c) Find the initial charge and the charge at long 
times. (d) Find the total amount of heating of the 
resistor during the time it takes to reach half charge. 
(e) Repeat for full charge. 

8-9.2 For a series RC circuit, the initial current on 
connecting the emf is 2.5 A. After 3.4 ms, the cur- 
rent is 0.8 A. After a long time, the voltage across 
the capacitor is 6 V. Find R, C, and the emf C. 

8 - 9 . 3  A 12 #F capacitor in a series RC circuit is 
charged to 4 V. A time 12 ms after the switch is 
thrown, the capacitor voltage is 0.05 V. (a) Show by 
integration that the total amount of heating in the 
resistor up to that time equals (1/2)C(V02 - V2). 
(b) Evaluate this numerically. (c) Obtain (a) by 
energy conservation. 

8 - 9 . 4  An automobile blinker circuit contains a 3 V 
battery with r = 0.24 s2 that drives a circuit with 
two arms. One of the arms contains a neon bulb, 
and the other contains a resistance R and a capac- 
itance C. See Figure 8.40. The neon bulb goes on 
when the voltage exceeds 1.8 V, at which time its re- 
sistance effectively goes to zero. The neon bulb goes 
offwhen the voltage is less than 0.6 V, at which time 
its resistance effectively goes to infinity. Determine 
how long the blinker is on and how long it is off. 

r 

7-c 
Figure 8.40 P r o b l e m  8 -9 .4 .  

8-9.5 (a) Find the resistance of a 1.6 cm long glass 
rod of 2 mm diameter. (b) Find rRc if this is placed 
in series with a 4 nF capacitor. (c) Find the series 
capacitance C needed to make rRc = 103 s. (It is 
not trivial to measure large resistances.) 

8-10.1 Discuss how best to make a 90 ~ turn of 
a lithographed-on wire for an integrated circuit 
board: one 90 ~ turn, two 45 ~ turns, and so on. Con- 
sider the cost of making a complex turn. 

8 - 1 0 . 2  Consider a resistor R and a capacitor Cp 
connected in parallel, as in our model circuit for 
parasitic capacitance (see Figure 8.25). Let a con- 
stant current source I0 bring current in at one end 
and out at the other. Find Qcp and IR as a function 
of time. 

8-10.3 Consider a resistor R and a capacitor Cp 
connected in parallel, as in Figure 8.25. Let a con- 
stant emf C with internal resistance r bring current 
into this system. (a) In what limit of r~ R does this 
problem reduce to the previous problem? (b) For 
arbitrary r~ R, find Qcp and IR as a function of time. 
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8-10.4 Imagine that the three circuit elements in 
Figure 8.24 are attached to identical external cir- 
cuits with a battery to drive current. (a) Will the sur- 
face charge densities be different even for the three 
identical external circuits? (b) How does proxim- 
ity of the three external circuits to their associated 
circuit elements affect the surface charge density of 
the external circuits? (That is, are the surface charge 
densities on the external circuits more or less alike 
the farther we get from the circuit elements?) 

8 - 1 0 . 5  When the current through a wire is con- 
stant in time, the wire has no bulk charge. (a) If 
the surface charge distribution is ~;s for current l, 
give the surface charge distribution for current 21. 
(b) Discuss how the surface charge can change by 
current flow through the bulk and current flow 
along the surface. (c) Which provides the least re- 
sistance: pure surface currents, pure bulk currents, 
or a combination of the two? 

8 - 1 0 . 6  Consider a resistor of cross-sectional area 
2 mm 2, carrying 1 A. (a) Find the current den- 
sity. (b) If the resistor is of copper, find the electric 
field. (c) Repeat for the resistor made of aluminum. 
(d) If two such wires, one of copper and the other 
of aluminum, are in series, what is the discontinuity 
in electric field where they come in contact? This 
discontinuity is caused by electric charge on the in- 
terface. (e) If the current goes left to right, from 
copper to aluminum, find the sign of the charge, 
and the charge per unit area. Hint: Use Gauss's law. 
Note: This approach doesn't tell how much charge 
is on the copper and how much is on the aluminum; 
a more advanced theory is needed to tell that. 

8 - 1 0 . 7  Consider a wire of uniform cross-sectional 
area A, made of two different materials. Let cur- 
rent flow from the material with conductivity al to 
the material with conductivity a?. See Figure 8.41. 
The current density J doesn't change on crossing 
the surface. (a) Explain why the charge per unit 
area ~s at the interface satisfies I~s > 0 if al < a2. 
(b) Using Gauss's law, find I~s explicitly. 

Figure 8.41 Problem 8-10.7. 

8 - 1 0 . 8  Let current I pass from one wire of cross- 
section A to another cross-section A. Let them have 
conductivities or1 and a2, with al > a2. Let there be 
an intermediate region between the two, of thick- 
ness d, where a -1 varies linearly between a1-1 and 

a2 -1 . Take the relative permittivity K = 1. (a) De- 
termine the electric field in each wire and in the 
intermediate region. (b) Using Gauss's law, deter- 
mine the charge density in the intermediate region, 
and explain its sign. 

8 - 1 1 . 1  Someone says that, instead of (8.65), the 
solutions are 

/ 3 = I  

ll = I  

R3 (R, + Rs) + R, (R4 n u Rs) 
D 

R, (R3 + Rs) + R3(R2 + Rs) 
D 

(8.65') 

Find a check, based upon a specific set of values for 
the resistors, that would distinguish between (8.65) 
and (8.65'). 

8 - 1 1 . 2  Consider a circuit like that in Figure 8.33, 
but with arbitrary values for each resistance. (a) 
How many loop currents must be solved for in this 
case? (b) If all the resistors are 2 S2, the problem 
simplifies. Explain why. (c) If all the resistors are 
2 f2, find the current through each resistor, and the 
equivalent resistance. 

8 - 1 2 . 1  Consider a material with r = 1.2 x 10 -~3 s. 
For what electron density would cop r - 2Jr ? 

8 - 1 2 . 2  A plasma oscillation is observed for which 
o)pr = 42. If r - 5.8 x 10 -13 s, find the electron 
number density. 

8 -G.1  You have a blender and a computer, each of 
which takes a 12 A fuse. One is a fast-blow fuse and 
one is a slow-blow fuse. Which device gets which 
fuse, and why? 

8 -G .2  Consider a large square network (e.g., 100 
by 100) ofidentical resistors R. Using the nodal rule, 
show that the voltage at any interior node is the av- 
erage of the voltages at the surrounding four nodes. 

8oG.3 An ideal 400 V emf drives a current 
through a load resistor R and a 30 km long 
twisted-pair copper cable (15 km each way), each 
strand of resistance Rw and radius 1.6 mm. At some 
point along the cable, an unknown fraction c~ from 
the emf, there is a short, with unknown finite resis- 
tance R s, across the two strands of the cable. See 
Figure 8.42. With the load resistance disconnected 
(e.g., consider that R--~ ~ ) ,  the source provides 
2.60 A. (Call the circuit resistance Rc in this case.) 
With the load resistance shorted out (e.g., consider 
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that R -+ 0), the source provides 5.15 A. (Call the 
circuit resistance Rb in this case.) (a) Find the re- 
sistance Rw. (b) Find ~ and Rs. Probably this is 
solved most easily by numeric means. (c) Show that 
2o~Rw = Rc - v / (2Rw - Rb)(Rc - Rb). On solving 
for ol Rw, we find Rs by Rs -- R b -  2c~Rw. This el- 
egant solution is due, independently, to the 19th- 
century telegraph engineers Blavier and Heaviside 
(who had no calculators). 

aRw (1-a)Rw 

aR w (1 -a )R  w 

Figure 8.42 Problem 8-G.3. 

8-G.4 A bridge circuit of capacitors has capaci- 
tances 1 and 2 in the upper arms, 3 and 4 in the 
lower arms, and 5 in the bridge (capacitances in 
units of #F). Find the overall capacitance of this 
circuit. 

8-G.5 Verify that the equation for Rbridg e gives 
the expected results when Rs = 0; Rs - ec; Ra = 
0; Ra = e~. 

8-G.6  Consider a point P of a circuit with an emf 
g and a resistor R in series. Initially, it is at the 
same voltage as an external ground point. Let point 
P now be connected to the positive terminal of a 
12 V battery whose other terminal is at ground. See 
Figure 8.43. (a) What effect can there be on the 

8 

p 1 

. . . . . .  

Figure 8.43 Problem 8-G.6. 

charges on the wire in the circuit? (b) What is 
the long time effect on the current in the circuit 
itself? 

8-G.7 A 12 V power supply with unknown inter- 
nal resistance r recharges a battery with unknown 
emf g and internal resistance 1 fa with 5 A in parallel 
with an indicator bulb of resistance 3 fa that draws 
1 A. (Figure 8.44 draws the internal resistances ex- 
ternally, as is commonly done.) Find: (a) 1 4 -  G; 
(b) the current through the power supply (and its 
direction); (c) r; (d) g. 

12V r 
pvv  

I 

1A 3.(2 

Figure 8.44 Problem 8-G.7. 

8 - G . 8  Consider that the exterior of a cellular 
membrane of area A has an electrical potential that 
is A V higher than the interior potential. Take the 
membrane to have specific capacitance Cm (units 
of F/m2). (a) Relate the charges on the interior and 
exterior surfaces to A V and the properties of the 
membrane. (b) Considering that this A V causes cur- 
rent to flow across all parts of the membrane surface, 
of specific resistance Rm (units of S2-m2), relate the 
current flow through the membrane to this volt- 
age. (c) Show that the voltage difference goes to 
zero expoentially, with relaxation time r = Rm Cm. 
Hint: To be specific, consider a membrane shaped 
like a spherical shell. 

8 -G .9  Find the unknown currents in Figure 8.45. 

6A 
y 

6V 7 ~  
I 

17 

6 

5 ~  

Figure 8.45 Problem 8-G.9. 
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"We regard the end of the needle which points to the north as having a charge of positive 
magnetism, the end of the needle which points to the south as having a charge of negative 
magnetism . . . .  It must be distinctly understood that this method of regarding the magnets 
and the magnetic field is only introduced as affording a convenient method of describing 
briefly the phenomena in that field and not as having any significance with respect to the 
constitution of magnets or the mechanism by which the forces are produced." 

~J. J. Thomson, 
Elements of the Mathematical Theory of Electricity and Magnetism, fifth edition, 

Cambridge University Press (1921 ) 

Chapter 9 

The Magnetism of Magnets 

Chapter Overview 

Section 9.1 provides a brief introduction to the magnetism of magnets. Section 9.2 
summarizes the analogy between magnetic poles and electric charge, and considers 
the interaction of two identical magnets and the magnetic properties of magnetic 
dipoles. Section 9.3 studies the relationship between magnetic dipole moment ~ and 
magnetization M, and considers the practical problems of finding the force required 
to pull a magnet off a refrigerator door and the disturbance of a compass reading 
due to a distant magnet. Section 9.4 discusses the two types of magnetic sources and 
shows how to obtain the magnetic field within a magnet. Section 9.5 distinguishes the 
types of magnetic materials, according to their differing responses in an external field. 
Section 9.6 discusses ferromagnets, in particular, and the magnetization process, as 
described by hysteresis loops. Section 9.7 considers the demagnetization field, which 
is of practical importance for ferromagnets. Section 9.8 applies the results for the 
demagnetization field to analyze particle-deflection experiments. These show that 
magnets behave as if they contained microscopic current sources~as if the electrons 
themselves contain tiny electric currents~rather than magnetic poles. Section 9.9 dis- 
cusses magnetic oscillations, both for large magnets (e.g., compass needles) and small 
magnets (e.g., nuclei); the latter applies to nuclear magnetic resonance (NMR), the ba- 
sis of the powerful diagnostic called magnetic resonance imaging (MRI). Section 9.10 
considers why only some materials are magnets, why some magnets are "hard" and 
some are "soft," and how the world's best hard magnets are designed, i 

9.1 Introduction 

Consider a magnet that attaches a note to a refrigerator door. The magnet, be- 
cause it retains its magnetic properties both in isolation and in the presence of 
other magnets, is known as permanent, or hard. The refrigerator door, because 
it responds strongly to the magnetism of the bar magnet, but  does not retain its 
magnetic properties in isolation, is known as a soft magnet. Ordinary iron nails 
and paper clips are other examples of soft magnets. 

384 
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In general, orientation in a plane is only one of the three attributes of a magnetic 
field (which is a vector): in addition, a magnetic field also has an orientation relative 
to the vertical, and a magnitude. For the earth's magnetic field, all three vary over the 
earth, and tables of these, as a function of position, specified by latitude (we'll use the 
symbol 8*) and longitude (~), have been used in navigation. See Figure 9. l(a). True north 
is defined to be along the earth's rotation axis, which passes through the pole, or North, 
star. In practice, the easterly deviation from true north, called the declination angle (see 
Figure 9. l b), the dip, or inclination angle (positive dip is downward relative to the local 
horizontal plane; see Figure 9.1 c), and the magnitude of the field in the local horizontal 
plane are most conveniently measured. Magnetic north presently is about 1300 miles 
south (about 11 ~ of true north. Magnetic north changes slowly with time, reversing, on 
average, every 300,000 years or so. Navigation has also been done by observing the stars 
and knowing the time of day. It is now done by signals emitted by earth-orbiting man- 
made satellites. Both because the rotation axis of the earth changes with time and be- 
cause the earth moves relative to the stars, even the pole star changes (slowly) with time. 

Greenwich 
meridian 

Polar axis 
Longitude 

itude 

Equator 

Declination angle 

ComWPaSS ~~ N 

S 

Vertical 

~ Dip angle 
. I 

Horiz tal 

a s s  

(a) (b) (c) 

Figure 9.1 The earth's magnetic field. (a) Angles defining longitude and latitude. 
(b) Declination angle in local plane of the earth. (c) Dip angle relative to the 
local vertical. 

Lodestone (the mineral magnetite, Fe3 04) was the first material found to dis- 
play what we would call magnetic properties. Taking advantage of its permanent 
magnetism, it was used in China over 2000 years ago as a navigational aid. It has 
been used for over 1000 years in the form of compass needles that orient along 
the earth's magnetic field. 

A characteristic value for the magnitude of the earth's magnetic field (which 
includes both the horizontal and vertical components) is 0.5 x 10 -4 tesla (T). 
The SI unit for the magnetic field, the tesla = T = N/A-m, is named after Nikola 
Tesla, who during the 1880s developed the first ac (alternating current) motor. 
In cgs-emu units, the unit of magnetic field is the gauss (G), where 1 G - 10 -4 T. 

9~1ol 
[ej ~l l~( In~l  | 

Some History 

The earliest known work on magnetism in the western literature is by Pierre de 
Maricourt, also known as Peter Peregrinus, in 1269. He describes how to locate a 
good natural magnet, or lodestone, how to shape it into a sphere, how to locate its 
poles, and how to locate its north by placing it on a small wooden vessel floating 
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within a large vat of water. He also gave a rule for the interaction of the poles 
of two different magnets: opposite poles attract. Surprising to moderns, there was 
no corresponding statement that like poles repel: rather, according to Peregrinus 
they only seem to repel: 

. . .  the Northern part in a stone attracts the Southern part in another stone, 
and the Southern the Northern. But if you do the opposite, namely, bring the 
Northern part toward the Northern, the stone which you are carrying in your 
hand will seem to repel the floating stone, and if you apply the Southern part 
to the Southern, the same will happen. The reason is that the Northern part 
feels the Southern, which makes it seem to repel the Northern; of this there 
is a token in the fact that the Northern part will in the end join itself to the 
Southern. 

Peregrinus's hypothesis certainly satisfies the spirit of Occam's razor~ 
simplicity~but it does not satisfy the fact that like poles really do repel, 
as can be seen more clearly with long bar magnets than with spherical 
magnets. 

In 1600, Gilbert published his opus De Magnete, which discussed many prop- 
erties of permanent magnets, noting that they have no net pole strength, and in- 
cluding the statement that "opposite poles attract and like poles repel." Thus, 
by 1600, it was known that the force between two poles acted along their lines 
of centers, and could be either attractive or repulsive. The inverse square law 
between poles of two long bar magnets was established first by the Englishman 
John Michell around 1750, and independently by Coulomb, around 1785, both 
of them using torsion balances. At this point, it became possible to give a 
quantitative description of magnetism in terms of the interactions of magnetic 
poles. 

On the other hand, in 1820, Oersted discovered that electric currents 
can deflect a compass needle. Almost immediately, Ampere realized how per- 
manent magnetism could be described in terms of electric currents. There 
is a fundamental distinction between these two descriptions of magnetic 
sources. 

9.1.2 Two Ways to Treat Magnets 

A magnetic pole produces magnetic flux but no magnetic circulation, and thus 
may be called a flux source. Its field line drawing rules are like those for electric 
fields due to electric charges at rest: field lines originate (terminate) on positive 
(negative) poles, and field lines do not close on themselves. Magnets behave as 
if they contain magnetic poles that sum to zero, so that zero net magnetic flux 
leaves any magnet. Figure 4.2(a) illustrates an electric field and a volume from 
which a net electric flux emerges. 

Chapter 11 shows that the magnetic field due to an electric current produces 
magnetic circulation but no magnetic flux, and thus may be called a circulation 
source. Its field-line drawing rules are that there are no poles, and that field lines 
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Although true magnetic poles have not been observed in any laboratory, they are pre- 
sented for two reasons. First, the formalism of the magnetism of magnetic poles, which 
is a reprise of the electricity of electric charge, is much simpler than the formalism of 
the magnetism of electric currents. (For that reason, in practice the magnetic pole for- 
malism is employed to design both large magnets used in magnetic resonance imaging 
and in particle accelerators, and the microscopic magnetic particles used in magnetic 
recording tape and in computer hard drives.) Second, the next two chapters, which 
obtain all the laws of the magnetism of electric currents, begin with the magnetic pole 
formalism and the equivalence between a magnet and a current loop (when both are 
viewed from a distance). 

can close on themselves. Figure 5.18 illustrates an electric field and a circuit for 
which there is a net electric circulation. 

Only by performing experiments that actually probe the interior of a magnet 
can we distinguish between the two types of source; the experiments favor the 
electric current viewpoint. Nevertheless, as long as we are outside a magnet, we 
cannot tell whether it is a flux source with zero net magnetic charge or a current 
source. Therefore it is legitimate to treat the exterior of the magnet using the 
formalism of magnetic poles, which has a similar structure to the already studied 
formalism of electric charges. 

The present chapter considers the magnetism of magnets as if it is due to 
magnetic poles, with an inverse square law like that of electricity. Chapters 10 
and 11 discuss the magnetism of magnets as if it is due to electric currents, which 
requires a more complex formalism. 

Outside a Magnet We Can Use Magnetic 
Charge (Poles) 

It is an experimental fact that outside a magnet its magnetic properties can 
be obtained by treating it as if it contained a distribution of magnetic poles, or 
charges, whose numerical value summed over the magnet is zero. From Michell's 
and Coulomb's work on long, narrow bar magnets, the interaction between two 
poles varies as the inverse square of their separation. To be more precise, we 
must specify a unit of magnetic charge qm, which is analogous to electric charge 
q, and a magnetic force constant kin, which is analogous to the electric force 
constant k. We will choose units of magnetic charge, or pole strength, such that 

~0 _ 1.0 x 10 -7 N/A 2 exactly. Here #0 is called the permeability of free 
m ~  4 J r  m 

space. With this set of units, Table 9.1 summarizes the basic correspondences 
between electric and magnetic poles. 

A literal analogy between electricity and magnetism would, by analogy to 
Chapter 1, consider conservation of magnetic charge and provide examples 
where magnetic charge is transferred between two objects but overall is con- 
served. However, because each magnet has zero net magnetic charge, there can 
be no such transfer of magnetic charge between magnets. The remainder of this 
section and the next section applies the analogy between electricity and mag- 
netism to magnetic charge, magnetic force, and magnetic field. 
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Table 9 . 1  Electric charge and magnetic pole equivalences 

Ouan ti~ Electricity Magne~ 

Charge q (C) qm (A-m) 
Field /~ (N/C - V/m) B (T-- N/A-m) 
Force q/~ (N) q m B  (N) 

1 0 9 /z0 __ 1.0 • 10 -7 N/A 2 Coupling constant k -~ ~ ~ 9.0 • 1 N-m2/C 2 k m -  4~ - 

'~ B - -  k m q m T z  Point source E - kq 7z 
Charge/area a (C/m 2) O" m (A/m) 

Sheet source I/~l - 22r klal I I]l = 22r km lain I 
Dipole moment p - ql # = qml 
Dipole moment/volume polarization P - p~ V magnetization M = # / V  
Torque on dipole in field ~ x/~ fi x /3 
Energy of dipole in field - ~ . / ~  - f t .  

9~2,+t Force between Magnetic Poles 

Consider the force F on a pole of pole strength qm at position F, due to another  
pole qml at ~l, as in Figure 9.2. 

By Table 9.1, F satisfies a rule analogous to Coulomb's law, (2.4), for electric 
charges. That is, 

R1 

i :ii!i �84184184184 i )!!!Siiii!)i)i ii!!!iiiiiiiii!i!iiiiii!i!i!iiii i! iili !il ii~!iii~ ii!;ii 

(force on pole qm, t o w a r d  Rl ,  Rl  = ~ ~ ~91 i )  

Example  9.1 shows that  the unit  of magnetic pole strength is A-m. 
Note: For a magnet,  the magnetic poles typically are not  concentra ted only 

at the ends; we can verify this by sprinkling iron filings onto a piece of paper  that  
covers the magnet.  Nevertheless, for simplicity, we will make this idealization. 

~ Interaction two long magnets: of identical bar 
estimating qm 

Consider two bar magnets with length l and cross-sectional area A, and with 
the same pole strength qm (determined by their ability to pick up the same 
number of nails, etc.). L e t / > >  ~ so the magnets are very long. (a) Give 

R 1 = r - r  1 

0 

~ ~  Origin 

Figure 9.2 Two idealized magnets and their 
nearest poles. 
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S =  l = N  N•  l = S  

-qm qm qm --qm 

Figure 9.3 Two collinear bar magnets, at a separation 
where their interaction is dominated by the nearest 
poles, and those poles can be treated approximately as 
points. 

an equation for estimating the force between the magnets when they are 
collinear, with two like poles so close that they provide the dominant force, 
but  farther away than d - ~  See Figure 9.3. (b) For l - 20 cm - 0.2 m, and 
a square cross-section of side a - ~ 7 ~ _  0.5 cm - 0.005 m, let I FI - 0.34 x 
10 -1 N when r = 0.04 m. Estimate qm. 

Solution: (a) If the separation r between the two nearest poles greatly exceeds the 
width of the poles, then it is a good approximation to consider only the interaction 
between these poles, treated as points. Hence, from (9.1), with qml = qm, 

km(qm) 2 
I FI ~ r-------T---. (equal strength poles interacting) (9.2) 

(b) Solution of (9.2) yields q~ - r(I/~l/km) ]/2 - 23.3 A-m. Including the forces 
between the other poles (two attractive interactions at separation r + l ~ l, and 
a repulsive interaction at separation r + 2I ~ 2l) would give a more accurate 
estimate for qm. 

Measuring the Magnetic Field 

Just as for electricity the  force on a charge q in an electric field E is F - q E,  so 
for magnet ism the force on a magnet ic  pole qm in a magnet ic  B field is 

Using this equation, wi th  a known pole strength qm, a measu remen t  of F gives 
B, wi th  units of tesla (T). Example  9.2 shows tha t  T -  N/A-re .  Hence  the unit  
of magnet ic  charge has units of A - m -  N/T. 

M e a s u r i n g  the field due to a magnetic pole 

Find the field due to one pole at the other in Example 9.1. 

Solution: By (9.3), IBI = ]F/qm] = 0.34 x 10 -] N/(23.3 A-m) = 1.46 x 10 -3 T. 

9o2~3 Field of a Monopole 

Compar ing  (9.1) and (9.3), the field set up at ~ by qml at ~1 is given by 

ii i i ili !! ii ii iiiiiii ili ii i i iiliii i! i iiiiiiiii iii iiii i:!ii! ii! iii iii iiii~ii ili ill iii ii !!i iiiiiiiiil iil ii iiiiii ii !iiii iiiii !! iii iiiil iilii! ii iii!i i iii!il ii !iiili i !iilii iil iiiiil iiiii i!ili ii i iiiiiiiiii iiii iii !iii ii!i iiiii iiiiii! ii!iii i!i!i!ii il iiiii!!! ii! ii!iiiiii iii:2i iiii:ii !i! iiiiiiiii !i !iiiiiiiii ii i 
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North pole South pole 
(a) (b) 

Figure 9.4 Magnetic field direction and sign 
of poles: (a) Positive poles make outward 
magnetic field. (b) Negative poles make 
inward magnetic field. 

9~2.4 

See Figure 9.2. As for the electric field/~, the magnetic field B points away from 
positive (north) poles, and toward negative (south) poles. See Figure 9.4. 

Magnetic Dipoles 

Consider a magnet of length I and pole strengths +qm. Let us find the field on 
its axis, a distance r from its center, as in Figure 9.5(a). By (9.4), at the center of 
the compass needle the magnetic field due to the magnet points along its axis )~, 
with magnitude due to both qm and - q m ,  given by 

kmqm k m ( - q m )  (r + I /2 )  2 - (r - l / 2 )  2 2kmqmrl 
Bmag = (r - I /2 )  2 q- (r + l / 2 )  2 = kmqm (r 2 _ 12/4)2 = (r 2 _ 12/4)2. 

(9.s) 

~ A  magnet can disturb a compass reading 

Consider a magnet with the same pole strength as in the previous example, so 
qm = 23.3 A-m, but let its length be only l = 1 cm. Let the earth's field point 
along true north and, as shown in Figure 9.5(a), let the the magnet be 20 cm 
west of, and point toward, the compass needle. Determine by how much the 
magnet disturbs the orientation of a compass needle. 

Solution: Consider each pole separately, so that (9.5) applies. Let the in-plane 
(horizontal) component of the earth's magnetic field be Beh, and let it point along 

2qm qm d 

1 ~ I ~ ~ , ~  

(a) 

BEh 

Bmag 

Co) 

Figure 9.5 (a) Compass needle along axis of bar 
magnet. (b) Decomposition of total magnetic 
field acting on the compass needle into its 
components due to the earth and due to the bar 
magnet. Effect of a bar magnet on the local 
magnetic field. Without the bar magnet, the 
needle would point toward the top of the page. 
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3~. Since r - 20.5 cm, (9.5) gives Bmag - 0.541 x 10 -5 T. The needle aligns along 
the direction of the net magnetic field (see Figure 9.5b). Hence this field will 
cause the needle to rotate from 3~ toward ~ by an angle ~) satisfying 

tan~) = Bmag. (9.6) 
BEh 

Taking BEh = 5.0 • 10 -5 T, this gives tan~) -0.116,  corresponding to an an- 
gular deflection of 6.7 ~ In centuries past, no wonder sailors were warned to 
keep magnets and iron from the vicinity of the navigator's compass. Today, 
global navigation systems employing satellites have made the navigator's com- 
pass obsolete; however, magnets don't stop responding if the satellites stop 
functioning. 

An electric dipole with charges +q separated by l has an electric dipole mo- 
ment p - ql, and the vector ~ points from the negative to the positive charge. 
Similarly, a magnetic dipole with poles -+-qm (in units of A-m) separated by l, has 
a magnetic dipole moment 

i iiiiiiiii iiiii i iiiiiii iiiiiiii!iiiiiiiiiiiiiiii!iiiii iiiiii!ii i  i! !!ii  iiii!!!!  !  ii!iiiii!i i! !i i  i!ii i iiiii!!ii  ! i  ii  !iiiii iiiiii!i  ii iiiiiiiii i iiii!iii  i iiiiiiiiiiii iiiiiiiiii ii iiiiiii  
The vector # points from the negative to the positive pole. It has units of A-m 2. 
See Figure 9.6(a). Some field lines for it are drawn in Figure 9.6(b). 

Consider (9.5) when r >> l, so r/(r  2 -  12/4)2~ r / r 4 =  1/r 3. Then, using 
(9.7), Equation (9.5) becomes 

2km, 
Bmag ~ r3 �9 (on axis) (9.8) 

The field of a magnetic dipole falls off with distance as r -3, just as for an electric 
dipole [compare (3.12)]. Applied to Example 9.3, where q m -  23.3 A-m and 
l =  1 cm, (9.7) yields ~ t -  0.233 A-m 2. With r -  20.5 cm, (9.8) then yields 
5.41 • 10 -6 T, in three-decimal place agreement with the exact calculation of 
Example 9.3. 

Figure 9.6 Bar magnet: (a) relationship between 
poles and direction of magnetic moment, 
(b) field-line pattern. 
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Figure 9.7 A bar magnet suspended by a string 
in the earth's gravity and a uniform horizontal 
magnetic field. 

~ Suspended magnet in a horizontal B field 

Consider a magnet of mass m, length l, and magnetic moment /~ ,  where 
/~ - I/~l. It is suspended from the ceiling by astring, its N pole toward ground, 
due to gravity. A horizontal magnetic field B is now applied, where B = ]B]. 
See Figure 9.7. (a) Find the condition that determines the equilibrium angle. 
(b) Find the change in magnetic energy on going from 0 - 0 ~ (aligned with 
the field) to the equilibrium 0. 

Solution: (a) The field acts to make fi point rightward, along B, at angle 0 with 
respect to the vertical. Since the angle between/~ and B is rr/2 - 0 ,  the torque 
from/~ x B is counterclockwise, and of magnitude #B sin(rr/2 - 0) = #B cos0. 
By taking the torque with respect to the point of contact with the string, the torque 
from the string tension T can be neglected. However, the torque from gravity is 
clockwise, and of magnitude rag(I~2)sin 0. When the magnet is in equilibrium, 
these two torques are equal, or 

# B cos 0 = mg(l/2) sin 0, 

leading to the condition that tan0 = (21~B)/(mgl). (b) The change in magnetic 
energy on going from 0 = 0 ~ to this 0 is given by the final energy minus the initial 
energy, or (from Table 9.1) 

- [ - / ~ B  cos(rr/2 - 0) - ( - # B  cos(0))] = -#B(1  - sine). 

This is negative. On the other hand, the change in gravitational energy, 
!mgl(1 -cos0) is positive. For the magnet to go spontaneously from 0 ~ to 0 2 , 

the overall change in energy must be negative. 

Magnetizat ion and Magnetic Dipole Moment 

A magnet  is characterized by its magnetization 2(/I, which we now define and 
relate to a number  of impor tan t  properties of magnets. 

Magnetization IV! Is Magnetic Dipole Moment 
per Unit Volume 

Although we did not  use this terminology earlier, the electric dipole m o m e n t  per 
unit  volume is called the polarization f', where /3  _ ~ / V .  Similarly, the magnetic 
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dipole moment  per unit volume is called the magnetization 2(/1, where 

........................................................................................................................................................................................................................... ~ .............................................. ~ ........................................................................................................................................................................................... i ........................................................................................................................................................................................................................... 
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2V/has units of magnetic pole strength per unit area, or N/(T-m 2) - A/m. Because 
M is independent of the volume of the system, for many purposes it is a more 
fundamental quantity than ~. 

9~3~2 "Magnetic Charge" per Unit Area ~ Equals 
Magnetization M 

Consider a bar magnet of uniform magnetization M -  I2V/I, length l, and cross- 
sectional area A (so its volume V -  AI), as in Figure 9.6(a). By (9.9), it has 

# - M V  - MAI .  (9.10) 

Comparison of (9.7) and (9.1 O) yields the length-independent "magnetic charge," 
or pole strength, 

# MV 
= MA. (9.11) 

q m - T -  l 

Hence the charge densities on the surfaces a r e  - ] - ( 7  m - +qm/A~ Use of (9.11) then 
yields 

iS ;iiJiiiiJjiY;iii!2iJiiiJ;iiiili;iiiiii!iiiiii!iii!;ii !ii!~i;!~iii~i!i~ii ~iiii;!i iii!ii;i@i~ !l!~!~i~iiiiiii~i!~i~iil iiiiiii!i!ii ill !iiii ~i  ~lli 
i iii!ii!!iiii':iiiiiiiiiiiiiil i iiiii! iii!iiiii  ii!iiiiiiiii!iiiiiii ii iiii !iiiiiii@i!  iii  i ii i iiiii!iiiiii! i! i ii iiii i! i i iiii iii! iii i ii!ii !ii iii i ii ii   i i  iiiii  i i iiii!iiiii!iii 
This result can be stated more generally: at a surface with outward normal fi, 
the magnetic surface charge density Crm is related to the magnetization 2~/at that 
surface by 

o m - -  M. ft. (9.12') 

For a bar magnet, 2V/usually is along its axis. Since the normal t~ to a side of a 
magnet is perpendicular to the axis, there usually is no magnetic charge along 
the sides of a bar magnet. 

~ From magnet ic  magnetization moment to 

Consider the bar magnets of Example 9.1 (qm = 23.3 A-m, A = 0.25 x 
10 -s A / m  2, l = 0.2 m). Find their magnetic moment and magnetization. 

Solution: By (9.7), ~ t - q m l -  (23.3 A-m)(0.2 m) = 4.66 A-m 2. By (9.11), 
M = q m / A -  9.32 x 10 s A/m. This is slightly less than for the alloy alnico V 
(sometimes used for loudspeakers). 
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9~3~3 Magnetic Field Due to a Sheet of "Magnetic Charge" qm 

In the analogy between electricity charges and magnetic poles, we replace k by 
kin,/~ by B, and q by qm. Hence the electric field due to a sheet of uniform charge 
per unit area ~, I EI - 2;rk~, has as its magnetic analog, 

IBI = 2 n / ~ a ~ .  (field due to sheet o f " m a ~ e t i c  ch~gei ' ) :  (9113) 

By (9.12), this may be rewritten as 

I B I -  2~rkmM. (9.14) 

~ B just outside the end of a long magnet of alnico V 

Consider a long bar magnet made of the alloy alnico V, of length l = 20 cm 
and square cross-section of area A = 1 cm 2. Let its M be along its axis. See 
Figure 9.6(a). At room temperature in zero applied field, alnico V has M = 
9.95 • 10 s A/m. Estimate the field on the axis of the magnet, 1 mm outside 
the north pole, and find the magnetic field of the distant pole. 

Solution: At 1 mm outside the north pole, which is nearly 20 cm from the south 
pole, the total magnetic field is dominated by the contribution from the north 
pole. Moreover, since the pole faces each have width a - v ~  = 1 cm, which is 
much larger than 1 mm, the north pole appears to be a sheet of magnetic charge 
density O "  m - -  Mr = 9.95 x l0 s A/m. From (9.13), B - 2Jrkmffm -- 0.625 T, which 
is more than 10,000 times the earth's magnetic field. Note that, by (9.4), the 
magnetic field of the distant pole of this bar magnet is kmqm/r  2 - k m ~ m A / l  2 = 
2.49 • 10 -4 T, which adds a contribution much smaller than that due to the near 
pole, but about five times that of the earth. 

9~3~:4 Lifting Strength of a Magnet: 
Parallel-Plate Capacitor Analogy 

When a permanent magnet of magnetization M along its axis is placed against the 
surface of a refrigerator (a soft magnet), the permanent magnet is attracted by a 
force we will call its l i f t ing s t rength .  Only if we pull harder than the lifting strength 
will the magnet come off. It can be estimated as follows. When a permanent 
magnet is brought up to a refrigerator door, the refrigerator responds as if it had 
an image magnet of the opposite polarity within. See Figure 9.8. Hence there is 

Figure 9.8 Permanent magnet in shape of a bar, 
placed very near the face of a large soft iron 
magnet. This is related to the geometry of a 
magnet on a refrigerator. The soft iron responds 
as if there were an image bar magnet of 
opposite polarity and (nearly) equal strength. 
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an attraction between the permanent magnet and the refrigerator. (The dominant 
effect arises from the near end of the magnet and its image.) However, if you look 
inside the refrigerator there will be, perhaps, a tuna sandwich, but certainly no 
image magnet. This attraction is similar to what happens with the amber effect, 
discussed in Section 1.2; a more precise analogy is to a small electric charge that 
is brought up to a large sheet of electrical conductor. 

Let the magnet have its N pole, a flat surface of area A, against the refrigerator. 
Then there is an image magnet (S pole) just against the magnet; for Figure 9.8, 
consider that the gap between the actual N pole and the image S pole is very 
small. This geometry is just like that for two nearby capacitor plates. (Magnetic 
poles can't move, so contact can't cause discharge.) Neglecting edge effects, the 
magnetic field acting on the image pole, due to the actual magnet, is given by 
(9.14). Use of (9.3), (9.12), and (9.14) yields 

1/~]- ]--qm] 1/~]- (r~mA) (2rrkmM) - (2rrkm)M2A. (lifting strength) (9.15) 

For the alnico V magnet ofthe previous example, qm - c r m A -  (9.95 x l0 s A/m) 
(10 -4 m e) - 99.5 A-m, giving a force I /~ l -  (99.5 A -  m)(0.625 T) - 62.2 N. 
In terms of the force per unit area, this amounts to F / A -  62.2 N/10  -4 m 2 = 
6.22 x 10 s N / m  e, or about six times atmospheric pressure. 

~ Estimating the magnetization from the lifting strength 

A 28 cm long permanent magnet has a 0.2-cm-by-0.2-cm cross-section. Its 
north pole is held 0.1 mm from a refrigerator door (made of soft iron). 
A force of 0.018 N is required to pull the magnet off the door. Estimate 
its magnetization (magnetic moment per unit volume). Briefly explain your 
reasoning. 

Solution: Since the refrigerator door is made of soft iron, it responds as if it had an 
image magnet inside it. Since the door and the magnet are much closer (0.1 mm) 
than the magnet width (0.2 cm), the near pole of the magnet produces a nearly 
uniform field within the image magnet region of the door. Moreover, since the near 
pole is much closer to the refrigerator (0.1 mm) than the distant pole (28 cm), 
the near pole dominates. The near pole and its image may be treated as sheets, so 
(9.15) applies. Solving for M yields M -  ~FI/2JrkmA. With A - 0 . 0 4  cm 2 and 
I FI = 0.018 N, this yields M = 8.46 x 104 A/m. 

9~ Inside a Magnet  There Really Are No Poles 

Although, outside a magnet, its properties can be described in terms of the 
magnetism of magnetic charges, or poles, no one has yet observed any isolated 
magnetic pole: the sum of the pole strengths distributed on any magnet sums to 
zero. Break a magnet into two or more pieces, and each piece will have zero 
net pole strength, poles seeming to appear at the point of the break. See 
Figure 9.9. Place the pieces near one another, and they will spontaneously attract, 
tending to resume the original shape, with the poles at the break canceling one 
another. 
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Before After 

Figure 9.9 Effect of breaking a bar magnet: 
(a) Before breaking it, it appears to have two 
poles. (b) After breaking it, there appear to be 
two smaller magnets, each with the same pole 
strength as the original magnet. 

9.4~I The Name of the Field If  Magnets Really Contained 
Magnetic Poles: ~i 

The only way to tell ifthere are poles inside a real magnet is to do an exper iment~ 
such as discussed in Section 9 .8~tha t  actually probes the interior of the magnet. 
For comparison with such experiments, it is convenient to have a name for the 
quantity computed as if magnetic poles really did exist. Although we have been 
calling the symbol B the magnetic field, in the early 19th century, physicists 
called a symbol H the magnetic field. In the SI system, B and H have different 
units, which helps distinguish between them: in free space, 

- , ~ t0 -4z rkm-4Zr  x 10 - 7 N  s A2. (free space) (9.16) 

For B, the rulesgiven in Table 9.1 hold only outside a magnet. However, on 
replacing B by/~0H, these rules hold for #0H both inside and outside a magnet. 
As we will see shortly, B and/7/, within a magnet, have a more complex rela- 
tionship than (9.16). 

When physicists say "magnetic field," they usually mean B, which technically 
is called the magnetic induction. To avoid this possible ambiguity, we sometimes 
employ the usage magnetic B field or simply B field, and magnetic/7/field or 
simply H field. 

By analogy to Gauss's law relating the flux of/~ through a closed surface to 
the electric charge enclosed by that surface, or 

�9 ~ - f E. ~ d A -  42rkQ~, (9.17) 

with our choice of H due to magnetic charge Qm, w e  have 

f _, 
#oH. ~ d A -  4rrkmQm,enc, or ~n -- f f-t. ~dA-Qm,enc. (9.18) 

With Beart h ,~ 0.5 x 10-4 T, by (9.16), we have Heart h ~ 39.8 A/m. Sometimes the unit 
for H is given as A-turns/m. The dimensionless unit "turns" is appended to distinguish 
the SI unit for the magnetic H field from that of the SI unit for the magnetization, which 
is A/m. "Turns" arises because, as shown in Chapter 11, current-carrying coils wound 
with many turns of wire also can produce a magnetic H field (and a magnetic/~ field). 
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For electrostatics and for permanent magnets, there is zero circulation in the 
sense that, on integrating around a closed path with path element dg = ~ds, 

Fe = J E . ~ d s - O ,  CH-- f I~.~ds = 0 .  (zero circulation) (9.19) 

Thus E due to static charges, and/7/for permanent magnets, have flux sources 
but no circulation sources. Chapter 11 shows that electric currents serve as circu- 
lation sources for B and/7/. Chapter 12 shows that time-varying B-fields serve 
as circulation sources for E. 

9.4.2 
- . +  

Since B Has Zero Flux, 
Its Normal Component Is Continuous 

Since there are no isolated magnetic poles,/3 cannot have flux as its source, so 
~B - 0 for all closed surfaces. Thus, whatever flux enters one part of a closed 
surface, the same amount must leave another part of it. Consider a pancake- 
shaped Gaussian surface (a "pillbox") enclosing a magnet face, as in Figure 9.10, 
with outward normal ft. By this argument, the normal component of B, o r  Bn - 

- +  

B. fi, must be continuous across the face. We now use this continuity of Bu to 
determine B within the magnet. 

Consider a bar magnet so long that near one end we can obtain the field/7/ 
by considering only the magnetic charge at that end. From (9.13) and (9.16), 
/ , o H -  2srk~crm just outside this "sheet" of magnetic charge, with the direction 
of/7/changing as we go from inside to outside the magnet. See Figure 9.11 (a). 
Thus, at its poles there is a discontinuity in #0/q. fi (from 2rckmam to -2Jrkmcrm). 
Hence #o(Hout - Hin) has magnitude 4zrkm~m - 4~rk~M - #0M. Since we want 

.-+ _ +  - ~  

B i n -  Bout at the interfaces, this suggests the following definition for B. With 
.-+ 

H obtained, both inside and outside the magnet, by the rules of Table 9.1 in 
Section 9.3 (with/3 -+ #0f/), and with 2(4 known, we set 

- #0(/q + 2~. (general definition of/3) (9.20) 

In free space, where 2(4-6,  (9.20) reduces to (9.16). In general, (9.20) also 

Figure 9.10 The normal component of the magnetic 
field B is continuous on going from within a magnet 
to outside a magnet. An allowed/~ and a disallowed 

- +  

B are depicted. 
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Figure 9.11 Comparison of the behavior of B and/7/ 
on crossing from within a magnet to outside the 
magnet, for a surface with positive magnetic poles. 
(a) H, whose normal component is not continuous. 
(b) B, whose normal component is continuous. 

makes the normal component of B continuous at all interfaces because it adds 
the missing # 0 ~  within the magnet. See Figure 9.11 (b). Because the normal 
component of B is continuous, B does not have magnetic charge as a flux source. 
Hence 

J B �9 f z d A -  O. (Gauss's law for magnetism) (9.21) 

If true, or "free," magnetic charges are discovered, (9.21) can be modified to 
incorporate them. Free magnetic charge would be a flux source for both B and 
H. Following the analogy toelectricity, we can compute/_7/for a given set of qm'S, 
and then we can compute B. 

Types of Magnetic Materials 

Figure 9.12 Two weak types of magnetism. (a) 
Paramagnetism (material attracted to strong 
field regions; magnetic analog of the amber 
effect). (b) Diamagnetism (material repelled 
from strong field regions; no electrical analog). 

It is well known that, unlike the hard and soft magnets we have discussed so 
far, most materials have no obvious magnetic properties. However, when put in 

a (large) nonuniform magnetic 
field, most materials are either at- 
tracted (paramagnets) or repelled 
(diamagnets). See Figure 9.12. 
Dielectrics, when placed in a 
nonuniform electric field, are at- 
tracted (paraelectrics), but there 
are no electrical analogs of dia- 
magnets. [The attraction is a con- 
sequence of the amber effect, 
for which there is a magnetic 
analog. One may think of dia- 
magnetism as the magnetic ana- 
log of an (imaginary) antiamber 
effect.] 
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9~5ol 

9~176 

Paramagnets and diamagnets develop small magnetizations that are pro- 
portional to the applied field f/, so that 

- +  - +  

M - x H. (9.22) 

Here X ("chi") is called the magnetic susceptibility. Since 2(4 and/7/have the 
same units, x is a dimensionless quantity. It is material dependent and temper- 
ature dependent. For paramagnets X > 0, and for diamagnets x < 0. In small 
fields, (9.22) also holds for soft ferromagnets (x > 0) and for perfect diamagnets 
(x = -1),  provided that account is taken of the demagnetization field produced 
by the material itself, as discussed in Section 9.7. 

When (9.22) holds, Equation (9.20) can be rewritten as 
- +  . .+ - +  .-+ --~ - +  

B - # o ( M  + H )  - # o ( 1  + x ) H -  #o#rH- t, tH. (9.23) 

Here we introduce the notation 

/J, =_/,to/,tr, ~-  = ( ]  + X) (9.24) 

for the permeability l* and the relative permeability #r.  Permeability has the same 
symbol as the magnetic moment, so beware of the possibilities of notational 
confusion. 

For low to moderate fields, (9.22) also holds for soft ferromagnets (such as 
used in transformers). However, hard ferromagnets, and soft ferromagnets in 
large fields, are not described by (9.22). 

Paramagnets Are Attracted by Magnetic Fields 

As indicated, paramagnets, when placed in a nonuniform external magnetic field, 
are attracted to the large field region. See Figure 9.12(a). Moreove~ because they 
have x > 0, their magnetization M points along the applied field H. Paramagnets 
have a weak tendency to concentrate the magnetic field. 

Examples ofparamagnetic materials are A1, Ba, U, CuO, with x ~ 10 -s. Some 
materials, such as CuSO4 and the rare earth atoms (and their compounds), are 
"strongly" paramagnetic, with x as large as 10 -3. At the microscopic level, the 
properties of paramagnets are due to the permanent magnetism of the tiny elec- 
tronic magnetic moments of electrons, and their local environment within the 
material. However, unless a magnetic field is applied, these electronic magnetic 
moments typically point randomly relative to one another, and therefore yield no 
net magnetic moment. Applying a small magnetic field tends to make them have 
a small component of their magnetic moment along the field, thus explaining 
why x in paramagnets is usually small but positive. 

Diamagnets Are Repelled by Magnetic Fields 

As indicated, diamagnets, when placed in a nonuniform external magnetic field, 
are repelled from the large field region. See Figure 9.12(b). Moreover, because 
they have x < 0, their magnetization 2~/points opposite to the applied field/7/. 
Diamagnets have a weak tendency to "expel" the applied magnetic field. Diamag- 
netic materials include Cu, Cu20, water, the noble gases, and ionic crystals. At 
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Figure 9.13 Effect on the magnetic field of two strong 
types of magnetism. (a) A perfect diamagnet repels 
magnetic field. (b) A soft ferromagnet attracts a 
magnetic field. Here the magnetic field is B, whose 
normal component is continuous at surfaces. 

room temperature, most materials are diamagnetic, with x ~ - 1 0  -5. Graphite 
has a x that is 20 times this large. At the microscopic level, diamagnetism is 
due to the magnetic field of the electric currents from electron orbitals. We will 
discuss the magnetism of electric currents in Chapters 10 and 11. 

Perfect diamagnetism is an extreme form o f  diamagnetism. A perfect dia- 
magnet can nearly completely expel an applied B field. See Figure 9.13(a). (By 
"completely expel," we mean that, within its interior, a perfect diamagnet pro- 
duces a magnetic field that cancels the applied magnetic field. This is similar 
to how conductors "screen" electric fields from their interior.) To yield B ~ 0 
in (9.23), perfect diamagnets must have x ~ -1 .  They are invariably supercon- 
ducting. At the very low temperatures where helium can be liquified (4 K), the 
elements Pb and Hg are superconductors~and perfect diamagnets. 

Ferromagnetic Materials 

As already indicated, there are two classes of ferromagnetic materials. 

1. Permanent, or magnetically hard materials, which retain most of their magneti- 
zation when the external magnetic field is removed. Examples are the alnico 
alloys and the recently developed rare earth magnets~such as Nd2FelaB 
(NEO, for neodymium). 

2. The magnetically soft materials, like iron, which become strongly magnetized 
and concentrate an applied magnetic field. See Figure 9.13(b). However, they 
lose most of their magnetization when the external magnetic field is removed. 
Soft magnets are like paramagnets that have a huge x (often exceeding 1000, 
and sometimes as large as 10~). They are useful in electromagnets, in trans- 
formers, in magnetic recording heads, as magnetic "screens," and as "keeper" 
magnets that circulate the magnetic field from one pole to the other on a per- 
manent magnet, to prevent the permanent magnets from demagnetizing. See 
Figure 9.14. As already noted, refrigerator doors are made of a soft magnetic 
material. 

Real ferromagnetic materials have properties associated with both of these 
extreme categories. For example, ordinary iron nails, which are often magnetized 
by wrapping wire around them and passing an electric current through the wire 
(thus producing an electromagnet), retain a small amount of their magnetism 
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B circulates through "keeper" 

Figure 9.14 A "keeper" magnet is made of soft 
magnetic material and is used to retain the magnetic 
field of a permanent magnet, thereby helping preserve 
the magnetism of the permanent magnet. (Despite 
their name, permanent magnets can eventually 
demagnetize.) 

after the electric current is turned off, but they are not very good permanent 
magnets. The names soft and hard arose because it is easier to magnetize iron 
(which is relatively malleable, or soft) than the less malleable, or hard, iron alloys. 

Hysteresis Loops Characterize Magnetic 
Materials in Detail 

A complete characterization of a magnetic material is given in terms of what is 
called a hysteresis loop. This can give either B versus H or M versus H, where H 
is the field within the material. By (9.20), from B versus H, we can determine M 
versus H, and vice versa. (For ordinary paramagnets or diamagnets, the hysteresis 
loops are simply straight lines through the origin; paramagnets have a very small 
positive slope, and diamagnets have a very small negative slope. Such hysteresis 
loops are relatively uninteresting.) For materials with a significant magnetization 
(including soft and hard magnets), it is essential to know the hysteresis loops, 
which have complex behavior not described by (9.22). Examples of M versus H 
for various types of magnetic material are given in Figure 9.15. 

Consider the hysteresis loop in Figure 9.15(a). It starts with path 1, known 
as the initial curve, which begins at M = 0 and H = 0, corresponding to an un- 
magnetized material in zero applied field. Now H is increased to a large value, 
M increasing until it attains the saturation magnetization Ms. For path 2, H is 
decreased, and the magnetization follows along path 2 until H reaches a large 
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Figure 9.15 Hysteresis loops for various types of magnetic materials. (a) A magnet 
that can be easily magnetized and tends to retain its magnetism, but not perfectly. 
(b) A hard magnet, which retains its magnetism until the demagnetization field is 
reached. (c) A soft magnet, which magnetizes and demagnetizes easily. (Even the last 
kind of magnet can show a certain amount of hysteresis, wherein the magnetization is 
not a single-valued function of the applied field. However, there is no hysteresis on 
the scale of this figure.) 
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Wilhelm Weber, in the mid-19th century, considered that the fundamental unit of mag- 
netism is something like an indivisible atomic magnet; normally, the positive pole of one 
atomic magnet cancels the negative pole of an adjacent magnet, leaving only poles at 
the ends of the magnet. A significant advantage of this picture is that it explains why 
the magnetization of magnets saturates. The magnetic poles on a magnet can appear 
to redistribute when subjected to external magnetic fields (or when heated nonuni- 
formly). We interpret this in terms of a rearrangement of the atomic magnets rather 
than a motion of true magnetic poles within the magnet. The characteristic magnetic 
moment of an atomic magnet is the Bohr rnagneton #B = eh/4rrrne = 9.27 x 10 .24 

A - m  2. Here h = 6.63 x 10 -34 J-s is Planck's constant, and m e -  9.11 x 10 -31 kg is 
the electron mass. One /~B per cube 2 x 10 -1~ m on a side gives a magnetization 
M = 9.27 x 10 -24 A-m2/8 x 10 .30 m 3 - -  1.16 x 10 6 A/m, which is very close to the 
saturation magnetization of common magnets. 

reversed value. (Notice that when H - 0, the remanent magnetization Mr is sig- 
nificant.) For path 3, H is increased from a large reversed field to a large positive 
value. Paths 2 and 3 are known as major loops. 

Although only the complete hysteresis loop can fully characterize a magnet, 
three aspects of the loop are of special interest (see Figure 9.15a): (1) the satura- 
tion magnetization Ms, the magnetization in a large applied field; (2) the remanent 
magnetization Mr, or remanence, the magnetization after a large magnetic field 
has been removed; (3) the coercive f~ce Hc, applied opposite to the magnetiza- 
tion, needed to cause 2(4- - H ,  or B = 0. A slightly larger reversed field (not 
indicated on path 3) gives a magnetization that returns to the origin when the 
field is removed. It is called the remanent coercive force and lies along a backwards 
extension of the initial curve, 1. 

Good permanent magnets have large values for Mr and Hc. Ideal permanent 
magnets have square hysteresis loops characterized by Mr = Ms and H~. See 
Figure 9.15(b). Good soft magnets have large values for Ms and x, and small val- 
ues for Mr and Hc. Ideal soft magnets have Mr = 0 and linear M versus H with 
slope x until M ~ Ms, where the slope approaches zero. See Figure 9.15(c). 
Magnets of intermediate magnetic hardness are used in computer hard drives 
("hard" in "hard drive" refers to the physical rigidity of the magnetic disk within 
the hard drive). Magnetic tape, for audio- and videocassettes, is coated with 
elongated grains of the brown oxide of iron (maghemite), y-Fe203, of interme- 
diate magnetic hardness. These grains magnetize along their long dimension, of 
about 0.5 #m. The grains are not so soft that they can be readily demagnetized 
unintentionally, and not so hard that they cannot be remagnetized intentionally 
(i.e., to change the stored information). The properties of some common soft 
and permanent magnetic materials are given in Tables 9.2 and 9.3. 

Table 9.2 Properties of soft magnets (room temperature) 

Iron 
Mu metal 
Supermalloy 

 (azm) �84184 i �84 : 

17.0 x 105 80 5000 
8.5 x 105 4 105 
5.1 x 105 0.16 8 x 105 
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Table 9.3 Properties of permanent (hard) magnets (room 
temperature) 

i i i ~i ~i i~ii~ii~ i~i!~il !!~ii~i?ii~ii i!i !ii i~ili iil iiiiii~ii~i!~iiii~i~i ~iiii~i~!!~ii?i!ii!!iiiiiiiiiiiiiiiiiiii~i!~ii~iii!i~!iii!!ii~iiii~ii~i~iiiiiiiii~iiiiii~i!iii!~!ii~i~i 

Anisotropic barium ferrite 37.0 x 105 20.0 x 105 
NEO (Nd2Fe14B) 10.3 x 105 16.0 x 105 
Alnico V 9.95 x 10 s 4.4 x 10  4 

Carbon steel 8.0 x 10 s 4.0 x 103 
y-Fe203 3.7 x 105 2.4 x 10 4 

All magnetic materials lose their magnetization on being heated above 
the material-dependent Curie temperature Tc (after Pierre Curie). For iron, 
Tc = 1043 K, which is well above room temperature, but many compounds 
are ferromagnetic only at much lower temperatures. See Figure 9.16. 

Demagnetization Field Hdemag 
The field within the material, H ,  plotted along the abscissa of Figure 9.15, must 
include both the external field Next (due to other magnets and to the magnetic 
field produced by electric currents) and the demagnetization field Fldem~g (caused 
by the magnet being studied). Thus 

H -  Hext n u Hdemag. (9.25) 

The demagnetization field is important only for materials exhibiting strong mag- 
netic properties, because it is proportional to the magnetization. It is negligible 
for paramagnets and diamagnets. 

For a magnet with remanence, F-td~mag acts even without an externally applied 
magnetic field. One reason magnets tend to lose their magnetization with time 
is this demagnetization field. To avoid such demagnetization fields, and thus 
to retain (i.e., "keep") the magnetization, keeper magnets are employed, as in 
Figure 9.14. 

For uniformly magnetized, ellipsoidally shaped magnets, which include 
spheres, pancakelike objects, and cigar-shaped objects, Hdemag is uniform within 
the magnet. For other shapes, /2/dem~g is nonuniform. 

t 
M 

T--~ 

Figure 9.16 Magnetization versus temperature for a 
typical magnet. The transition temperature T~ is known 
as the Curie temperature. At high temperatures, 
magnets tend to lose their magnetism. 
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Figure 9.17 Zero demagnetization field for 
needle or toroid magnetized normal to its 
surface. (a) The needle geometry, where the 
magnetization is along the direction of the 
needle. Here the magnetic poles occupy only 
the ends of the magnet, and the 
corresponding demagnetization field is very 
small. (b) The toroidal geometry, where the 
magnetization is along the tangent to the 
toroid. Here there are essentially no 
magnetic poles, and the corresponding 
demagnetization field is negligible. 

9.7,1 Hdemag -- 0 for  Needle or Toroid Magnet ized  
Parallel to Surface 

For a needle-shaped magnet magnetized along its axis, the magnetization at the 
surface is nearly perpendicular to the surface normal (except perhaps in the 
tiny region at the end of the needle), so (7 m - -  M . / ~  ~-~ O. See Figure 9.17 (a). For 
a toroidal magnet magnetized tangentially, (7 m - -  2~//�9 / ~ - - ~  0 exactly. See Figure 
9.17(b). Since ~m -- O, there  is no flux source for/2/,_ so H -  O, both inside and 
outside. Since B - #0H outside the magnet,/~ - H -  13 outside. Clearly, 

f]demag- 6 (.~ along needle and toroid) (9.26) 

in this case. However, inside the magnet B -/~02~ # 6. Although the normal 
component of B is continuous (= 0), its tangential component is not continuous, 
on crossing from the interior (where B = # 0 ~  to the exterior (where/~ = ()). 

From the hysteresis loop for a toroidal magnet, where Hd~ag = 0, we can 
deduce the hysteresis loop for magnets of other shapes by including the appro- 
priate demagnetization field. Keeper magnets of soft iron, as in Figure 9.14, are 
often placed across the poles of horseshoe magnets to direct the magnetic flux 
of one pole directly to the other, thus making the combination behave like a 
toroidal magnet, with small demagnetization field. 

For shapes other than those discussed, the demagnetization field is nonzero. 
We now c o n s i d e r  f]demag for the shape that gives the largest demagnetization 
field. 

9~7o2 Hdemag - -  - @  within a Thin Slab Magnet ized  
along Its Normal  

By (9.12'), for a slab magnetized uniformly along its normal, the surface charge 
densities are Cr m - -  +M. See Figure 9.18. Now recall that, when edge effects are 
neglected, the electric field E within a capacitor of charge density -t-~ on its 
plates has magnitude 47rk~. Likewise,/x0H within a magnetic slab has magni- 
tude 4Jrkmcr m - 4zrkmM-/x0M. This gives I/:/I - IMI.  Since H points from the 
positive to the negative side--that is, opposite to M--here we have /2 /_  -2(//. 
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This field is precisely fldemag, SO for a slab 

FId~mag = -2(d. (2(4 normal to slab) (9.27) 

From (9.27), it follows tha t /3  - #0(/2/+ 2(~ - #O(ff-]demag nts ~ _ =  0 inside 
the slab. Furthermore, since /7/_ (~ outside the slab (just as E = 0 outside a 

capacitor, when edge effects are 
2~ neglected), and since 2(4-  0 out- 

side the slab, we have/3 - #0 (/2/+ 
o*= M.n = _M Hdemag = -M M) - 0  outside the slab, just as it 
on top and bottom 

was zero inside. Again, the nor- 
mal component of B is continu- 
ous across an interface. (Edge ef- 
fects cause the field outside a slab 
magnetized along its normal to be 
small but  nonzero. We will discuss 
this in Chapter 11 .) 

The slab and the needle are the 
two extreme geometries: no geometry will produce less demagnetization than a 
needle, and no geometry will produce more demagnetization than a slab. For a 
sphere, ~ 1 ~ Hdemag ~ ~ M.  

Figure 9.18 A thin magnetic slab magnetized 
along its normal has a large demagnetization 
field because it has the maximum pole 
strength on its slab faces. The magnetic field 
B is nearly zero both within and outside the 
magnet. 

D e m a g n e t i z a t i o n  fields, coercive forces, 
and permanent magnets 

Consider the hard magnetic materials materials NEO (Nd2Fel4B) and carbon 
steel. Determine the demagnetization field of these good permanent magnets 
in the thin slab geometry of Figure 9.18. 

Solution: We use material constants from Table 9.3. By (9.27), for NEO 
I f  ldemagl = Mr = 10.3 x 105 A/m, so an additional N e x t - - H c - H d e m a g  = 

(16 .0-  10.3) x 105 = 5.7 x 105 A/m, or B = 0.72 T, must be applied oppo- 
site to the magnetization to demagnetize (in this case, to reverse) the magneti- 
zation. This is very large; it is difficult to accidentally demagnetize a thin slab 
of NEO with magnetization along its normal. Again by (9.27), for carbon steel 
I f  Idemagl-- Mr - 8 . 0  x 105 A/m, which exceeds Hc for carbon steel. Thus the 
sample will not "take" a magnetization normal to the slab; although it is not ob- 
vious, the magnetization will rotate into the plane of the slab, for which there is 
a negligible demagnetization field. 

D e m a g n e t i z a t i o n  fields for soft magnets--needles 
and slabs--in an applied field 

Consider the soft magnetic material known as mu metal, which is used for 
magnetic shielding. Determine the effect of the demagnetization field on 
the magnetization of a mu metal in the earth's magnetic field Bearth ~ 0.5 • 
10 -4 T. Consider both the thin needle and the thin slab geometries. 

Solution: We use material constants from Table 9.2. With the field and mag- 
netization along the axis of a needle-shaped sample, for which Hdemag ~ O, we 
have H = Next - He~th = 39.8 A/m. Hence, if (9.22) holds, the magnetization 
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is M = X H e x t -  3.98 x 106 A/m. This exceeds Ms = 8.5 x 10 s A/m, which is 
not consistent with (9.22). Hence the magnet is in the large field regime of the 
hysteresis loop, where M = Ms. With the field and magnetization along the axis 
of a thin slab, by (9.27), Ifld~ag I -- M, so (9.22) gives M = X(Hext - M). Solving 
for M in terms of/-~t yields M = [X/(X 4- 1)]Hext. Since X is so large, this gives 
M ~ Nex t ~-~ 39.8 A/m. This value is much smaller than Ms, so that use of (9.22) 
is valid. Observe that this M is smaller by about a factor of x ~ 10 s than for 
the needle geometry. Clearly, demagnetization effects can be very large for soft 
ferromagnets. 

How We Know B Is Truly Fundamental  

In the next chapter, we will learn that  the force/~ on a panicle of charge q as it 
moves with velocity ~ through a region of magnetic field B is 

F - qfi x B. (9.28) 

It is not clear tha t /~ ,  rather than #0/~, should be used in this equation~ The 
toroid and slab geometries suggest two ways to distinguish between how B and 
H cause the deflection of charged particles" 

1. Let high-energy charged_particles pass through a tangentially magnetized 
toroidal magnet, where B # 0 but  H = 0 inside. If B is the fundamental  
field, they will be deflected, whereas if/7/is the fundamental  field, they will 
be undeflected. Experimentally, they are deflected in an amount  quantita- 
tively described by (9.28). This supports the fundamental  nature of B. See 
Figure 9.19(a). Such experiments are used as a tool in particle physics, where 

Figure 9.19 Two geometries for studying the field 
within a magnet using muons, which can enter matter 
without interacting strongly: (a) toroidlike geometry, 
with a large field, (b) thin magnetic slab, with a small 
field. 
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deflection by the B field of the magnet helps determine the momentum of 
charged particles. 

:~. Let high-energy charged particles pass through a slab magnetized along its 
normal, where/~ = 0 b u t / 2 / =  -2V/g= () (and large) inside. If/~ is the funda- 
mental field, they will be undeflected, whereas if/2/is the fundamental field, 
they will be deflected. See Figure 9.19(b). Therefore, such a geometry is not 
expected to assist in the analysis of particle motion. It is not clear that any 
such experiments have been performed. 

Chapter 12 will show that/3 (and hence, not/2/) also determines the elec- 
tromotive force associated with Faraday's law. The magnetic induction/~ is the 
quantity of true fundamental significance. 

To have clean particle tracks in the deflection experiments described earlier, the electri- 
cally charged muons (particles similar to electrons, but about 200 times more massive) 
are used. This is because their strongest interactions with other particles occur via elec- 
tromagnetism, and because when they do interact, the momentum transfer is small 
since they are mass-mismatched with both the much lighter electrons and the much 
heavier nuclei. 

Magnetic Oscillations 

Just as the torque on an electric dipole moment  } in an electric field E is given 
by ~ - } x bT, so the torque on a magnetic dipole moment  fi in a magnetic field 
B is given by 
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Thus 

]~] - ]fi]]/~]] sin 0], (9.30) 

where 0 is the angle between/ i  and/3. 
From classical mechanics, we know that the torque drives the angular 

- 0  

momentum L" 

dL 
= g. (9.31) 

dt 

Equations (9.29) and (9.31) can be used to explain the operation of acompass 
needle, leading to a torque that drives the magnet to orient/~ along B, and to 
have oscillations about that equilibrium. They also can be used to explain the 
oscillations around equilibrium of tiny electronic and nuclear magnets; these can 
be observed using the techniques of electron spin resonance (ESR) and nuclear 
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9~9~! 

magnetic resonance (NMR). The word spin refers to angular momentum that 
appears to be intrinsic to the object. It is to be distinguished from any orbital 
angular motion that arises because the object is in an orbital (either an electron 
about the atom or a nucleon about the nucleus). Associated with spin (a vector) is 
a magnetic moment (also a vector). For simplicity, we will use L for all these 
types of angular momentum. 

Oscillation of a Macroscopic Magnet: Compass Needle 

A compass needle, of magnetic moment fi and moment of inertia I (not to be 
confused with electric current), oscillates about its equilibrium position in a 
magnetic field B. We wish to find the dependence of the oscillation frequency o2 
on # - I f i l ,  I, and B = I Bt. 

Let fi and B lie in the xy-plane, and let ~) be the angle of the magnet with 
respect to the external field. See Figure 9.20(a). By (9.30), the z-component of 
the torque on the magnet is given by r = - # B  sin ~); the minus sign indicates 
that the torque tends to restore equilibrium. For small angles ~), where sin ~) ~ ~), 
the torque becomes 

r -- -#B6~. (9.32) 

For a macroscopic object of moment of inertia I about its z-axis, the angular 
momentum component L~ is given by 

d~ 
L z -  Ioo~- I dt" (macroscopic object) (9.33) 

Then (9.31) becomes 

dLz d28 
dt = I ~ - ~. (9.34) 

Figure 9.20 Magnetic oscillations: (a) a macroscopic 
magnet, (b) a microscopic magnet. Both satisfy the 
same rule for magnetic torque, and both can have 
angular momentum. The macroscopic magnet has a 
relatively small amount of angular momentum along 
its axis, causing its rotational dynamics to be 
dominated by its moment of inertia. The 
microscopic magnet has a relatively large amount of 
angular momentum along its axis, causing its 
rotational dynamics to be dominated by the angular 
momentum along its axis. 
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For small 0, use of (9.32) in (9.34) yields 

d20 
I dt-- ~ = -#BO.  (macroscopic magnet) (9.35) 

This is just like the harmonic oscillator equation, with (x, K, m) ~ (0, ~B, I). 
Hence the angle 0 oscillates. Instead of the harmonic oscillator frequency ~0 = 
~/K/m, here we have 

~ n 

co-  ~/#-Y. (9.36) 

If # and I are known, a measurement of co from the oscillation of a compass 
can yield the magnetic field in the plane of oscillation of the compass. Thus 
an ordinary compass resting on a table can be used to obtain the horizontal 
component of the earth's magnetic field B~h. If neither # nor B~h is known, then 
measurement of the torque (at a known angle) and the resonance frequency, by 
(9.30) and (9.36), would enable us to determine both # and B~h. 

9 ~ o 9 ~ : 2  Oscillation of a Microscopic Magnet: Magnetic Resonance 

Most atoms and their nuclei have a magnetic moment, whose value serves 
as a fingerprint. In this section, we show that, for a given magnetic field, 
the frequency at which an atom or nucleus resonates is proportional to the 

magnetic moment. This forms the basis of elec- 
Equation (9.37) implies that L ~ =/~/~, 
for nuclear and atomic magnets, rather 
than E - / ( ~  of (9.33), which holds 
for the angular momentum of rotating 
macroscopic magnets. Molecules and 
atomic clusters have a total angular mo- 
mentum that is a combination of both 
/~/y and / (~. 

tron spin resonance (ESR) and of nuclear mag- 
netic resonance (NMR). The 1952 Nobel Prize 
in physics was awarded to Felix Bloch and 
Edward Purcell, for their independent discovery 
of NMR. 

For a nuclear or atomic magnet, the magnetic 
moment/~ is related to the angular momentum 
L by 

/~ - y L, (microscopic magnet) (9.37) 

. . . . .  ~ N ~ : : , ~ ~ , ~ "  '~ ...... ~...'- ~ .... . ' " . ' - ~  .......... & ~ " ~ i : .  ~ ' . ~  ~ " '"~ .......... . . . . . . . . . .  ~i-~ ................. ,~ ......... !~~~ ~ .  ...... ~ % ~ : ~ . ~ { ~ N ~  ....... ~Ni=~=~ ............... N ~  ~ '  " ~ 4  

With both NMR and ESR, the intensity of the absorption of electromagnetic energy at 
the resonance frequency is proportional to the number of absorbing nuclei. Moreover, 
the frequency of absorption can depend on magnetic fields produced by the local 
environment. Thus, these methods may be used as diagnostics for the presence of, and 
the study of the local environments of, various atoms, ions, and nuclei. NMR is the 
basis for the powerful medical diagnostic technique of magnetic resonance imaging 
(MRI). The intensity of absorption in a known magnetic field gradient provides a local 
measure of the density of different types of nuclei. Modern computers (and, in particular, 
powerful desktop workstations and personal computers) make it possible to analyze a 
wealth of data taken in many orientations, and then to deduce the position in the body 
where the energy was absorbed. 
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where F, the gyromagnetic ratio, depends upon the atom or nucleus. Specif- 
ically, Yelectron--1.759 • 1011 s- iT -1 and ~proton- 2.675 x 108 s- iT -1. As a 
consequence of their lower l y t, protons oscillate (resonate) at much lower fre- 
quencies than do electrons. 

We will solve (9.29) and (9.31) to obtain the resonance frequency of a given 
magnetic moment. Unlike the case for the compass needle, for an atom or nucleus 
the angular momentum f, has a fixed magnitude. Combining (9.31), (9.29), and 
(9.3 7) gives 

d~ 
dt  = y L x B. (microscopic magnet) (9.38) 

This is very different from (9.35), and it has a very different solution. To be 
specific, let B point along ~. Then, rather than an oscillation (in which only Lx 
might participate), there is a precession (in which Lx and Ly participate equally). 
See Figure 9.20(b). 

Since the vector cross-product is perpendicular to both vectors, the right- 
hand side of (9.38) is perpendicular to both B and L, so 

- dL - dL 
L . d t  = O, B " -d- ~ - O. (9.39) 

Since B points along ~, L x B is normal to ~. Hence (9.38) implies that d L z / d t  - 
0, so Lz does not change. Also, using (9.38) and (9.39) yields 

dil l  2 d(L.  L) ds 
dt  = dt  = 2L.-d-/- = 0 (9.40) 

so that ILl is fixed. With both Lz and ILl fixed, so is 

v/Lx  + v/L x + + Lz - Lz - v/iLl2 - Lz 2. (9.41) 

Hence the vector 

L• - LxYc + Lyi9 (9.42) 

has fixed magnitude If,• - v/Lx 2 + L 2. Thus, as stated previously, we may write 

Lx - L•  cos ~b, Ly - L• sin ~b, (9.43) 

where ~b can depend on time. With B z -  B and B y -  0, the x-component of 
(9.38) yields 

dLx  

dt  
= y ( L y B z -  LzBy)  = y L y B .  (9.44) 
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Differentiating the first part of (9.43) and placing it in (9.44) yields 

d4) 
dt 

- - - L •  sin 0 = (Y B)L• sin O- (9.45) 

Thus 

dO 
d t =  - y B ,  (9.46) 

which can also be obtained from the y-component of (9.38). The solution of 
(9.46) is 

4~ = -~ot + constant, (9.47) 

where 

o) = y B (9.48) 

is the magnetic resonance frequency in radians/s. In terms of cycles/sec, or Hz, we 
u s e  

o) yB 
f -  2zr = 2Jr" (9.49) 

Such rotation of/~ about B is called precession. 
A magnetic moment will absorb energy when driven at its magnetic resonance 

frequency. For a known magnetic field, a measurement of co will yield y. Corre- 
spondingly, if y is known, a measurement of co will determine B. Equation (9.48) 
is the basis of MRI. 

~ NMRforMRI 
Consider hydrogen in water. Find the NMR resonance frequency for B = 1 T. 

Solution: By (9.48), the protons absorb energy at the frequency f = y B/27c = 
(2.675 • 108)(1)/2zr = 42.6 MHz. This is somewhat below the FM band, which 
begins around 88 MHz. 

Here are some technical aspects of NMR and ESR. For NMR: (1) it is easy 
to build tunable measuring devices in this frequency range; (2) there are many 
types of nuclei with distinct magnetic moments; and (3) the resonances are 
very sharply defined in frequency. On the other hand, for ESR: (1) the resonant 
frequencies can be inconveniently high for measurement devices; (2) there is 
only one type of electron and not many radically different environments for it; 
and (3) different ESR resonances are not as sharply defined in frequency. All 
these factors lead to the choice of NMR over ESR for use in MRI. 

Magnetic resonance experiments on electron and nuclear spins within mate- 
rials provide evidence that, in the torque law of (9.29), it is B - #o(/7/+ 2~, 
rather than the/ ,o/2/due to magnetic poles, that applies. 
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Figure 9.21 Magnetic domains: (a) zero external 
field, (b) moderate external field. By causing the 
domain walls to move, the field causes domains 
aligned with (against) the field to grow (shrink). 

9.10 How Permanent Magnets Get Their Permanent 

Real magnets are not as simple as we have described them. Typically, they are 
very nonuniform unless they are in such a large magnetic field that they have 
become saturated. Locally, they take on the saturation magnetization appropri- 
ate to their temperature, M -  Ms, but the magnetization in different parts of 
the magnet does not point in the same direction. Regions of a given direction 
of magnetization are called magnetic domains. See Figure 9.21 (a). Domains are 
separated by thin regions called domain walls, across which the local magneti- 
zation rotates from one domain orientation to the other. The magnetic moment 
gets larger in an applied field either because the domain walls move (mostly at 
low fields) or because the magnetization within the domains rotates (mostly at 
higher fields). See Figure 9.21 (b). Only at very large fields do all the domains 
become oriented in the same direction, in which case the magnetization is truly 
uniform. For smaller fields, the domain pattern develops, and the magnetization 
is not truly uniform. 

We now address a number of important issues. 

Why Do Some Materials Have a Magnet izat ion 
Whereas Others Do Not? 

The answer is that the electrostatic energy of electron orbitals can sometimes 
be lowered if the electron magnetic moments develop a preferential ordering 
relative to one another. This is associated with the fact that, by what is called the 
Pauli principle, no two electrons can occupy the same orbital, unless they have 
opposite intrinsic~or spin--angular momentum. In some cases, there is a pref- 
erence for the electron magnetic moments to counteralign, leading to what are 
called antiferromagnets. Antiferromagnets are poor magnets, but they are inter- 
esting just the same, with their own magnetic resonances. The tendency of many 
materials to develop magnetic order is so weak that it is easily overwhelmed by 
thermal agitation of the atomic magnets; magnetic order occurs only at low tem- 
peratures. Many complex types of magnetic order exist, one of which is glasslike: 
so-called spin-glasses, with local magnetic order that is random to the eye. 
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In technical terms, the orientation of the orbitals relative to the crystal is attributed to 
the crystal field energy; the orientation of the magnetic moments relative to the orbitals 
is attributed to the spin-orbit energy, and the overall orientation of the magnetization 
relative to the crystal is attributed to the magnetic anisotropy energy. 

9,~I0.2 What Determines the Direction of the Magnetization ? 

The answer involves two steps. First, to minimize their electrical energy the 
orbitals of the magnetic electrons orient with respect to the crystal (e.g., the 
plane of the orbital may orient along or perpendicular to one of the crystal 
axes). Second, to minimize their magnetic energy, the magnetic moments of the 
magnetic electrons orient with respect to the electron orbital. The net effect is 
that the magnetic electrons preferentially orient their magnetic moments with 
respect to the crystal. For high anisotropy, where there is a strong preference 
for certain orientations, the domain wall thickness is very small in order for the 
magnetization to avoid these unfavorable orientations. 

9~t0.,3 Why Does the Magnetization Depend on Temperature ? 

The answer to this question requires comparing the energy of ordering of the 
magnetic state, and the energy of thermal fluctuations (which have a disordering 
influence that is proportional to the temperature). For iron, at low tempera- 
tures the energy of ordering completely wins, and all the spins locally point in 
the same direction (although there can be a domain structure over a larger spa- 
tial scale). However, as the temperature increases, the spins start to point in a 
less ordered fashion, and eventually, at the Curie temperature T~, they become 
disordered. The magnetization Ms(T) decreases smoothly to zero at T~, as in 
Figure 9.16. 

9.10o4 Designing a Strong Permanent Magnet: NEO 

Iron has a rather low magnetic anisotropy, but a rather large magnetic moment. 
It is easily demagnetized, and therefore it is not very good as a permanent mag- 
net, although it is a very good soft magnet. NEO (Nd2Fe14B) is a man-made 
material that has been designed to take advantage of the magnetic anisotropy of 
the Nd (neodymium), and the magnetic moment of the Fe (iron), to produce a 
large permanent magnetic moment. The B (boron) is needed mainly to form the 
crystal. The Fe and the Nd order magnetically. Because of a strong antiferromag- 
netic interaction between the Fe and the Nd, they align with opposing magnetic 
moments. The axis of alignment is not random: because of the strong magnetic 
anisotropy acting on the Nd, there is a preferred axis for the Nd and Fe. The Fe 
dominates the magnetic moment of this system because there are seven Fe for 
each Nd. 

In practice, a well-magnetized sample of NEO begins as a powder of many 
small crystallites. In a strong magnetic field, it is then heated (technically, sin- 
tered), which partially melts together the magnetized crystallites. For a sample 
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p r e p a r e d  in this  way, if  t h e r e  is a de f e c t  site at w h i c h  t h e  local  m a g n e t i c  m o m e n t  
reor ients ,  this  r e o r i e n t a t i o n  on ly  p r o p a g a t e s  to  t h e  b o u n d a r y  o f  t h e  crysta l l i te  
b e c a u s e  t h e  c o u p l i n g  b e t w e e n  crystal l i tes  is re la t ive ly  weak .  T h u s  t h e  use  o f  
crystal l i tes  he lps  l imi t  t h e  a m o u n t  o f  d e m a g n e t i z a t i o n  t h a t  can be  s e e d e d  by  a 
g iven crys ta l l ine  defec t .  

Problems 

9-2 .1  Two 5 cm long, 2-mm-by-2-mm magnets 
are uniformly magnetized. One will lift twice as 
much iron as the other. When placed on the same 
axis at 3 cm nearest distance, as in Figure 9.3, 
their force of attraction is 0.04 N. Estimate their 
pole strengths. Note: As shown in Example 9.6, the 
amount of iron a magnet can lift is proportional to 
the square of its pole strength. 

9 -2 .2  For 1/31 = 0.5 T in a region of space, the 
force is 0.75 N on a single pole qm of a long magnet 
(l = 10 cm). (a) Find qm. (b) Find the field due to 
the magnet 5 cm along its perpendicular bisector. 

9-2.3 A small magnet, collinear with the orienta- 
tion of a compass needle, is moved toward the com- 
pass needle. At 20 cm, the compass needle switches 
direction. If the horizontal component of the earth's 
field is 0.41 G, find the moment of the magnet. 

9 - 2 . 4  Find the field strength 50 cm along the axis 
of a small bar magnet of moment 6 A-m. Repeat for 
50 cm along the perpendicular bisector. 

9 - 2 . 5  The torque is 0.04 N-m on a magnet with 
# = 2.4 A-m at a 40 ~ angle to/3. Find I BI. 

9-2.6 A dipole of moment/~1 = 0.96 A-m, at the 
origin and pointing along 5, is subject to a torque 
0.0075 N-m along ~. This torque is due to magnet 
2 pointing along ~, and located in the xy-plane a 
distance 2.4 cm along a line making a 30 ~ counter- 
clockwise angle to the x-axis. See Figure 9.22. Find 
/~2. 

3oo 

Figure 9.22 Problem 9-2.6. 

9 - 2 . 7  From some unspecified "rude observations," 
Newton indicated that the magnetic force varied as 

the inverse cube of the distance. Show how such an 
inverse cube law might be obtained by measuring 
the force on the pole of one long magnet due to 
another short magnet. 

9 - 2 . 8  In the astatic balance, two thin magnetic 
needles of equal moment are mounted on a fiber 
with their moments normal to the fiber axis. See 
Figure 9.23. The upper needle (in the z = a plane) 
has its magnetic moment  along 5, and the lower 
needle (in the z = 0 plane) has its magnetic moment  
along -)~. (a) Will there be a net torque in a uniform 
field (such as that of the earth)? (b) Let a nonuni- 
form field B be applied along the y-direction, with 
the applied field larger for the needle in the z - a 
plane. How will the astatic balance twist? 

/Rotat ion axis 

~2 

Figure 9.23 Problem 9-2.8. 

9 - 2 . 9  (a) Describe the response of a permanent 
magnet when an unmagnetized rod of soft iron is 
brought up to its center, its north, and its south 
poles. (b) Describe the response of an unmagnetized 
rod of soft iron when the north pole of a permanent 
magnet is brought up to the center and the ends of 
the soft iron rod. 

9-2.10 The earth's field at a measuring site is spec- 
ified as follows: horizontal field 0.145 G, with dec- 
lination (relative to north) 11.4 ~ west, and incli- 
nation (relative to the vertical out of the surface 
of the earth) 67 ~ . Find the field strength and its 
component in the meridional plane (i.e., one that 
passes through the polar axis and the observation 
point). 
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9-2.11 The magnetic line poles )~ and - - ~ ' m  

are parallel to z, intersecting the z = 0 plane at 
()co, 0) and ()co, 1), respectively. Thus the mag- 
netic dipole moment  is parallel to the y-axis. With 
finite dipole moment  per unit length ~ (where 
I~1 = Xml), but l -+ 0, show that IB = 2km[-~ + 
2(~. ~)t~]/r 2, where r is the nearest distance to the 
dipole lines. 

.......... ..... %.~ ...... ..... 9 - 2 . 1 2  Consider a dipole sheet, with dipole 
...... iii!ii!ii!i~: 
............................... moment  per unit area d # / d A  = M/0. To ob- 

tain such a sheet, in the previous problem let 
-+ d ~ -  (d#/dA)~dx, and integrate on x from 

- ~  to 0. For an observer at ()co, yo), show that 

mJ B = -[2k~Mlo/ro](~ x t~0), where r 0 =  (%2 + y2) 
and t~0 = ~sin~)0 + )~cos~)0 points fro the edge 
of the dipole sheet to the observer. 

9 -3 .1  Consider a uniformly magnetized magnet 
with M =  3.2 x 105 A/m, l = 5 cm, and A =  
16 mm 2. It is magnetized along its axis. (a) Find 
qm, ~m, and #. (b) Estimate the field on the axis at 
0.1 cm, 2 cm, and 10 cm from the north pole. 

9 -3 .2  Two identical magnets of length l, cross- 
section A (where ~ ( ( l ) ,  magnetization M, and 
mass m are placed in a tube, one above the other, 
with like poles near each other. (a) If the magnets 
are very strong, find the value of the separation s 
to suspend the upper one against gravity. (b) If the 
magnets are weak, estimate the minimum magne- 
tization needed to suspend the upper one against 
gravity. 

9 -3 .3  The lifting strength of a long magnet with 
3 cm 2 cross-section is 30 N. Find its magnetization. 

9 - 3 . 4  The magnetization of a long magnet with 
8.4 cm 2 cross-section is M = 2.2 x 10 s A/re. Find 
its lifting strength. 

9 - 3 . 5  Consider a long bar magnet of magnetiza- 
tion M, length l, and square cross-section (with side 
a (< t). It is oriented normal to a large sheet of soft 
magnetic material (e.g., a refrigerator), with its near 
pole a distance r from the sheet. Find the lead- 
ing dependence on r of the force of attraction for 
(a) r ((  a, (b) a << r << l, (c) l (< r. 

9-4.1 For arbitrary ~, determine the discontinuity 
of the normal component of the artificially defined 
quantity C = #0(H + aM) on crossing the pole of 
a very long bar magnet. Treat H as being due to 
magnetic poles. 

9-4.2 Consider a nonuniformly heated bar mag- 
net of length l and cross-sectional area A, magne- 
tized along its axis, with M = M1 at its north pole, 
and M = M2 < M1 at its south pole. Since the mag- 
netic charges on the ends do not sum to zero, there 
must be some bulk magnetic charge. (a) Assuming 
that the magnetic charge density is uniform, find 
its magnitude. (b) Find the field along the axis at a 
distance 4l from its north pole, under the assump- 
tion that the magnet is very narrow, so that the bulk 
magnetic charge can be thought of as a line charge. 
(c) Compare that field with the field at the same 
position if the magnet had a uniform magnetiza- 
tion M~. 

9-5.1 How would you use a soft magnet to focus 
the magnetic field of a permanent magnet? 

9 -5 .2  How would you use a soft magnet to create 
a region of weakened magnetic field? 

9 - 5 . 3  Relate field expulsion and magnetic repul- 
sion; field concentration and magnetic attraction. 
(See Figures 9.12 and 9.13.) 

9 - 5 . 4  In scalar form, for SI units we have B = 
#0(H + M), whereas for cgs-emu units we have 
B = H+4z~M.  The SI units are tesla (T) for 
B, ampere-turn/meter (A-turn/m) for H, and 
ampere/m (A/m) for M. The cgs-emu units are 
gauss (G) for B, where 1 T = 1 0  4 G ,  oersted 
(Oe) for H, and "magnetic moment  unit"/cm 3, or 
mmu/cm 3 for M. (a) By taking M = 0, show that 
1 A-turn/m = 4z~ x 10 - 3 0 e .  (b) By taking H = 0, 
show that 1 A/m = 10 -3 mmu/cm 3. (c) Show 
that Xemu- M / H  gives values 1/4Jr as large as in 
SI units. 

9 - 5 . 5  A soft magnetic material has M =  
2500 A/m in a field B -  0.005 T. (a) Find the 
SI values for H and x. (b) Find the cgs-emu values 
for M, B, H, and X. Hint: See Problem 9-5.4. 

9 - 5 . 6  For a small applied magnetic field, sketch 
M versus H for a paramagnet, a diamagnet, a soft 
ferromagnet, and a perfect diamagnet. 

9-6.1 A magnet has Ms = 0.84 x 106 A/m and 
Mr - 0.53 x 103 A/m. Would this make a good per- 
manent magnet? Discuss. 

9-6.2 (a) Of  the materials listed in Tables 9.2 
and 9.3, which would make the best hard magnet? 
(b) Which would make the best material for mag- 
netic focusing? 
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9-7.1 (a) For a magnet of length l - 16 cm, cross- 
section 0.25 cm 2, and magnetization M = 7.8 x 
10 s A/m, estimate H and/3 at the midpoint. (b) 
Is ndemag large or small within the volume of a long 
magnet? 

9-7.2 Consider a needle-shaped sample of per- 
malloy in the earth's magnetic field of 0.5 x 10 - 4  T. 
Find its magnetization. Hint: Is it due to suscepti- 
bility or to saturation? 

9-7.3 In Example 9.8, how might a "keeper" mag- 
net (of what shape?) maintain the magnetization of 
a thin slab of carbon steel along the normal? 

9 - 7 . 4  Determine the magnetization for an iron 
needle that is oriented (a) along the earth's mag- 
netic field, (b) normal to the earth's magnetic field. 

9-8.1 Explain w h y / 7 / ~  (3 in Figure 9.19(a) and 
/3 ~ (3 in Figure 9.19(b). 

9-9.1 The period of oscillation of a magnet of mo- 
ment of inertia 4.2 g-cm 2 is 2.5 s. It has a mag- 
netic moment  of 0.4 A-m z. Find the magnetic field 
it is in. 

9 -9 .2  A compass needle oscillates 8 times per 
minute outdoors, but only 7.4 times per minute in- 
doors. For the field component Bh in the plane of the 
surface of the earth, find the ratio of Bh,ou t outdoors 
to Bh,in indoors. 

9 -9 .3  A small magnet, when mounted as a com- 
pass needle, makes five oscillations per minute. 
When mounted as a dipping needle (so it can 
measure the declination from the vertical of the 
magnetic field), it makes a maximum of nine 
vibrations per minute. Find the dip angle of the 
field. 

9 - 9 . 4  For a molecule, /~ = IF o, but the value of 
the moment  of inertia I is dependent upon the axis 
about which the molecule is rotating. (a) Discuss 
the relative values of I for a cigar-shaped molecule. 
(b) Repeat for a pancake-shaped molecule. 

9 - 9 . 5  Show that, for magnetic resonance, study 
of dLy/dt, instead of dLx/dt, also leads to 
(9.48). 

9-10.1 Discuss the effect on the magnetization of 
NEO if the interaction between Fe and Nd were 
ferromagnetic rather than antiferromagnetic. 

9 - 1 0 . 2  In your own words, explain why the mag- 
netization in NEO is oriented relative to the crystal 
axes. 

9-G.1 Devise an experiment to establish that the 
interaction between two magnets is not due to elec- 
trostatic forces. 

9 -G .2  Magnetic attraction and the amber effect 
appear to differ. In the amber effect, the comb has 
a net charge, and attracts small objects. A magnet 
has no net pole strength, but it attracts soft iron, like 
nails. Show how the effects are similar (a) for the 
amber effect, by including the charge left behind 
on your hair after rubbing the comb through it; (b) 
for magnets, by neglecting the effect of the distant 
magnetic pole. 

9 -G .3  Of  two geometrically identical bar magnets, 
it is determined that one of them is magnetized and 
one is not, by their effect on iron filings. Without 
iron filings, how can you determine which magnet 
is magnetized and which is not? You can move the 
magnets. 

9-G.4 In the early 19th century, Poisson pro- 
posed, by analogy to electricity, that two types of 
fluid (north pointing or austral, and south point- 
ing or boreal) could explain the magnetism of mag- 
nets. However, such a theory needed the additional 
and arbitrary hypothesis that neither type of fluid 
can leave the magnet (except in equal quantities). 
Discuss the plausibility of this model. 

9 -G .5  Poisson's magnetic fluid model predicts that 
a magnet in a strong magnetic field can develop a 
very large magnetization Oust as an electrical con- 
ductor can develop a very large electric polarization 
when placed in a large electric field). Experimen- 
tally, all magnets have a limit to their magneti- 
zation. How can we explain the limit to magne- 
tization using the fluid theory? Using the atomic 
magnet theory? Is there a limit to the polarization 
of a conductor? (Consider the depletion layer dis- 
cussed at the end of Chapter 5.) 

~ 9-G.6 Here is how to measure x for para- 
...... :'~!:~: ................. magnets and diamagnets, which both have 

such a small magnetic susceptibility x that their de- 
magnetization field is negligible relative to the ex- 
ternal field. A measurement of magnetization and 
field then yields x. (Similar considerations hold for 
the electrical analog, to determine a small electric 
permeability--as for gases, but not for woodmwhen 
the depolarization field is negligible relative to the 
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external field.) This method is due to Faraday, who 
discovered diamagnetism. The sample, of length l, 
is suspended vertically in the midplane y = 0 be- 
tween the N and S poles of a source magnet, and 
the force on the sample is measured with a bal- 
ance. At the sample, the field due to the magnet 
is nearly vertical, so M = X H ~ X By(0)/~t0, where 
By(0) is shorthand for By(x, 0, z). This induces 
charges • - - ~ m A  = MA on the top and bottom 
of the sample. See Figure 9.24. (a) Is the sample, 
depicted in Figure 9.24, paramagnetic or diamag- 
netic? (b) Explain why there is no net force along 
y. (c) Let B~(+l/2) be shorthand for B~(x, +t/2, z), 
and note that B~(x, 0, z ) =  0 by symmetry. Show 
that F~ = qm[Bx(l/2) - Bx(- l /2)]  ,~ qml(dBx/dy), 
using the straight-line approximation for differ- 
ences. (d) With qm = M A =  x H A  ~ x(By/~o)A, 
show that F~ = Al(x/#o)By(dB~/dy).  (e) Evaluate 
F~ for X = 0.8 x 10 -5, V = 3.8 mm 3, By = 0.05 T, 
and dBx/dy = 4.2 T/m. 

Figure 9.24 Problem 9-G.6.  

........ !!!~iiiiii:: .... 9 -G .7  Consider a small square loop of 
.... ~,~:~iii::::i ................. dimension a x a, in the xy-plane. See 

Figure 9.27. (a) Show that, in the absence of 
any sources of B, O = J B . d~= a2(dBy/dx - 
dBx/dy), where d~ is taken counterclockwise. Use 
f (x + a) ~ f (x) + (df /dx)a.  Hence dBy/dx = 
dBx/dy. (b) Applying this to the previous prob- 
lem, for volume V = A/, show that Fx = V(x/~t0). 
By(dBy/dx) = (1/2/z0)d(2~. B)/dx.  Hence, a 
knowledge of the properties of the field compo- 
nent By and of the volume of the sample permit x 
to be determined from a measurement of Fx. 

,! , 
i y , /  
I 

L 
x__y 

Figure 9.25 Problem 9-G.7. 

......... % 9 - G . 8  Consider a thin disk normal to the ..... ~iiiili;i .......... 
.... ~::'~:::i ........... z-axis, of thickness dz and radius p centered 

on the axis of a dipole. See Figure 9.26. (a) Show 
that 0 = fl B . d24 ~ (2rrpdz)Br + (rrp2)a(dBz/dz), 

so Bp ,~ ( -p /2) (dBz /dz) .  (b) With Bz for a dipole, 
from (9.8), find Bp near the axis (small p). 

Figure 9.26 Problem 9-G.8.  

9-G .9  Hard disks, or hard drives, used for mag- 
netic storage of information in the form of magne- 
tized regions, have been made from aluminum plat- 
ters in the following way. The surface is given a hard 
coating of nickel-phosphorus, and then is given cir- 
cumferential grooving. A chromium underlayer, a 
cobalt alloy magnetic layer, and a hydrogenated car- 
bon overlayer are then sequentially sputtered on, 
and the disk finally is lubricated. In 1996, track 
widths were of the order of 5 #m, and bit lengths 
(the region defining a region of well-defined mag- 
netization) were of order 0.2 ~tm. By definition, 
8 bits equals 1 byte. Estimate the storage density. 
[Answer: Of  order 0.08 Gb/in z, where Gb is a 
gigabyte.] 

9 - G . 1 0  M for aligned magnetite (Fe304) is 5 x 
105 J/T-m 3. This is about the same as for the 4~t~ 
of the Fe +2 ion in the unit cell volume. The Fe +3 
ions in the unit cell have opposing moments, which 
cancel. (a) Estimate the volume of the unit cell. 
(b) Estimate the critical volume V~ of magnetite 
at which the energy of magnetic alignment in the 
earth's magnetic field equals the thermal energy 
k~ T, where kB = 1.38 x 10 - 2 3  J/K, and room tem- 
perature is T = 293 K. (c) Certain field-sensitive 
bacteria contain about 20 magnetite spheres of d 
50 nm. Is this enough magnetic moment to align 
the bacteria despite the randomizing influence of 
the thermal energy? 

9 -G .11  Earnshaw's theorem, related to fixed elec- 
tric charges (Section 3.11), also applies to perma- 
nent magnets, which alone cannot be used to levi- 
tate an object stably. However, a flat magnet resting 
on a tabletop can support stably one end of a sim- 
ilar magnet whose other end is in contact with the 
table. Discuss why this situation does or does not 
violate Earnshaw's theorem. 

9 - G . 1 2  A magnet is in a vertical tube on the 
earth's surface. (a) If another, attractive magnet, is 
fixed above the first magnet, will the vertical equi- 
librium position of the first magnet be stable? (b) 
If another, repulsive magnet, is fixed below the first 
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magnet, will the vertical equilibrium position of the 
first magnet be stable? 

9 - G . 1 3  A small magnet can be levitated below 
a large magnet with two pieces of (diamagnetic) 
graphite, one above and one below the smaller 
magnet. (a) Can one permanent magnet below an- 
other permanent magnet be in equilibrium? (b) Can 
one permanent magnet below another permanent 
magnet be in stable equilibrium? (c) Why doesn't 
Earnshaw's theorem apply to diamagnets and para- 
magnets? (d) How can the diamagnets make the 
equilibrium stable? 

9-G,14 A theorem about storage of information 
states, loosely, that the ratio of energy-to-read to 
energy-to-write can be made very small. Discuss 
this in the context of reading and writing printed 
matter, compact disks, and hard disks. 

....... i"~i'i~;; ...... 9-G,15 Two magnets, of moments / i l  and 
...... %i!iii:~ ........ /12, lie in the horizontal plane and are free to 

rotate about the vertical axis, their bases attached 

to a frictionless turntable. One magnet is centered 
at ( -a ,  0, 0) and has its moment pointing along 3?- 
The other is centered at (a, 0, 0) and has its mo- 
ment pointing along 5. (a) Indicate how each mag- 
net will twist. (b) Using conservation of angular 
momentum, indicate how the turntable will twist. 
(c) Compute the torque on each magnet. (d) With 
l the moment of inertia of the turntable, compute 
its angular acceleration. 

9-G.16 Figure 9.27 shows two refrigerator-type 
permanent magnets placed against a refrigerator 
("soft iron"), including the domain structure of the 
magnets. Indicate the magnetization (if any) of the 
part of the refrigerator near each magnet. Deter- 
mine which of the magnets is held on more strongly. 

Figure 9.27 Problem 9-G.16. 



"It has been shown by numerous experiments, of which the earliest are those of Ampere, 
and the most accurate those of Weber, that the magnetic action of a small plane circuit at 
distances which are great compared with the dimensions of the circuit is the same as that 
of a magnet whose axis is normal to the plane of the circuit, and whose magnetic moment 
is equal to the area of the circuit multiplied by the strength of the current." 

--James Clerk Maxwell, 
A Treatise on Electricity and Magnetism 

Chapter 10 

How Electric Currents Interact 
with Magnetic Fields 

Chapter Overview 

Section 10.1 gives a brief introduction to Oersted's 1820 discovery of the mag- 
netism of electric currents, and of discoveries that quickly followed, especially by 
Ampere. Section 10.2 discusses Maxwell's concise statement of Amp~re's results, and 
Section 10.3 works out some of its consequences. Section 10.4 applies it to obtain 
the magnetic force on a current-carrying wire in a magnetic field, and then considers 
a few important applications. Section 10.5 applies it to obtain the magnetic force 
on a single electric charge moving in a magnetic field. Section 10.6 considers a few 
important applications, including its use to "discover" the electron. Section 10.7 dis- 
cusses another application of these magnetic force laws, the Hall effect. This effect 
has revealed much about the behavior of electrons in solids. It was recently discovered 
that the Hall effect can provide both a universal resistance standard and a method 
to determine fundamental constants with a very high degree of accuracy. Finally, 
Section 10.8 shows that the magnetic work done on the center of mass of a cir- 
cuit comes at the expense of magnetic work done on the charge carriers within that 
circuit. 

!0oi Introduction 

In 1820, H. C. Oersted, in Copenhagen, tried a classroom demonstration that 
had previously yielded only negative results. Intending to see if heating of a 
wire by current flow might cause deflection of a nearby compass needle, he 
used current driven by a battery of 20 Cu-Zn voltaic cells. See Figure 10.1. 
The compass needle did not deflect toward or away from the wire, the radial 
directions he expected from a heating effect. It did not deflect parallel or an- 
tiparallel to the axis of the wire. It deflected in the tangential direction, a most 
unexpected and counterintuitive result. When connected so that the current 
flowed along the upper path (A-A'-A"), the magnet deflected one way; when 

419 
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Figure 10.10ersted's experiment. The 
compass is fixed in place, but the connections 
can be changed so that the current flows 
along either the upper path (A-A'-A") or the 
lower path (B-B'-B"). 

connected so that the current 
flowed along the lower path (B-B'- 
B"), the magnet deflected the other 
way. Oersted's magnet would only 
work when placed in a horizontal 
plane, so he could not trace the 
magnetic field all around the wire, 
but  he concluded that the mag- 
netic field must circulate around 
the wire. That is, the field lines tra- 
verse circles that close on them- 
selves. 

We will call the rule giving the 
direction of circulation of the mag- 
netic field due to the wire. 

Everywhere along the axis of the wire, the field circulates about the axis; 
Figure 10.2(a) gives only three of the infinite number of circles associated with 
the field lines. Figure 10.2(b) gives the field lines for a long wire carrying current 
into the page. Check that they have the correct direction of circulation by point- 
ing the thumb of your right hand into or out of the page, and curling your fingers. 

~ Quantitative application of Oersted's right-hand rule 

Oersted's right-hand rule is of more than qualitative significance. From it we 
can also arrive at some quantitative conclusions. Consider two long wires, 
carrying the same current l, #1 out of and #2 into the page, and separated 
by a distance 2a, as in Figure 10.2(c). At a point a distance y along their 
perpendicular bisector, by symmetry they produce magnetic fields of the same 
magnitude, say, 0.005 T. For a -  2 cm and y = 1 cm, find the net magnetic 
field at this point. 

~" l B 0 

B 

#1 2a #2 

(~) (b) (c) 

Figure 10.2 (a) Oersted's right-hand rule. The thumb points along the direction of the 
current I and the fingers circulate along the direction of the magnetic field/]. 
(b) Schematic of clockwise-circulating field lines around a long wire carrying current 
into the page. (c) Superposition of the fields of two wires, one into the page and one 
out of the page. 
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Solution: The arcs in Figure 10.2(c) are centered around wires # 1 and #2. Using 
Oersted's right-hand rule, wire #1 carrying current out of the page (#2 carrying 
current into the page) produces a field B1 (B2)~ that circulates counterclockwise 
(clockwise). This determines the directions of B1 and/~2 at the point in question. 
We then perform vector addition to find the total field. From Figure 10.2(c), 
the total field is upward and ofmagnitude 21/311 cos0 = 2(O.O05)(a/v/y 2 + a 2) = 

0.00894 T. 

Within months after Oersted's discovery, experimenters in Paris were hard at 
work studying the phenomenon. Biot and Savart used two techniques discussed 
in the previous chapter (measuring the disturbance of orientation by, and the 
oscillation frequency of, magnetized steel needles suspended by silk fibers). They 
determined that the field due to the wire falls off inversely with distance r, and 
that it varies linearly with the strength of the electric current. Ampere found 
that wires carrying current in the same direction attract, and that wires carrying 
current in the opposite direction repel. From this he deduced that each wire, as 
part of a larger current loop, was behaving like a magnet. Arago observed that 
iron filings were attracted to a current-carrying wire. He showed his results to 
Ampere, who proposed winding a wire in a helical shape and placing a steel 
needle within. In this way the two succeeded in magnetizing the needle. Soft 
iron did not retain a magnetization. 

In his 1826 opus on the magnetism of electric currents, Ampere notes that the 
terminology electromagnetic had been used to describe the phenomena observed 
by Oersted. This involved an electric current (electro) and a magnet (magnetic). 
To describe the interaction of two electric currents, Ampere proposed the termi- 
nology electrodynamic. To contrast with the electrical attractions and repulsions 
due to static electricity, he proposed the terminology electrostatic. Scientists have 
used this terminology ever since. 

0~ The Magnetism of Electric 
Currents--Amp~re's Equivalence 

As the quotation from Maxwell shows, Ampere established that, when viewed 
from a distance, a small current loop is equivalent to a magnet of appropriate 
strength and orientation. That is, in an external magnetic field, it moves just as its 
equivalent magnet would move; further, it and its equivalent magnet cause the 
same force and torque on a distant magnet. This equivalence has extraordinary 
implications: it will enable us to derive all the important results describing how 
electric currents interact with and produce magnetic fields. As a consequence, we 
call this Amp~re's equivalence. It leads to another right-hand rule, which we will 
apply and then show to be equivalent to Oersted's. 

!0~2~S Amp~re's Current Loop Decomposition 

Before proceeding further, we discuss a theoretical idea of Ampere, based upon 
the principle of superposition. It enables us to apply this equivalence to large 
current loops and even when we are close to small current loops. The idea is that 
we can decompose any large current loop I into a large number of (very small) 
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Figure 10.3 (a) Amp6re's current loop decomposition into subloops. 
(b) Decomposition of a nonplanar current loop into planar loops. 
(c) Alternative decomposition of a nonplanar current loop into planar loops. 

AmpOrian current loops, each of which has the same current I. See Figure 10.3 (a). 
This can be done because the nearest sides of adjacent subloops carry currents 
in opposite directions, and thus cancel. This decomposition is not unique, as is 
especially obvious if the large current loop does not lie in any single plane. See 
Figures 10.3(b) and 10.3(c). 

10~2.2 Amp~re's Equivalence 

Consider a small current loop, within a single plane, of current I and area A_ See 
Figure 10.4(a). Ampere established that the magnetic dipole moment of this 
small current loop has magnitude 

. . . . .  ~ t= IA.  (moment of equivalent current  loop) ~ (i~ii) 

The direction of the equivalent magnet is determined by what we call 
Ampere's right-hand rule. 

/ ~ N e a r  side 

(a) (b) 

Figure 10.4 (a) Amp~re's right-hand rule for 
replacing a current loop I by an equivalent 
magnet, of moment/~. (b) The fingers circulate 
along the current / and the thumb points along/~. 
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Figure 10.5 (a) Field lines of a current loop with/~ pointing to the right. (b) Field 
lines of the equivalent magnet with/~ pointing to the right. At large distances from 
both, the field-line patterns are the same. (c) Field-lines of a bar magnet with/~ 
pointing to the right. 

Thus, the magnetic dipole moment is normal to the plane of the loop and is 
proportional to the current and to the area of the loop. If there are ten turns, the 
moment will be ten times larger. If there are seven turns one way and three turns 
the other way, the net effect will be a moment that is 7 - 3 = 4 times larger than 
the moment of a single turn, and the moment will point in the direction of the 
moment of the majority (seven) of turns. Sometimes we will employ the terms 
magnetic moment, or even dipole moment, in place of magnetic dipole moment. 

See Figure 10.5(a) for the field lines due to a current loop; see Figure 10.5(b) 
for the exterior field lines of the equivalent magnet. (The interior field lines, due 
to the demagnetization field, point opposite to the magnetic moment, as in Figure 
9.18.) At a distance large compared with the loop itself, the field lines of a current 
loop are indistinguishable from those for a bar magnet, as in Figure 10.5(c). 

~ Some current loops and their equivalent magnets 

The equivalence of a current loop to a magnet enables us to predict quali- 
tatively what the magnetic field of a current 

Just as a current loop is equivalent 
to a thin disk-shaped magnet magne- 
tized along its normal (called a magnetic 
sheet), so a disk-shaped magnet mag- 
netized along its normal is equivalent to 
a current loop. 

loop is like, and how two current loops will 
interact. We simply replace each loop by its 
equivalent magnet, and then use opposites 
attract, likes repel. Consider Figure 10.6(a). 
Loop B, in the center, is fixed in place, loop 
A is free to translate, and loop C is free to 
rotate. How do loops A and C respond? 

Solution: By Ampere's right-hand rule, Figure l O.6(a) becomes equivalent to 
Figure l O.6(b). Then A is repelled by B, and C rotates clockwise, so that its S 
faces the N of B. 

a ,;OB C 
Nea 13 Near 

Near 
(a) 

Figure 10.6 (a) Current loops. (b) Equivalent magnets and their 
magnetic moments. 
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Figure 10.7 (a) Magnet with moment fi pointing 
upward. (b) Equivalent solenoid. 

~ T h e  bar and its surface current magnet equivalent 

Figure l 0.7(a) depicts a bar magnet of magnetic moment #, length l, and 
uniform cross-sectional area et The equivalence of a magnet to a current loop 
enables us to replace the magnet by an equivalent cylindrical sheet of surface 
current circulating around that cross-section. Just as the thin magnetic disks 
of Figure 10.2(b) are equivalent to the current loops of Figure 10.2(a), here 
the long magnet of Figure 10.7(a) is equivalent to a sheet of surface current 
with current per unit length K circulating as indicated in Figure 10.7 (a). For 
length l the current is I = Kl, so by (10.1) the magnet has magnetic moment 
# = I A = (Kl)A-- KV, where V = AI is the volume of the magnet. Because 
the magnetization is the dipole moment per unit volume, or M = # /V,  for 
the current sheet 

M -  # -  K V _  _ K .  (102) 
V V 

Realizing a current sheet experimentally can be difficult. This geometry can 
also be produced by using a long, tightly wound coil, or solenoid, of cross- 
section A and length l, with n turns per unit length, carrying current I. See 
Figure 10.7(b). This has N = nl turns, each contributing to the magnetic 
moment, so/z = (nl)I,r The magnetization of this solenoid satisfies 

M =  g-g-- ( ~,nl, I A = n i .  (10.3) 
V AI 

Thus, when viewed from the magnetic pole viewpoint, by the previous 
chapter the magnet has charge density O" m - -  - [ -  M and magnetic pole strength 
qm ~ = l = a m A  ---- +MA on its poles, and when viewed from this chapter's equiv- 
alent current viewpoint, the magnet has current density K -  M circulating 
about its axis. The direction of the current is determined by Amp~re's right- 
hand rule. From Chapter 9, we know that a characteristic magnetization for 
a permanent magnet is M ~  106 A/m. By (10.2), the corresponding current 
per unit length is thus K ~  10 ~ A/m, corresponding to a wire of diameter 
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1 mm (so n -  103/m) carrying I = 1000 A, wrapped around a cylinder. No 
wonder magnets are such powerful sources of magnetic field! 

10o2o3 Magnetic Moment of a Current-Carrying Parallelogram 

Let us apply Ampere's equivalence to a circuit shaped like a parallelogram, where 
the current I successively goes along side ~ and then along side i). See 
Figure 10.8(a). The area of the parallelogram is given by 

A - lal Ig)ll sin Oab] - -  la • g)l, (10,4) 

where Oab is the angle between ~ and i) in their common plane, and d x ~) is the 
vector cross-product of ~ with r). 

By (10.1) and (10.4), 

# - I A - I la  • h i .  ( 1 0 . 5 )  

Moreover, applying Amp~re's right-hand rule to get the direction/2 of the mo- 
ment ~, we find that/2 coincides with the direction of 8 x/~. Thus/2 can be 
written as 

- / a  • g. (10.6) 

For N turns circulating in the same direction,/~ is larger by the factor N. 

This was discussed previously, in Sections R.9 and R. 10. First, recall that ~ and b define 
a plane, and that the vector cross-product is perpendicular to that plane; this provides 
a check on your application of the rule for the vector cross-product. (You can think of 
this as the zeroth rule for the vector cross-product. If you get this part correct, the worst 
that can happen is that you get the wrong sense for the normal to the plane.) Thus, 
sweeping your right hand in this plane, from ~ to b through an angle of less than 180 ~ 
your thumb will point in the direction of the vector cross-product. See Figure 10.8(b), 
where a different ~ and b are given, compared to Figure 10.8(a). We call this the vector 
product right-hand rule to distinguish it from the other right-hand rules that we have 
studied. 

At large distances from the loop, the details of how the magnetic moment is 
produced do not matter. However, to make the Ampere approach valid at short 
distances, we should use the Ampere current loop decomposition into an infinite 
number of tiny Amp~rian loops, and replace each loop by a tiny magnet. The 

ab ~ 

a Right hand 
(a) (b) 

Figure 10.8 (a) Current loop I and its magnetic 
moment/2. (b) Vector product right-hand rule. 
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Since, due to electrical resistance, currents ordinarily decay with time, the surface current 
K flowing around the outside of a magnet must be subject to zero resistance. That 
would explain why no current passes through you when you touch a magnet--the 
magnet is the path of least resistance. But if you were to shave off the surface of the 
magnet (as in Figure 10.3a), you wouldn't get a shock either! There really is no true 
current flowing around the outside of the magnet. Associated with every magnetic atom 
is a microscopic Amperian current loop, subject to no electrical resistance. Together (as 
in Figure 10.3a) the Amperian current loops add up to one net surface current flowing 
around the outside. When you shave off the surface of the magnet, you only shave 
off a thin layer of atomic magnets, leaving behind a new surface with its own effective 
current flowing around the outside. If you accept the picture of electrons in orbits 
around an atom, nearly oblivious to the external world, then you should be able to 
accept the picture of microscopic Amperian currents associated with atoms. Ultimately, 
the Amperian currents can be traced to the magnetism of electrons themselves. 

1 0 . 2 . 4  

net effect is that the current loop is replaced by a uniformly magnetized, thin 
slab-shaped magnet whose perimeter is the same as that of the loop. Thus, a 
current loop the size of a penny can be replaced by a thin magnetic sheet shaped 
like a penny, as in Figure 10.2. By (10.1), the magnetic moment  per unit area is 
given by 

~- = I. ( 1 0 . 7 )  
A 

Hence, by considering the magnetic field to be due to a sheet of magnetic dipoles, 
if we know the magnetic field of a single dipole, we can then sum over the fields 
dB due to the sheet dipoles d/~ to obtain the magnetic field, even at points close 
to the loop. In the next chapter, we will show another way to compute the/~ 
field at any distance from a current loop. 

Equivalence of Oersted's and Amp~re's 
Right-Hand Rules (RHRs) 

Showing that Amp6re's RHR implies Oersted's RHR. Consider a long wire, 
to which Oersted's right-hand rule applies. Figures 10.9(a) and 10.9(b) give 

Figure 10.9 (a) Long wire and current loop that has part 
of the wire along one arm. (b) Long wire and an 
alternative current loop that has part of the wire along 
one arm. The field-line patterns are the same in each case. 
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Figure 10.10 (a) Circular loop and its field-line patterns, with a closeup of part of 
the loop. (b) Square loop and its field-line patterns, with a closeup of part of the 
loop. (c) Closeup appropriate to a small part of either the circular loop or the square 
loop, showing the field lines due to that part of the loop. 

the long wire and the associated field/]. Now consider that the wire is actually 
finite, and a part of a closed current loop. There are an infinite number of ways 
to choose such a closed current loop, so we show two possibilities (L~ and L2) 
in Figures 10.9(a) and 10.9(b), and their associated magnetic moments. The 

--> 

B field within either loop can be obtained by using Amp~re's right-hand rule. 
It is in the same direction as obtained from Oersted's right-hand rule for the 
long wire. To summarize, we have shown that Amphre's RHR for a current loop 
yields equivalent results to Oersted's RHR for a long wire. 

Showing that Oersted's RHR implies Amp~re's RHR Consider a current loop, 
to which Amphre's right-hand rule applies, and get so close to it that locally it 
looks straight. Then the field direction is the same as we would obtain using 
Oersted's right-hand rule. See Figure 10.10, where a circular loop and a square 
loop are shown in parts (a) and (b), and a closeup of part of them, to which 
Oersted's right-hand rule applies, is shown in part (c). The | and (9 denote the 
direction of/] .  To summarize, we have shown that Oersted's RHR for a long 
wire yields equivalent results to Amp~re's RHR for a current loop. 

10,3 Some Consequences of  Amp~re 's  Equivalence 

Quantitatively, Amphre's equivalence states that, in an external field, the current 
loop behaves like a permanent magnet of moment / i .  This has a number of 
important consequences. 

Torque on a Current Loop 

As for a permanent magnet, the torque ~ on a current loop is given by (9.29), or 
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One application of this equation is to the torque that turns the needle of a 
galvanometer. Here/~ is due to a permanent magnet, and # - 1/11 - NIA is due 
to N turns of wire carrying current I and having cross-sectional area ,4_. 
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Figure 10.11 (a) Schematic of a slip-ring. A battery drives 
current I through the circuit, which includes multiple 
loops of wire attached to a rotor in sliding contact with 
the fixed stator. The magnetic moment/~ instan- 
taneously points to the right. A fixed external field/~ext 
points downward. (b) The torque ? on the rotor as a 
function of orientation of the stator. The reversal of the 
connections at the gaps causes the torque always to cause 
rotation in the same direction. 

~ T h e  slip ring and motors 

Equation (10.8) also applies to all motors involving rotational motion. One 
of the necessary developments was the invention of the slip-ring in 1832, by 
Ampere. See Figure 10.11 (a) for a schematic. Here a permanent magnet pro- 
duces B~xt, and a battery produces a current that passes through two half-rings 
separated by two gaps. Semicircular sliding contacts attached to a movable 
axle close the circuit. The electric current passing through the wire wound 
around the axle produces a magnetic moment /~  that is subject to a torque 
]~ X /~ext causing the axle to rotate toward the direction of B ext. If the connec- 
tion of the windings to the battery were fixed, then the axle would oscillate 
about/]e~t, just like a permanent magnet. However, when/~ is nearly aligned 
with/3ext SO the torque is nearly zero, the angular momentum of the axle takes 
the sliding contacts past the gaps and the current through the axle changes 
direction, thus causing/~ to reverse. Hence the torque continues to rotate the 
motor in the same direction. See Figure 10.11 (b). Because of its ubiquitous 
presence in motors and generators, the slip-ring has had a significant impact on 
our lives; it perhaps is one of the most important but  unappreciated electrical 
inventions. 

~ Torque on a current loop 

Consider a square current loop, of side a = 0.04 m, with one arm on the 
z-axis, about which it can rotate. A current I = 1.5 A goes up this arm. Its 
lower adjacent side is at an angle 0 = 30 ~ away from the x-axis, toward the 
y-axis. A field of magnitude B = 4 x 10 -2 T points along the y-axis. See 
Figure 10.12(a). Find the torque on the magnet. 

So lu t ion :  First we obtain # = I A = 2.4 x 10 -3 A-m 2. Second, by Amp~re's 
right-hand rule, we have that fi lies in the xy-plane, at a 120 ~ angle to x. Third, 
by (10.8), ? points along -s with magnitude r = #B sin30 ~ = 4.8 x 10 -5 N-m. 
The torque is such as to align fi with/~, thus minimizing the energy. 
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Figure 10.12 (a) A current loop in an external field/~. 
(b) A squat solenoid. At a distance it can be approxi- 
mated as a dipole. (c) A long thin solenoid. Near (but 
not too near) each end it can be treated as a sum of 
monopoles. 

10o3o2 Orientation Energy of a Current Loop 

In an electr ic  field E, t he  o r i en ta t ion  energy  of  an electr ic  d ipole  of  m o m e n t  i~ is 
given by  (3.43) ,  or U -  - } - / ~ .  Similarly, in a magne t i c  field E, the  o r i en ta t ion  
energy  of  a magne t i c  d ipole  of  m o m e n t / ~  (due  e i ther  to a m a g n e t  or to a cu r r en t  
loop)  is given by  

i',Tili~ i ~,i i ~, ~i ~J Jiiiii ii2iiiii ii U~iiiii!~'E~i i i  ......... ~,i " i ............ i ................ ii i i i i i i  ...... 
iiiiiii]i]iiiiiiiiiii!i iiiiiiiiiiiiiiiiiii':iiiiiiiiiiiiiiii ii!iiiiiii iiiii',ii i !i iiii i i iiiii ~i~i~i~ii~i~i~i;~i~i~i~i~ ~,~,,,~,,~,,~:~,~,,~,~,~, ,,,,,,,,:,,,,,,,,~, ......................................... 

~ Energy to align a current loop 

Consider  the previous example.  H o w  much  work  is done in rotat ing the 
circuit f rom 0 = 0 ~ to 0 = 30~ 

Solution: For/i  aligned with/~ as our initial configuration (0 = O, so cos 0 = 1), by 
(10.9) U = - # B  = - 9 . 6  x 10 .5 J. For 0 = 30 ~ in our final configuration, (10.9) 
gives U = - # B  cos0 = -8 .31  x 10 -s J. Thus it takes work W =  1.29 x 10 .5 J 
to bring the magnet to its final configuration. This is about the same as the work it 
takes to lift a mass m = 10 .3 kg (about a penny) by 1.3 mm in the earth's gravity. 

1 0 , t , t  Equivalent Magnets 

H e r e  we  use the  fact  t h a t  t he  m a g n e t i c  field p r o d u c e d  by  the  cu r r en t  loop is 
the  same as the  magne t i c  field of  the  equ iva len t  magne t i c  sheet ,  w i th  m a g n e t i c  
m o m e n t  per  un i t  area given by  (10.7) .  

A coil is like a dipole, and the tip of a long thin 
solenoid is like a monopole 

~,pplication 10.i 

(a)  Consider  a solenoid with  n turns per  uni t  length, length l, and uniform 
cross-section A, each turn  carrying current  I, so K = nI. By either (10.2) 
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or (10.3), it has magnetic moment 

1~ = M V -  K V  = ( n I ) ( A l ) .  

At a distance r >> l along its axis, by (9.8) the magnetic field has the 
dipole form 

2km# 
B - I B I =  r3 p 

no matter what the shape of the magnet or its equivalent circuit. See 
Figure 10.12(b). 

(b) Now consider a magnet and equivalent circuit that is long and thin, as in 
Figure 10.12(c), so that its radius a ((  l. For large distances r from either 
tip of the solenoid, such that a ( (  r ( (  l, by Amp~re's equivalence the 
tips can be treated as monopoles q m  - -  - F # / l  - + n l A  with field strength 
B = kmqm/r 2. P. Heller has successfully wound small solenoids with a 
very high and uniform winding density n and measured their B fields. He 
finds experimentally that the inverse square law is well satisfied, both on 
and off the axis. 

1 0 . 3 . 4  The Bohr Magneton 1~8 Relates Atomic Magnetic Moment 
and Angular Momentum 

We now show how modern views of the atom lead to atomic magnetic moments  
of limited magnitude, thus providing a way to understand why the magnetization 

q, m v q, m v 

(a) (b) 

Figure 10.13 (a) Orbital motion and magnetic 
moment of a positive charge q > O. (b) 
Orbital motion and magnetic moment of a 
negative charge q < O. 

of a magnet is of limited mag- 
nitude (saturation magnetization). 
Atomic magnetic moments  are 
limited because they are propor- 
tional to atomic angular momenta,  
which are themselves limited. 

A particle with mass m and 
charge q, moving in a circle of ra- 
dius r with velocity ~ has both 
angular m o m e n t u m  L - mF • 
normal to the orbit and magnetic 
moment  I /~ l -  I A normal to the 

orbit. See Figure 10.13, where both q > 0 and q < 0 are depicted. Here, I L l -  
mrv sin 90 ~ - mrv. 

For q > O, /~ is parallel to/~.  Let us relate I/~l andJ/~]. First note that v -  
2 J r r / T ,  where T is the period of the motion. Thus ] L ] -  m r v -  2 m ( J r r 2 ) / T .  
Now note that I - q~ T and A -  Jrr 2. Thus I/~1 = I A -  q ( z c r 2 ) / T .  Hence, I/~1 - 
I(q/2m) L I. Including direction, this is 

q L (10 10) 
/ ~ - ~ m  " 

We now relate this to the magnetic properties of matter. 
In 1910, Bohr gave a _~quantization rule for electrons moving in atoms, 

relating the magnitude of L to Planck's constant h. With l an integer, Bohr's 
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Motion at the atomic level has different properties than motion on a larger scale; for 
one thing, there is no friction. This explains why the magnetism of magnets doesn't 
decay with time. Weber's conception of indivisible magnets, and Amp~re's conception 
of microscopic atomic currents not subject to friction (suggested to him by Fresnel), 
are both supported by modern work. Although the Bohr model of the atom cannot 
be taken literally, it provides a good way to make order-of-magnitude estimates of the 
properties of atoms. 

relationship is 

h 
ILl - ~ l. (l an integer) (10.11) 

From (l O. l l), with q = e in (10.1 O) we deduce that, for electron orbits in atoms, 

eh 
I/~1 - 4zrrn l. (l an integer) (10.12) 

We call 

eh 
(Bohr magneton) (10.13) 

#B - 4zrm 

the Bohr magneton. Its value is 9.27 x 10 -24  A-m 2. 
In practice, only diamagnetic atoms (compare Figure 9.12b) derive their mag- 

netism from orbital motion. For paramagnetic (compare Figure 9.12a) and fer- 
romagnetic atoms, there is a source of magnetism associated with the intrinsic 
angular momentum S of each electron, as if each electron were a little gyro- 
scope. For that reason S is called the electron spin, and it, too, comes in quan- 
tized units. The intrinsic magnetic moment of the electron is twice that given 
by tt B. Nevertheless, the Bohr magneton gives the characteristic value of atomic 
magnetic moments. 

10o4 Magnet ic  Force on a Current-Carrying Wire 

Consider (10.6) for the magnetic moment fi - I~ x ~) of a current-carrying par- 
allelogram, and (10.9) for the energy U -  - f t .  B of a current-carrying loop in a 
/~ field. With them we will determine the magnetic force d/~ due to an applied 
field/~ on a piece of wire of length d ~ -  gds pointing along the direction of the 
current I. See Figure 10.14, where a bar magnet serves as the/~ source. Our 
derivation follows Maxwell. 

To obtain d/~ on d~, we use (10.9) to find the energy variation ~ U when there 
is a change in the magnetic moment ~fi: 

~ U - - ~ / ~ .  B. (10.14) 

Now consider the element d~ of the circuit in Figure 10.14. Displacement of 
d~ by 8F adds to the circuit a parallelogram-shaped loop of sides ~Y and d~, where 
the current I successively goes through sides ~ and d~. (Amp~re's experimental 
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Figure 10.14 Current loop I in an arbitrary external field 
(with source represented by the magnet). The element 
d~" of the loop, in an imaginary deformation by ~F, leads 
to an additional magnetic moment 8# = I~F x d~'. 

setup, similar to Figure 10.14, had a slide-wire arm d~ that  could be displaced 
by ~F. Hence no elastic energy was expended to distort the circuit.) By (10.6), 
the magnetic m o m e n t  of the circuit changes by 

6 f i -  I6~ • d~, (10.15) 

and thus (10.14) becomes 

~ u - - ~ .  ~ -  - ; ( ~  • ds-'). ~. (10.16) 

We will now need a simple mathematical  manipulation. Just as 

(i • } ) . k -  1 - i .  (} •  (} • k).i, 

so too can the vectors in (10.16) be rearranged. Thus 

(~U-  - I ( d g  x B) .  ~F. (10.17) 

Neglecting elastic energy, consider how we might  actually make such a dis- 
placement  6F. If there is really a force d F acting on dE, then the wire would 
start moving spontaneously, thereby gaining kinetic energy. To prevent that  from 
occurring, we act with a force from our hand, [7han~, that  nearly cancels d/~. Thus 
we do work 

(~ W - F hand " (~ ~ ~" - d  iF. (~ F. (10.18) 

This work does not go into elastic energy or kinetic energy; it goes into a change 
~U in the magnetic energy. Thus, equating ~ W in (10.18) to ~U yields 

, ~ U -  - d F  . ,~F. (10.19) 

Equating the terms multiplying ~F in (10.19) and (10.17) gives 

iiiii iiiiiiiiiiii iiiiiiii iiiii ii ii i iii ii ii~i~i~i~iii ~il ii i 
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10.4~1 

The qualitative statement that  the force is normal to both d~' and to B was made 
by Amphre, so (10.20) has been called AmpOre'sforce law. This important  result is 
well verified experimentally. It tells us how to find the force on a current-carrying 
wire in a magnetic field. 

Integrating the force law (10.20) over any circuit yields 

- ! f ( d ~ '  x / ] ) .  (10.21) 

. .+  

The Force on a S t ra igh t  Wire in a Uni form B 

If /~ is uniform over an arm of length l, t h e n / ~  can be brought  outside the 
integral, so (10.20) applied to a single arm integrates to 

C-'arm - I farm dd • B - I ( ~rm d~) x /] - I / x / ~ .  (10.22) 

If B is uniform, then so are each of its components (Bx, By, Bz). However, although a 
pole qm (the tip of a long narrow magnet or solenoid, as in Figure 10.12c) can produce, 
over a sphere of radius r, a constant magnitude 1/31 - kqm/r2, its components will not 
be constant over the sphere because its direction varies over the sphere. 

Here [ has length l and points along the direction of current flow. 
One application of (10.22) is to the "magnetic blow-out" of a welder's arc. 

If the arc between the two welding electrodes corresponds to a current along x, 
and a magnetic field suddenly is applied along y, then by (10.22) there will be 
a force on the arc that  is along z. If the force is large enough, the arc will be 
deflected enough from its path along x (between the electrodes) that  it will 
break the electrical contact and the arc will be extinguished. 

• Electromagnetic balance 

Consider an electric circuit carrying a current I, with an arm of length l, in 
an external magnetic field/~. Let the current be rightward, and the magnetic 
field be into the paper, as in Figure 10.15. (a) Find an algebraic expression for 
the force acting on the arm I. (b) Evaluate the field for l = 0.25 m, I = 2 A, 
and F = 0.004 N. 

Solution: (a) Equation (10.22) can be applied to each arm. The field acting on 
the upper arm (not shown) is zero, so the force on the upper arm is zero also. The 
forces on the side arms cancel because the currents in these arms are in opposite 
directions to each other. For the lower arm, the angle 0 between ~ and B is 90 ~ 

X 

X 

X B into paper X X 

• • 

I • • 

X 

X X 

Figure 10.15 Part of a current loop I in a 
uniform field/~. There is an upward force on 
the lower arm. 
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Thus (10.22) gives 

F = l I B .  (10.23) 

Moreover, P points upward. By measuring the change in the "weight" of the 
object, we can determine F, and thus deduce either I or B. (b) For the given 
values of l, I, and F, (10.24) yields B = F/(II)=0.008 T. 

If B in Figure 10.15 were rotated to partly point along )~ (the direction of 
the current), the force on the lower arm would still point upward. However, 
its magnitude would change. For a 25 ~ angle of rotation, the force would be 
IIB sin 65 ~ 

10.4.2 The Force on a Closed Circuit  in a U n i f o r m  [3 Is Zero  

Equation (10.21 ) simplifies considerably if the vector B is uniform over the entire 
circuit. Then B can be brought  outside the integral, so 

F = I  d~ x B - O .  (B uniform) (10.24) 

This is zero because, for any closed loop (such as a quarter-mile track), the 
integral over the vector elements is zero, or f d~" - 0. (The runner  has re turned 
to her starting point.)  Hence the force on the loop mus t  be zero. Note  that  the 
integral f ds over the length ds of the vector elements is nonzero. (The runner  
has run a quarter-mile.) 

Thus, to obtain a force on an electric circuit, /~ mus t  be nonuniform.  O f  
course, even for a uni form/~,  there can be a torque on the circuit, f rom (10.8). 

We now turn to some examples related to this section as a whole. 

ixample 10.( Force and torque on a current loop 

Determine the force and torque on the square current loop of Example 10.3, 
with current I and side a. See Figure 10.16. 

Solution: Because the field is uniform, by (10.24) there is no net force. As a 
consequence, by a theorem of mechanics, in calculating the torque it doesn't 
matter which point is used to determine the moment arms. Let's use the center 
of the loop. Applying (10.22) to the top arm gives a force Ftop that is along the 
upward vertical, as is the moment arm ?top, so the torque ~top = rtop • F top is zero. 
For the bottom arm Fbot = - -F top  and rbot = --rtop, SO ~bot - -  ~top is also zero. For 
the near arm, with current along -~, the force is along +)~, has magnitude laB, and 

~op Z 

ar B 
Ffar > 

Fbot 

Figure 10.16 A current loop in an external field B. This is 
the same geometry as in Figure 10.12(a), but in more detail, 
with the force on each arm given. 
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has moment arm of length a/2  in the xy-plane at 0 to the x-axis. This gives a torque 
rnear - -  ( a / 2 ) ( I a B )  sin 0 along -~. For the far arm, " ~ f a r  - -  " ~ n e a r  - -  ( a / 2 ) ( I a B )  sin 0, 
again along -~. Hence the total torque has magnitude 

/,B sin0, where/ ,  = I A =  la  2, (10.25) 

just as for (10.8). For 0 = 30 ~ this agrees in magnitude and direction with the 
analysis of Example 10.3. 

~ Current loop In flaring magnet field: the audio speaker 

In an audio speaker, the speaker coils are attached to a movable speaker cone 
and are fed current I by an amplifier. Consider that the magnetic field is pro- 
duced by a bar magnet that is fixed in place (although in practice the magnet 
geometry is more complex). See Figure 10.17(a). Assume that for each 
loop of speaker wire the magnetic field is uniform in magnitude, but flares 
outward by an angle 0, as in Figure 10.17 (b). [Thus/~ is a nonuniform vector, 
so by the note following (10.22), the force on the loop can be nonzero.] 
Take a loop to be centered at the origin, in the yz-plane,  and have radius a. 
It carries current I that is clockwise as viewed from the +x-axis. (a) Find the 
force on the loop of speaker wire. (b) Find the optimal value of 0. (Note: 
Both for its physics and its mathematics, this is a very instructive example.) 

Solution: (a) Before calculating the force on the loop, let's use a qualitative argu- 
ment to find its direction. Since the current in the speaker coil is clockwise to an 
observer on the right, by Amp~re's right-hand rule, the speaker coil behaves like 
an equivalent magnet whose magnetic moment points to the left. Thus the actual 
magnet and the equivalent magnets have their N poles nearest, so the equivalent 
magnet (and the speaker coil) should feel a force of repulsion--to the right. 

Now consider a more quantitative analysis, based on (10.20). Break up the 
loop into many parts. For the i element, dsi is normal to the field Bi, so the 
angle Od~,~i between dsi and/~i is ~bi - 90 ~ yielding sin ~bi - 1. (The symbol 0 
has already been used for the flare angle.) Equation (10.20) then yields 

IdFil -- Ild~i x B~I - IId-d~llBillsinqb~l -- I(d&)(B~)(1) = I (d&) (B) .  (10.26) 

Figure 10.17 (a) A speaker cone, including its permanent 
magnet and the current loops glued to it, driven by current I 
from the amplifier. (b) Analysis of a loop of speaker wire, 
focusing on the force dF on one element d~" in the flaring 
field/~. 
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However, only a fraction sin 0 of this, where 0 is the flaring angle of the field, 
points along the x-axis. See Figure 10.17(b). There also are force components 
toward the axis, which tend to compress the loop (a result not predicted by our 
Amp~re's force law analysis). However, they lie in the yz-plane; by symmetry they 
integrate to zero. Thus the contribution along the x-axis is all that matters, so we 
need compute only the component of dffTi along the x-direction. From (10.26), 
that entry is 

(dE i )x - -  ] (dsi ) B sin 0. (10.27) 

On performing the sum, we can take out the constant factors I, B, and sin 0. 
The sum is then given by 

Fx - -  ~ , i  (d Fi )x = ] B sin 0 ~:i dsi = [ B sin 0 (2zr a), (10.28) 

since the total length of the loop is 2Jra. Thus, we performed this complicated- 
looking integral as a sum, hardly using any more than the concept of calculus. 

We may rewrite (10.28) to read 

Fzoop = I (2Jr a) B sin 0. (force on loop in flaring field) (10.29) 

In practice, an audio speaker uses many turns N of wire, so the total force is N 
times (10.29). If the flare angle 0 - O, so that B is uniform, (10.29) gives no net 
force at all, consistent with (10.25). (b) Clearly, Floop of (10.29) is maximized 
if 0 is 90 ~ Indeed, this is how speaker magnets are designed. Efficient speakers 
have almost no stray magnetic field. 

~ Force on a speaker cone 

As an explicit example o f  a flaring field in the context of a speaker coil, 
consider that the field B is due to a long magnet or long solenoid, where 
only one pole dominates. For the loop in Figure 10.17(b), centered at the 
origin, imagine a pole qm on the x-axis at ( - d ,  O, O) producing the field/3. For 
a = 0.005 m, d = 0.00866 m, I = 0.02 A, and N =  50 turns, find the net force 
on the speaker cone. 

Solution: From the geometry of the problem, r = ~/d 2 + a 2 = 0.01 m, sin 0 = 
a/r = 0.5, and 2rra = 0.0314 m. For a pole qm, B = kmqm/r z gives B = 2 x 
10 -2 T. Finally, with I = 0.02 A and N = 50, 50 times (10.29) yields a force of 
3.14 x 10 -4 N. This acts on the speaker cone, causing it and the air surrounding it 
to move. Because l is time dependent (coming from the amplifier, which in turn 
is fed by a compact disk or a radio tuner), the force, and thus the motion of the 
speaker cone, is time dependent. This motion, as we all know, produces sound. 

The  force described in (10.20),  dF - Id~ • B, acts on the charge carriers in 
a direction normal  to the  wire. W h e n  the charge carriers start to move in that  
direction, they  collide with the atoms of the wire, as described in Chap te r  7. 
In this way, the m o m e n t u m  transferred by d F to the charge carriers is rapidly 
transfered to the more  massive (or ponderous) circuit. Hence  the circuit itself 
feels this force. For tha t  reason, in the  19th century, it was called a ponderomotive 
force. For a rigid object, the ponderomot ive  force effectively acts on the center  
of mass as a whole. We will find it useful to distinguish be tween  ponderomot ive  
forces tha t  act on macroscopic objects and local electromotive forces tha t  act on 
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electric currents within a macroscopic object. (As indicated in Chapter 7, the 
terminology electromotive force is reserved for the work on taking a unit charge 
around a circuit.) In the next section, we will derive a local electromotive force 
whose origin lies in the same physics as (10.20). 

10o5 

10,5,~1 

The Force on a Charge  M o v i n g  in a M a g n e t i c  Field 

Derivation 

~/() ~) q_qv 
t= q O . - - . ~  v I = F -  T 

Figure 10.18 Force dF on a 
charge q moving in a magnetic 
field. The imaginary line 
segment S is of length l - vt. 
During the time t, q passes 

We can use (10.20) to derive the force on 
a single charge q moving with velocity ~ in a 
field B. See Figure 10.18. 

The idea is, in (10.20), or dI: - Id~ x/~, to 
consider a line of identical charges q at imag- 
inary spacing l, moving with velocity ~. They 
cross l in time t - l/v, where v - I~1. The cur- 
rent thus  is I - q / t  - qv/ l ,  and it is associ- 
ated with length l. Thus I d~ has magnitude 

completely across S. ( q v / l ) l -  qv. Moreover, Id~ points along q~, 

so I d ~ -  q~. Hence, in dF - Id~ x B, use q~ for Id~ and f for dF to obtain 
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Note that the imaginary spacing l has disappeared. This result was discovered 
theoretically, both by Heaviside (1889) and by Lorentz (1895), many years after 
Amp~re's discovery of (10.20). Note that the microscopic viewpoint of this 
derivation was not available to Ampere or Maxwell. 

Since (10.30) involves the vector cross-product of ~ and/~, the magnetic 
force P on the particle is normal to the plane defined by both ~ and B. For 
any cross-product, the magnitude of the resultant vector equals the product of 
the magnitudes of the two vectors (here Ivl and I/~l) and the sine of the angle 
between the two vectors. 

~ Direction of magnetic force on moving electron 

Consider an electron (q - -e)  with ~ along i (left to right on the page), in 
a/]  along j (bottom to top of the page). Find the direction of the magnetic 
force acting on it. 

Solution: ~ x/] is along i x j - ]e (out of the page). By (10.30), since q < 0, 
is along -~e (into the page). 

• Magnetic force electron in the earth's o n  moving 
magnetic field 

Consider an electron with energy 10 eV, moving in the earth's magnetic 
field, taken to have the local magnitude ]B earth] = 0.5 x 10 -4 T. (a) Find 
the maximum force acting on the electron. (b) Find the corresponding accel- 
eration, and compare with that of gravity. 
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Solution: The maximum force occurs when the electron is moving perpendicular 
to the direction of/~earth. The velocity is given by �89 my 2 = e V, where V = 10 V, 
so v = v /2eV/m,  which yields v - 1.875 x 106 m/s. Then ]Flmax - evlBearth] = 
1.5 x 10 -17 N. This corresponds to an acceleration of a = IFmaxl /m--  1.60 x 
1013 m/s 2, which completely overwhelms the 9.8 m/s 2 of gravity. 

10.5.2 The Magnetic Force Does Zero Work 

The magnetic force on a moving charge has a curious property; it does no work. 
That is because the work dWmag - F �9 d~ done by the magnetic force in time dt  
when q moves by dF involves the scalar product of two mutually perpendicular 
vectors. On the one hand, F - q~ x/~ is normal to ~; on the other hand, dF = ~dt  
is along ~. H e n c e  dWmag = F �9 d~ = O. 

The force described by (10.30), when it is applied to individual charge carriers 
in a wire, can cause current flow even when there is no battery in the circuit, 
and thus it can be thought of as an electromotive force. We will call it the local 
electromotive force. Chapter 12 will develop this idea extensively. 

Example 10.7 involves a current-carrying speaker coil in a magnetic field. 
Using a term introduced in Example 10.8, we can say that there is a net pon- 
deromotive magnetic force (integrated over the loop) acting on the coil. Let the 
velocity of a charge carrier in the coil be written as ~ = vcM + vd, where vcM 
is the velocity of the center of mass, and vd is the drift velocity of the charge 
carriers relative to the center of mass (thus vd isalong or against the current 
density J). Example 10.7 implicitly took VCM -- 0. If VCM ~ 0, then the pon- 
deromotive force does work A Wpmf on the center of mass of the coil. Since 
dWmag - 0 on each charge, there must be another sort of work that is equal and 
opposite to A Wpmf. This is the work A W~mf done by the emf associated with the 
component of magnetic force qvcM x B along the wire. If the coil speeds up 
(A Wp~y > 0), then the current slows down (AWemf < 0). (A similar argument 
applies to the electromagnetic balance of Example 10.5.) This is discussed in 
detail in Section 10.8. 

10.6 

10.6~1 

Applications of the Magnetic Force Law 

Three important applications of (10.30) are (1) circular motion of electric 
charges, as employed in particle accelerators (e.g., cyclotrons) and mass spectro- 
meters (sensitive detectors of the charge-to-mass ratio of atoms and molecules); 
(2) magnetic deflection of electric charges, as in vacuum tubes (e.g., TV tubes 
and computer monitors); and (3) magnetic mirrors, which confine charged parti- 
cles with magnetic fields, as used in fusion devices (such devices, if they become 
practical, would use deuterium from water to provide abundant nuclear power 
that could be converted to electricity). 

Motion Perpendicular to Uniform [3 Is Circular 

Consider a uniform/~, and an initial ~ that is perpendicular to/~. Figure 10.19(a) 
depicts the motion of positive charges, and Figure 10.19(b) depicts the motion 
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q>O q<O 

v X v~ X X 

x x x 

(a) (b) 

Figure 10.19 (a) Motion of a positive charge q > 0 in a 
field/~ pointing into the page. (b) Motion of a negative 
charge q < 0 in a field B pointing into the page. 

of negative charges, with deflections perpendicular to their motion, according 
to (10.30). Since the magnetic force is perpendicular to the velocity, this is very 
similar to two familiar situations where there is circular motion. The first case is 
that of planetary motion in a circle. Here the force of gravity due to the sun causes 
the planet to move in a circle, provided that (1) there is no radial component 
to the velocity, and (2) the attractive gravitational force Fg precisely equals the 
product of the mass m and the inward radial acceleration v2/R. The second 
case is a bucket swung by a rope. Here the bucket moves in a circular orbit when 
the tension T in the rope matches the product of the mass m and the inward 
radial acceleration v2/R. In both of these cases, the force is perpendicular to the 
velocity and there is an obvious center to the orbit, determined by the nature of 
the force (gravity in one case and the rope in the other). 

For a charged particle moving in a magnetic field, the force is perpendicular 
to the velocity, but there is no obvious center to the orbit. Indeed, we can have 
many particles having orbits about different centers. However, that does not 
affect the fact that there is a circular orbit. 

Let us now equate the magnitude of the magn~ic force F to the product of 
the mass m and the radial acceleration v 2/R. Then I FI - Iqllvll/~l I sin 0l - Iq IvB, 
since ~ and/~ are at an angle of 90 ~ Thus 

m y  2 

] q l v B -  R ' (10.31) 

which implies 
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This result for R has all the qualitative dependences that might be expected: 
it increases as the momentum mv increases, and it decreases as the charge q 
and field B (which produce the deflecting force) increase. However, without 
the derivation we would not know the powers to which each variable appears, 
nor that the constant of proportionality is unity. For a proton (q - e and m = 
1.67 x 10 -27 kg) with v = 4.5 x 10 s m/s, in a field B = 3 x 10 -s T (comparable 
to that found just outside the earth's upper atmosphere), (10.32) gives R = 
156.6 m. This is sufficiently small that a proton from the solar wind can circle 
around the earth's magnetic field lines. 
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The bending of charged particles moving in a magnetic field is the basis of the mass 
spectrometer. Unknown atoms, of mass M, are ionized, accelerated, passed through 
a velocity selector (see Section 10.6.4), and then enter a region of known/~. They are 
bent in a semicircle by/~, and then leave the field region with reversed velocity. From 
the radius of their circular motion, by (10.32) their q /M value can be determined. Since 
q is always an integer times e, the radius of the largest circle should correspond to 
q = e. Hence M can be determined. An alternative use of the same device is to employ 
particles of known mass and charge, and by their bending in a known magnetic field, 
to determine their velocity. This is called a momentum analyzer. 

We can rewrite (10.32) to obtain v/R,  which is the same as the angular 
frequency 02. That is, 

v lqlB 
R m ~ ;i ! i ~ ~i i,~i: ~ ii!!ii~Sii!ii~iiii~!,~ii:iC~ ~i!~ i~ iil ~! i~ii !~i! i~i ......... ii!! iii!ili ~�84 iil ilil 

is independent of the radius of the orbit. Equation (10.33) is called the cyclotron 
frequency. The corresponding period is given by 

T m 
2YT 27~m 

= . (]0.34) 
co IqlB 

The period is the "year" for the particle. Hence, for a charged particle moving in 
a circle under the influence of a uniform magnetic field, the year is independent 
of the radius of the orbit. This is a surprising result, given our experience with 
gravity: planets within the solar system have nearly circular orbits with a year that 
increases with the radius R (as R3/2). For a proton in a field B = 3 x 10 -s T [as 
in the paragraph after (10.32)], (]0.33) gives co= 2.87 x 103 rad/s, and (]0.34) 
gives T = 2.18 x 10 -3 s. Thus protons above the earth are constantly spiraling 
around the local magnetic field, constrained by it from developing sustained 
motion in any direction but that of the field line. 

1 0 . 6 . 2  For a Charge in a Uni form [3, Mot ion  Is Circular or  Spiral  

Again consider the case of uniform/] .  Since the magnetic force on a charge q 
and velocity ~ is normal to the plane defined by ~ and/~ there is no force 
along/~. Hence a nonzero component of ~ along/3 (given by '~ . /~)  will remain 
unchanged. Thus, the motion along/~ will proceed with a uniform value given 
by ~ . / ) ,  independent of the motion perpendicular to/3. Since the motion in the 
plane perpendicular to/3 is a circle, the net motion is a spiral. (This also may be 
seen as follows. Start in the reference frame where ~ is normal to/~, so q moves in 
a circle about/~. Then go to the reference frame where q has a component along 
B.) See Figure 10.20, where ~ has components in all three spacial directions. The 
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- - e  

Figure 10.20 Electron with velocity ~ subject 
to the uniform magnetic field B, causing 
motion in a spiral of pitch p. 

distance that q moves in the direction of/~, per revolution about/~, is called the 
pitch p. 

10o6~3 The Cyclotron 

The radius independence of the period in (10.34) is the key to devices called 
cyclotrons, which inject charged particles into a magnetic field, and then "hit" 
them with an electric field at just the right place and time in their orbit (de- 
termined by the cyclotron frequency) to accelerate them. Without this radius 
independence of the period, it would be much harder to control the accelera- 
tion timing. On acceleration, the velocity and [by (10.32)] the radius grow. The 
limiting values are determined by the magnetic field that can be produced. The 
cyclotron was invented by E. O. Lawrence and M. S. Livingston in 1934. It was 
the first man-made "atom smasher," accelerating charged particles to high enough 
energies that, when they collided, they split apart or otherwise produced results 
that revealed the inner workings of matter. 

When a particle moves, its mass increases, as shown by Einstein in his spe- 
cial theory of relativity. (Here, "special" means "restricted.") He found that 
m - mo/v/1 - v 2 / c  2, where m0 is the rest mass. This increase in mass decreases 
the cyclotron frequency of (10.33), an effect that is unimportant unless the 
velocity approaches the speed of light. In that case, the timing of an acceler- 
ation device must adjust to the particle velocity, which makes for more com- 
plex cyclotron design. For that reason, such acclerators are called synchrocy- 
clotrons. 

The cyclotron consists of two half-cans (tunafish cans in shape), technically called "dees" 
because they look like the letter D from above. See Figure 10.21(a) for an x-ray view. 
The two dees A and B are given opposite voltages such that when a particle is in A, 
and crosses to B, it gains energy. Then, while in B, the voltages are switched, so on 
crossing from B to A the particle again gains energy. See Figure 10.21(b). This use of 
timing so that linear acceleration occurs every half-cycle bears some resemblance to 
the way slip-rings (compare Section 10.3) cause rotational acceleration of motors every 
half-cycle. The dees can be thought of as 180 ~ pieces of pie; more recent designs, to 
increase the rate of acceleration, use six 60 ~ pielike regions (still called dees), the odd- 
numbered dees being grounded, and the even-numbered dees having a voltage that is 
adjusted. 
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Top view 

(a) (b) 

Figure 10.21 Cyclotron. (a) Perspective of the two dees, with 
uniform field/~ pointing downward. (b) Top view of the two 
dees, including the motion of a charged particle in/~, which 
points into the page. The particle is injected and then 
accelerated as it passes from dee to dee. 

10.6.4 Magnetic Deflection with Crossed E: and [1 Fields: 
e/m for the Electron 

In the 1890s, many physicists were studying sparking in evacuated tubes (vacuum 
tubes) because such studies promised to provide information about the micro- 
scopic nature of matter. It was learned, both by direct measurement and by their 
deflection in a magnetic field, that the charged particles emitted by all types of 
cathodes, known as cathode rays, were negatively charged. In 1897, J. J. Thomson 
performed a crucial experiment on cathode rays. Making a tube with a better 
vacuum than others had made, he found that cathode rays in his vacuum tubes 
did not collide with any residual gas, and he could now study how the path of 
the cathode rays was affected by both electric and magnetic fields. From this, he 
determined their charge-to-mass ratio, e/m. 

The cyclotron is the grandfather of modern particle accelerators. In the first cyclotrons, 
the particle energies achieved were comparable to the energies of naturally occurring 
atomic nuclei and revealed much about nuclear physics. [Nuclear physics is daily applied 
in smoke alarms (which detect smoke particles ionized by a small amount of radioac- 
tive isotope in the alarm), medical diagnostics (where small amounts of radioactive 
isotopes, once swallowed, can then be imaged in the body), archeological dating (with 
radioactive isotopes), and nuclear power (using energy released from nuclear fission).] 
As cyclotron technology improved, the achievable particle energies increased to the 
point that the constituents of the nuclei--the protons and neutronsmcould themselves 
be blown apart, and the products studied. The study of such subnuclear particles, as 
with astronomy (the study of ultralarge and ultradistant objects), requires the construc- 
tion of large and sensitive detectors. Unlike astronomy, however, where the universe is 
already present and waiting to reveal its secrets, in the area of subnuclear physics the 
universe (of subatomic particles) also must be created. Subnuclear physics (also called 
high-energy physics) has been at the forefront of data collection and data storage tech- 
niques, and many important software developmentsmfrom computational methods to 
electronic mail, electronic publishing, and the World Wide Web--have been made by 
workers associated with this area. 
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/ / ,1 / /  "~ Figure 10.22 Motion of a charged particle 
q in crossed electric and magnetic fields/~ 
and/~, subject to the no-deflection 
condition I/~l = [~]l/~]. 

The total force on a particle of charge q and velocity ~ is the sum of the 
electric force q/~ and the magnetic force q~ x B, giving what is known as the 
Lorentz force 

Thomson first chose ~ and/~ to be mutually perpendicular. Then he took/~ to 
be opposite ~ x/~, so the electric and magnetic forces were made to oppose 
one another. Figure 10.22 takes ~ along )?, /~ along ~, and/~ along -~. Thus 
Iv x/~1 - vB and ~ x/~ is along ~, which is opposite to/~. 

Thomson then made the electric and magnetic forces cancel out completely, 
giving/~- 0 in (10.35). Explicitly, this gives q(E + ~ x / ~ ) -  q[(-5)E + ivB]- 
q ( - ~ ) ( E  - vB) - O, so 

E 
v - ~ .  (no-deflection condition) (10.36) 

This is the principle of a velocity selector. It enabled Thomson to determine the 
particle velocity from measurements of E and B. 

Thomson then turned off the/~ field and studied the deflection of the cathode 
rays due to E alone. Chapter 3 considers the deflection of a particle of charge q 
and mass m moving along the x-axis with velocity Vx and subject to a y-directed 
electric field E due to plates of width L. Referring to Figure 3.26, the deflection 
angle 0 was given by (3.51) as t a n 0 -  ayT/vx,  where the acceleration a y -  
q E / m  from (3.50), and the crossing time T = L/vx. Combining these results, 
and using (10.36) with Vx for v, yields 

t a n 0 -  qE (L/v)  _ q E L  _ --~.q B2L (10.37) 
m v m v  2 m E 

A measurement of 0, L, E, and B then yielded q/m.  Thomson found that 
cathode rays--from all cathode materialsmyielded only one value for q/m, which 
he called - e / m ,  where e / m  was about 1.75 x 1011 C/Kg. This suggested that 
only a single type of object came from all cathodes. 

Shortly after Thomson's discovery of the unique value of q / m  for cathode 
rays, Fitzgerald remarked that "we are dealing with free electrons in these cath- 
ode rays." It took a few more years to convince skeptics that the word electron 
(invented by Stoney in 1894 to describe the charge associated with ions) actually 
corresponds to a real object. This is known as Thomson's e/m experiment. 
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This q/m ratio was much larger in magnitude (by a factor of 10 4 or more) than the 
range of values obtained from Faraday's law of electrolysis. (A range of values of q/rn 
occurs in electrolysis because ions vary in both rn and q, and q/m is much smaller for 
ions because m for ions is much greater than for electrons.) For example, Cu 2+ yields 
q/m = 3.02 x 10 6 C/Kg. 

10.6~5 Motion in a Flaring B Field: The Magnetic Mirror 

The complete theory of this effect, whereby a moving charged particle is 
contained by a flaring B field, is complex. However, some qualitative con- 

Figure 10.23 Electron with velocity 
subject to the nonuniform magnetic field 
B, causing motion in a spiral of changing 
radius and pitch p. If the field is strong 
enough, and the velocity is low enough, 
the electron can be confined within a 
"magnetic mirror." 

siderations can be used that make the 
point quite clear. See Figure 10.23. If 
the field is gently flaring over the orbit 
of the particle, and if the particle's ve- 
locity is mostly normal to the field, its 
orbit is nearly circular. The force on 
the particle, integrated over an orbit, 
then is similar to the force on the cur- 
rent loop in the audio speaker prob- 
lem of Example 10.7, where there is 
a net force on the current loop. This 
force can either speed up the particle or 
slow it down; if it slows down the par- 
ticle enough, the particle can reverse 
direction, yielding the magnetic mirror 
effect. 

Consider a charged particle moving in a magnetic field/~ with B~ - B cos ~) > 
0 and a component B sin~) that flares radially out of the xy-plane, as in 
Figure 10.17 (b). Let the particle, of charge q > 0, circulate clockwise as viewed 
from the +z-axis, and let vi  be the magnitude of the velocity in the xy-plane, 
so that the motion is nearly circular, with approximately constant radius r. The 
z-component of the force on the particle is then 

Fz - - q v •  B sin ~). (10.38) 

[We neglect F~ and Fy because, integrated over an orbit, they cancel out, as in 
the case of the audio speaker, described by (10.29).] If Vz > 0 and ~) > 0, the 
force opposes v~; this is the principle of the magnetic mirror. (A more com- 
plete theory shows that, with r the local radius of the orbit, B~r 2 is a constant, 
so that larger B~ causes a tighter orbit, a not unreasonable result.) Note that, 
in Figure 10.23, in the left (right) part of the magnetic mirror ~) is positive 
(negative), so the magnetic mirror pushes the particle to the right (left). If the 
velocity along the axis is not too high, the magnetic mirror can confine the 
particle. 
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The magnetic mirror effect happens to both electrons and protons in the upper at- 
mosphere of the earth, where they spiral back and forth from the south pole to the 
north and back again. There are two distinct beltlike regions (Van Allen belts), with 
mostly electrons in the outer belt and mostly protons in the inner belt. Near the poles, 
where the field is largest, the orbits are tightest, by (10.32). Moreover, that is where 
the electrons and protons get closest to gas in the lower atmosphere. Collisions with 
the gas "excites" the gas atoms; when they recombine, they emit light. In the northern 
hemisphere the aurora borealis, and in the southern hemisphere the aurora australis, 
are due to electron-atom recombination in the ionosphere. The electrons originate with 
the sun (part of the solar wind, which contains an equal number of protons). 

10.7 The Hall Effect 

The Hall effect, discovered in 1880, established the sign of the charge carriers 
for ordinary materials. The experiment is straightforward. Consider a magnetic 
field pointing into the paper and a current l going to the right through a thin 
strip of width w and thickness t into the page. By d]F - Id-~ x B, the current 
is subject to a force that points upward. The charge carriers thus move to the 
top of the wire. If charge carriers are positive, the top develops a positive voltage 
relative to the bottom. See Figure 10.24(a). Ifthey are negative, the top develops 
a negative voltage relative to the bottom. See Figure 10.24(b). 

These considerations about the Hall effect apply only when there is a sin- 
gle type of charge carrier. The interpretation is more complex for materials 
with more than one type of charge carrier (e.g., a semiconductor, which has 
both conduction-band electrons and valence-band "holes" as its carriers~see 
Section 7.13.3). 

10~7~1 The Hall Voltage 

The magnetic force q5 x/~ acting on a charge q moving with velocity 5 in a 
magnetic field/~ can be interpreted as a force q E mot due to what is called the 

Figure 10.24 The Hall effect for rightward current I in a 
uniform field/~ that points into the page, so the force on the 
current is toward the upper surface. (a) Positive charge carriers, 
which go to the upper surface, leading to a downward Hall field 
E. (b) Negative charge carriers, which go to the upper surface, 
leading to an upward Hall field E. 
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10.7,2 

motional  electric field 

Emot - 5 x B, (10.39) 

which tends to deflect the charge carriers q normal to the direction of the current 
flow. This drives charge to the top or bottom of the wire, and this charge produces 
a so-called Hall  field E. Iq. The current stops flowing upward when E mot and 
EH cancel. This leads to the same no-deflection condition (10.36) as in the 
Thomson e / m  experiment. We write this as 

E H -- va B. (10.40) 

For positive (negative) charge carriers E H is down (up), as in Figure 10.24. The 
voltage difference between the top and bottom of the wire, separated by w, is 
the Hall  voltage 

V H -  E H W -  vdBw.  (10.41) 

For positive (negative) charge carriers VH is higher on the upper (lower) side of 
the wire. See Figure 10.24. 

The voltmeter circuit for the Hall probe is not in the magnetic field. Hence 
the only emf driving current through the Hall probe voltmeter is the voltage 
difference s E �9 d~ across the two sides of the wire through the voltmeter. This 

~ " ~ - ~ h E is truly electrostatic; there is no 5 x B term, so we write E es t0r E. By t e 
path independence of integrals over electrostatic fields, fvm #es" d~ equals the 
voltage difference fwire Ees" dY across the two sides of the wire through the wire 
itself, which is what we want to know. If the Hall probe has resistance Rprobe, 
then a current Iprobe = VH/Rprobe passes through the Hall probe. Recall that a 
voltmeter must draw very little current to avoid disturbing the circuit under 
study, so that Rprobe m u s t  greatly exceed the resistance across the strip. 

W h e n  applied to soft ferromagnets, Hall effect experiments support B -  
#o(/2/+ M), rather than the #0H of magnetic poles, as the quantity that applies 
in the force law (10.30). 

Hall Resistance, Hall Voltage, and Hall Coefficent 

Recall from Chapter 7 that the current density J - n q v a ,  where va is the drift 
velocity of the charge carriers. Thus 

J 
Vd -- ~ .  (10.42) 

nq 

Using (10.41) and (10.42), VII - Ei-tw takes the form 

VH 
J B w  

nq 
(10.43) 

We define the transverse, or Hall, resistance as 

VH 
Rt -" 

I 
(10.44) 



10. 7 The Hall Effect 447 

Note that Rt is nonzero even for a superconductor. Hence, unlike the usual 
longitudinal resistance R, it is not dissipative in nature. (Longitudinal because 
there the voltage is along the direction of the current. We write R for what could 
be called R~.) With I = J A, A -  wt, and (10.43), Equation (10.44) becomes 

J B w  B 
o R t -  nq(JA)  - nqt (10.45) 

From measurements of B and t, nq can be determined, and from q = +e, the 
charge carrier density n can be determined. The sign of the charge carriers is 
determined from the sign of the voltage, as in Figure 10.24. One use of the Hall 
effect is to measure B. In that case, by (10.45) the factor qnt is determined 
from a measurement of Rt in a known B. With this calibration of qnt, a future 
measurement of Rt can yield B, by (10.45). 

For the alkali metals (Na, K, etc.) and the noble metals Cu, Ag, and Au, 
the Hall voltage is negative, as in Figure 10.24(b). However, for many materials, 
including Co, Zn, and Fe, the Hall voltage is positive, as in Figure 10.24(a). More- 
over, for semiconductors, the sign can be either positive or negative, depending 
on how the sample is doped with impurities. The fact that both signs are observed 
may be understood in terms of near ly~but  not completely - occupied bands of 
electron orbitals in solids. 

An energy band is a set of orbitals for electrons in a solid, somewhat like 
a shell of orbitals in an atom. When an energy band is totally occupied, it has 
zero net momentum. When it is missing only one electron, of momentum }, the 
momentum of the remaining electrons is - } .  We can describe the system as 
having a hole of momentum - } .  Similarly, we can describe the system as having 
a hole with charge - ( - e ) =  e. In some materials, electrical conduction takes 
place via electrons in nearly filled energy bands. These are describable in terms 
of holes, thus explaining the positive sign of the Hall resistance. 

• Finding density dopant type the carrier and 
for a semiconductor 

A 120 ~tm thick sample of Si that has been doped either with the donor 
As (which gives electrons) or the acceptor Ga (which gives holes) has 
VH = - 0 . 6 5 1  V in a 2 T field, for I = 0.25 A. (a) Determine the dopant. 
(b) Find the Hall resistance. (c) Deduce the value of nq. 

Solution: (a) Since the Hall voltage is negative, the carriers are negatively charged, 
so the dopant is As. (b) From (10.44), the Hall resistance is Rt =-2 .604  ~2. 
(c) From (10.45), nq = B/tRt = - 0 . 6 4  x 10 4 C / m  3. With q = - e ,  this gives 
n = 4.0 x 1022 m -3. 

Note that the so-called Hall coefficient 

Ey 
RH -- (10.46) 

J~B~ 

takes on the value - 1 / n q  for our single charge carrier model. For Figure 10.24, 
B~ < 0; in Figure 10.24(a), Ey < O; and in Figure 10.24(b), Ey > O. For 
Example 10.11, RH -- 1.563 x 10 -4 m3/C. 
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0~7.3 

Scientists using this technique must distinguish between three similar- 
sounding quantities" Hall resistance, Hall voltage, and Hall coefficient. Only the 
last depends on the intrinsic properties of the sample. 

The Quantum Hall Effect: A Quantized Resistance 

In two-dimensional geometries, when analyzing the Hall resistance of (10.45), 
we should use ns,  the number per unit area of charge carriers, rather than n t .  

Then we expect, with q -* e, 

B 
Rt - ~ .  (Hall resistance in two dimensions) (10.47) 

e/~ s 

In 1980, a study of the Hall resistance Rt for charge carriers in a two- 
dimensional geometry found that Rt, at a fixed magnetic field B ,  stayed at a 
constant value even when the apparent density ns was varied over a wide range 
of values. See Figure 10.25(a). It did not change when the temperature was 
changed, or when the sample was changed. It was found, quantitatively, that the 
Hall resistance was quantized in fractions of the quantity 

h 
R0 - e2 = 25812.806 ~, (quantum of resistance) (10.48) 

where Planck's constant h - 6.626 x 10 -34 J-s. Specifically, Rt remained at one 
of the plateau values 

R0  
R t  - ~ ,  (i - integer) (10.49) 

I 

where i is an integer. The presence of Planck's constant in Ro is an indication of 
quantum effects, wherein the electrons must  be described in terms of orbitals. 
In Chapter 7, we mentioned other quantum effects in the ordinary electrical 
resistance. 

The phenomenon described by (10.49), and known as the integral q u a n t u m  

H a l l  ef fect  (QHE), earned Klaus yon Klitzing the 1985 Nobel Prize in physics. 

Figure 10.25 Quantum Hall effect. (a) For the quantum 
Hall effect regime, Hall coefficient as a function of the 
charge carrier density ns per unit area. (b) Side view of an 
experimental sample that displays the Hall effect. The Hall 
effect occurs within the Si, which has an excess of 
electrons, taken from the metal on the other side of the 
insulating SiO2 layer. 
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The charge carriers in his experiments were electrons at the surface of a sample of 
very pure Si, attracted to (but separated from) a positive metallic plate by a layer 
of insulating material. See Figure 10.25(b). By changing the voltage of this tiny 
capacitor, the amount of charge associated with it could be varied. The fact that 
the apparent value of ns does not seem to change at the plateau values of Rt is an 
indication that under certain conditions the additional charge does not go into 
conducting states. Essential to the success of these experiments were (1) very 
large magnetic fields (to make the cyclotron frequency high), (2) high purity of 
the Si (to decrease the chances of a collision with an impurity during a cyclotron 
orbit), and (3) very low temperatures (to decrease the chances of a collision 
with a thermal excitation during a cyclotron orbit). These collision-suppressing 
conditions are similar to the collision-suppressing high-vacuum condition that 
Thomson needed to observe the e/m ratio for the electron. 

R0 can be measured so accurately that it provides a resistance standard. More- 
over, it also provides a method to determine the combination R0 = h/e 2 of the 
fundamental constants e and h. Since the discovery of (10.49), quantization of 
Rt has been found with simple fractions in place of the integer i. Thus, both the 
integral and the fractional quantum Hall effects (FQHE) have been discovered. 
The 1998 Nobel Prize in physics was awarded to Horst St6rmer and Daniel 
Tsui for their discovery of the FQHE, and to Robert Laughlin for his detailed 
explanations of both the QHE and the FQHE. Systems that exhibit the FQHE 
are quantum liquids with the property that they have a preferred uniform elec- 
tron density. When an extra electron is added, rather than the density going 
to a larger (nonpreferred) uniform density, all the electrons adjust to give the 
total density three (or five, or seven, etc.) localized but movable bumps, each of 
which has a third (or a fifth, or a seventh, etc.) of an electron charge. The rest 
of the system remains at the preferred uniform density. Isn't nature mysterious 
and unpredictable? 

10~ On Magnetic Work 

In Section 10.5.2, we showed that the work d W  done by the magnetic force 
on an individual charge q is zero. On the other hand, when we considered the 
audio speaker and the electromagnetic balance in Section 10.4, the integrated 
magnetic force d/~ - Id~ x/~ acting on the center of mass was nonzero. Because 
this force can change the state of motion of the massive, or ponderous, center 
of mass, we called it a ponderomotiveforce, or pmf. The work it does is called 
dWpmf. 

10o8~I Work by the Ponderomotive Force and Work 
by the Electromotive Force 

The audio speaker and the electromagnetic balance appears to contradict the 
general argument of Section 10.5.2 that dWmag = 0. However, a careful analysis 
leads to the conclusion that, even for these cases, the net magnetic work is zero. 
What happens is this: in addition to the work dWpmf done by the ponderomotive 
magnetic force, there is another magnetic force that does an equal and opposite 
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amount of work on the charge carriers. Because this force can change the state of 
motion of the electric charge carriers, it can be thought of as an electromotive force; 
in Section 10.5.2, we called it the local electromotive force. Let the associated work 
done on the charge carriers be written a s  dWemf. Thus, we claim that 

d Wmag - d Wpmf + d Wemf - O. 

According to this equation, if the ponderomotive force does work dWpmf-  
2 x 10 -3 J (i.e., moves the wire of the electromagnetic balance), then the work 
done on the charge carriers is d W ~ / -  - 2  x 10 -3 J (i.e., the current through the 
wire must decrease). 

10.8.2 Proof That Net Magnetic Work Is Zero 

For simplicity, consider only positive charge carriers, so the charge carriers and 
the current are in the same direction. Let the wire have center-of-mass velocity 
VCM. (Recall that most of the wire's mass is concentrated in the background ions, 
not in the very light charge carriers, so vcM is basically independent of how the 
charge carriers are moving.) Let the wire contain N charge carriers with drift 
velocity vd, defined relative to the material of the wire. 

The net velocity of the charge carriers is thus 

- ~cM + ~a. (]o.5o) 

Recall that, in a time dt, a charge q moving at velocity ~ moves a distance 
d F -  fidt. Thus, as in Section 10.5, the magnetic work done on this charge is 

d W -  qF x [3. dF - q(~ x B) . ~dt - O. (]0.51) 

In words, this is zero because the cross-product of ~ with B, ~ x B, is perpen- 
dicular to ~. 

Use of (10.50) in (10.51) then gives four terms" 

0 - q(vcM + vd) x B .  (VcM + ~d)dt - q(vCM • B)" ~cMdt + q(vd x t3). Fddt 

+ q(~s x B) .  ~cMdt + q(~cM x B) .  ~sdt. (10.52) 

The first two terms in the second equality of (10.52) are zero, for the same 
reason that (10.51) is zero. Since the total is zero, the third and fourth terms 
must cancel. We now develop their physical interpretation. 

From the third term in (10.52), when all N charge carriers in the wire are 
included, the work dWpmf done by the ponderomotive force on the center of 
mass, discussed in Section 10.4, is 

d Wpmf -- F pmf" fi cMd t, FpmS - N q ~ d  • ~. (10.53) 

Here/~ pray is the ponderomotive magnetic force acting on the center of mass, due 
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to the motion of the charge carriers relative to the wire. Applied to a wire of 
length l, Fpmf yields (10.22), I/" x/~. To see this, in Fpmf replace Nq~d by I[, as 
in the derivation of (10.30). 

From the fourth term in (10.52), when all N charge carriers in the wire are 
included, the work dW~mf done by the local electromotive force on the charge 
carriers is 

dWemf- [:emf " ~ddt, F emf ~ NqUCM x ~3. (10.54) 

Here Ferny is the total force on the charge carriers due to the motion of the wire. 
We will have more to say about this local electromotive force in Chapter  12, 
where we will also discuss the more general case when the magnetic field varies 
with time. 

With the definitions of (10.53) and (10.54), the last two terms of (10.52) 
sum to give 

0 = dWm~g = dWemf + dW~mf. (10.ss) 

Thus, when a current-carrying wire moves in a magnetic field that does not 
vary with time, the work done by the ponderomotive force on the center of mass 
is equal and opposite to the work done by the local electromotive force on the charge 
carriers. For the electromagnetic balance, the center of mass is lifted up, but  to 
compensate energetically, the charge carriers are slowed down. Similarly, for the 
audio speaker, if the center of mass is speeded up, then the charge carriers are 
slowed down. 

Problems 

10-1.1 Two long wires carry equal currents in 
opposite directions (as for power companies). Let 
them intersect normal to the page at (0,0.5 m) and 
(0,1.4 m), the latter carrying current into the page. 
See Figure 10.26. At their midpoint, the magnetic 
field of each has magnitude 0.028 T. (a) Find the di- 
rection and magnitude of the total field. (b) Repeat 
if the currents reverse direction. 

(,,,) 

()  

Figure 10.26 Problem 10-1.1. 

10-1.2 Two long wires carry current, 1 into and 
2 out of the paper. Wires 1 and 2 intersect the 

page at (0,0) and (0,2 cm). At the point P (2 cm, 
2 cm), the field of each has magnitude 0.06 T. See 
Figure 10.27. (a) Show the directions of/~1 and/]2. 
(b) Find the direction and magnitude of the total 
field/] at P. 

2C op 

Figure 10.27 Problem 10-1.2. 

10-1.3 Wire 1, carrying current I into the page, 
intersects the page at (a,b) and produces a field of 
magnitude .04 T at the origin. (Take a = 2 cm and 
b = 5 cm.) Wire 2, carrying current 21 out of the 
page, intersects the page at (a,-b). Find: (a) /~1, 
(b) B2, and (c) the total magnetic field/] at the 
origin. 
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10-1.4 Wire I carries 7 A perpendicularly into the 
page, intersecting it at (3 cm, 4 cm), and producing 
a field of magnitude 0.035 T at the origin. Wire 2 
is added, also carrying 7 A perpendicularly into the 
page, and also a distance 5 cm from the origin. If 
the total field has magnitude 0.052 T, find where 
the second wire can be located. 

10-2.1 A current loop lies on the page, with clock- 
wise current as seen from above. A magnet is below 
the page, oriented vertically, its north pole closest 
to the current loop. (a) Give the orientation of the 
magnetic moment of the magnet that is equiva- 
lent to the current loop. (b) Give the direction of 
the force on the current loop, due to the magnet. 
(c) Give the direction of the force on the magnet, 
due to the current loop. (d) Give the direction of 
the torque on the current loop. 

10-2.2 A current loop lies on a table, with clock- 
wise current as seen from above. A magnet lies 
to its right, its magnetic moment pointing radially 
outward from the current loop. See Figure 10.28. 
(a) Give the orientation of the magnet that is 
equivalent to the current loop. (b) Give the di- 
rection of the torque on the current loop, due 
to the magnet. (c) Give the direction of the 
torque on the magnet, due to the current loop. 
(d) Give the direction of the force on the current 
loop. 

Figure 10.28 Problem 10-2.2. 

10-2.3 Two current loops lie on a table. See 
Figure 10.29. The one on the left (right) has 
clockwise (counterclockwise) current as seen from 
above. (a) Replace the loops by equivalent magnets. 
(b) Give the direction of the force on the current 
loop on the right. 

<ZZ> <2Z> 
N e a r /  N e a r /  

Figure 10.29 Problem 10-2.3. 

10-2.4 Give the direction of the force on the 
current loop in Figure 10.30, due to the two 
magnets. 

Figure 10.30 Problem 10-2.4. 

10-2.5 A long wire carries current into the page, 
intersecting it at the origin. A horseshoe magnet 
(as in Figure 9.14, with the keeper removed) has 
its N and S poles at (0,+a). Determine the direc- 
tion of the force on the wire. Hint: Complete the 
circuit of the wire, and then think of the circuit as 
a magnet. 

1 0 - 2 . 6  A wire is wound ten turns around a cylin- 
der in one direction and eight turns in the other di- 
rection. (a) Compare its magnetic moment  to that 
of a single turn of wire. (b) Compare if all 18 turns 
are in the same direction. 

1 0 - 2 . 7  (a) Find the magnetic moment  of a 
24-turn rectangular loop carrying 0.76 A, of 
sides ~ = 0.45i - 0.65 j + 0.181e and ~) -- 0.68~ - 
0.23 j + 0.331e, with distances in m. (b) Find the 
torque on the loop due to a 0.034 T field along i. 

1 0 - 2 . 8  Find how much current a 35-turn square 
loop, 12 cm on a side, must carry in order to cancel, 
at a distance, the field of a magnet with moment  
24.5 A-m 2. (Wrap the loop around the magnet.) 

1 0 - 2 . 9  Consider two separated co-axial single- 
turn coils of the same radius. See Figure 10.31. 
(a) If they carry current in the same direction, de- 
termine the type of force (attractive or repulsive) 
between them. (b) Repeat for the case when the 
currents flow in opposite directions. (c) If the coils 
are identical, and are very close to each other, what 
does this imply about the direction of the force 
between two parallel current-carrying wires? 

Figure 10.31 Problem 10-2.9. 
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10-3 .1  A current loop of radius 2 mm has 12 
turns. It sits on a table and carries 3 A clockwise 
looking down on it. It is in a 0.004 T magnetic field 
pointing to the right. See Figure 10.32. Find (a) 
its magnetic moment, (b) the torque on the loop, 
(c) the torque on the loop if the magnetic field tips 
out of the page by 23 ~ . 

Figure 10.32 Problem 10-3.1. 

10-3.2 A 10-turn trapezoidal loop of sides 2 cm 
and 3 cm at a 48 ~ angle to one another sits on a 
table and carries 400 mA counterclockwise looking 
down on it. It is in a 0.04 T field pointing to the 
left. See Figure 10.33. Find (a) its magnetic mo- 
ment, (b) the magnitude of the torque on it, (c) the 
change in orientation energy if it could align its/~ 
with/~. 

. . . . .  

v -  

Figure 10.33 Problem 10-3.2. 

1 0 - 3 . 3  A 200-turn solenoid 12 cm long with 
a 0.4-mm-by-0.4-mm square cross-section carries 
3.2 A. (a) Find its magnetic moment  and its pole 
strength. (b) Estimate the field along its axis at 3 cm 
beyond one end. (c) Estimate the field along its axis 
at 34 cm from its center. (d) Estimate the field 8 cm 
along its perpendicular bisector. 

10-3.4 A compass needle oflength 9 cm and mass 
25 g is in an external magnetic field of 0.05 T. The 
torque on it is 8 N-m when its axis is at 70 ~ to the 
magnetic field. Determine its pole strength. 

1 0 - 3 . 5  (a) Estimate the magnetization for a hy- 
drogen atom with angular momentum quantum 
l =  1. Use volume V = (2a) 2 with a = 0.05 nm. 
(b) Compare this with the magnetization of a good 
magnet. 

10-4.1 The Amp6re force law has been applied to 
the pumping of blood in heart-lung machines and 
artificial kidney machines. Treat blood as if it has 
a single carrier (Na +) with n = 7.5 x 102s m -3, in 
addition to lots of water molecules. (a) If a 0.024 A 

current flows along z transverse to the direction of 
arterial blood flow along y, and a 2 T field is di- 
rected along x, find the ponderomotive force driv- 
ing the flow. See Figure 10.34. For calculational 
purposes, approximate the artery as a square of 
side 1.70 mm. (b) What  happens if the transverse 
current or the field is reversed? (c) What  happens 
if both the current and the field in part (a) are 
reversed? 

I ~,,,~yF_~luid flow 

Figure 10.34 Problem 10-4.1. 

10-4.2 The Ampere force law has been applied 
to the pumping of liquid Na coolant for nuclear re- 
actors. (Liquid Na is a good conductor, with both 
electrons and Na + ions; the electrons do most of 
the conducting.) Consider a 20-cm-by-20-cm con- 
duit of liquid Na forced along +x, with a 0.8 T field 
along +z. At some point in the conduit, two elec- 
trodes will cause an electric current to flow, normal 
to the direction of liquid Na flow. See Figure 10.35. 
(a) In what specific direction must the current flow? 
(b) To make a force of 260 N, how much current 
must flow? 

,- Fluid flow 
J x 

Figure 10.35 Problem 10-4.2. 

10 -4 .3  In Figure 10.15, does the total magnetic 
force tend to compress or expand? 

1 0 - 4 . 4  Find the force per unit length on a power 
line carrying 3.8 kA eastward in a magnetic field 
of magnitude 300 /zT downward and magnitude 
220 #T in the horizontal plane at 25 ~ south of east. 

1 0 - 4 . 5  A wire carrying current I is in a uniform 
magnetic field/~ that points out of the page. The 
current comes in from negative infinity along the 
x-axis, forms a semicircle of radius a in the first and 
second quadrants, and then continues on to posi- 
tive infinity along the x-axis. See Figure 10.36. Find 
the force (a vector) on the semicircular part of the 
wire. 
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Q 

Figure 10.36 Problem 10-4.5. 

1 0 - 4 . 6  A cylinder of radius a and length l is on a 
plane inclined at an angle ~) to the horizontal, and 
subject to a/~ field that points vertically upward. 
As shown in Figure 10.37, it has N turns of wire 
wrapped around it, mass M, and moment of inertia 
Z. If the surface is rough (so there is no slipping), 
what current I (magnitude and direction) will keep 
the cylinder in static equilibrium with its turns of 
wire parallel to the incline? 

Figure 10.37 Problem 10-4.6. 

10-4.7 A coil of radius a has N turns. It lies in 
the xy-plane, centered at the origin, and carries a 
current I that is clockwise as seen from above the 
page. It is in a field B = A(2z~ - x)t - y/~). (a) Find 
an algebraic expression for the total force on the 
coil. (b) Evaluate this numerically for I = 3.4 A, 
a = 2.6 cm, N = 500, and A = 0.035 T/m. 

10-4.8 A 2 cm long rod carries 1.6 A along 
0.36~ - 0.48 j + 0.64]e. It is in a magnetic field B = 
- .  181 + 0.25 j + 0.32]e. (a) Find the force on the 
rod. (b) Repeat if the magnetic field is rotated about 
the rod axis by 180 ~ Hint: It is not necessary to per- 
form the rotation. 

1 0 - 4 . 9  In a uniform field/~, a flexible conduct- 
ing wire carries a current from A to C. (a) Show 
that the total force on the wire is independent of its 
shape and total length. (b) If B = 0.4)~ T, I = 3.5 A, 
and the vector from A to C is along i and has length 
35 ram, find the force on the flexible conducting 
wire. 

10-4.10 A 4-cm-by-6-cm rectangular loop carry- 
ing counterclockwise current I is in a field B. Al- 
though /~ always points into the page, ]/~] varies 
quadratically with y, being 0.04 T at the bottom 
(y = 0) and 0.38 T at the top (y = 6 cm) of the 
loop. Find (a) the force on each arm, and (b) the 
net force on the loop. 

10-4.11 A 3-cm-by-5-cm rectangular loop carry 2 
ing clockwise current I is in a field/~. Although B 
always points out of the page, ]BI varies linearly with 
y, being O. 1 T (0.2 T) at the bottom (top) of the 
loop. See Figure 10.38. (a) Find the forces on the top 
and bottom of the loop. (b) Find the forces on the 
sides. (c) Find the net force and indicate whether 
the loop tends to compress or expand. 

I 
O.1T 

0.2 T 

Figure 10.38 Problem 10-4.11. 

10-4.12 In the crucial part of a D'Arsonval gal- 
vanometer, shown in Figure 10.39, the magnetic 
field does not depend on position along the sym- 
metry axis z (perpendicular to the page). However, 
B does vary in the perpendicular xy-plane: from the 
left pole face the field points radially inward; in the 
soft magnetic core of the central region, the field 
points to the right; to the right of the central core, 
the field lines point radially outward to the right 
pole face. Thus, outside the core the field is nonuni- 
form. Nevertheless, for a coil of magnetic moment/2 
wrapped around the core (see Figure 10.39, where 
the current goes into the page for the lower part 
of the coil), f = fi x/~ applies, with /~ the uni- 
form rightward field within the core. Applying the 
Ampere force law to each arm of the coil, taken to 
be a square of side a, derive this result. 

Figure 10.39 Problem 10-4.12. 

1 0-4,13 A rail gun lies in the plane of the page, in 
a field/~ that is out of the page, and with I/~1 - 20 T. 
It is designed to accelerate a mass m = 14 g from 
rest to 104 m/s in only 10 -3 s. The mass is a con- 
ducting rod that can slide horizontally on rails of 
separation l = 2.5 mm, which provide the current. 
See Figure 10.40. Find (a) the acceleration of the 
mass, (b) the magnitude of the force on the mass, 
(c) the minimum current needed to provide this 
force. 
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I 
T 

Figure 10.40 Problem 10-4.13. 

10-4.14 A loop of radius a, carrying current I 
counterclockwise as seen from +x, is in a magnetic 
field/~ whose local magnitude B is fixed, but whose 
direction always makes a flaring angle # away from 
the axis of the loop. See Figure 10.41. Draw and 
evaluate the force d F on an element dg that is at 
the top of the loop. Find the component of dF along 
the x-axis. Integrate to obtain the total force on the 
loop. 

Near E _  
\ 

I 

Figure 10.41 Problem 10-4.14. 

10-4.15 A long magnet lies on the z-axis, its N 
pole (of pole strength qm) at the origin and its S 
pole along -z .  Parallel to the xy-plane, a distance 
r from the origin, is a semicircular loop of radius 
a, carrying current I clockwise as seen from +z. 
See Figure 10.42. Determine the force (including 
direction) on the loop, due to the N pole of the 
magnet. 

Z 

Ne 

Figure 10.42 Problem 10-4.15. 

10-5.1 A wire carries current into the page, in- 
tersecting the page at the origin. An electron at 
(2 cm, O) has velocity making an angle of 40 ~ clock- 
wise from the x-axis. See Figure 10.43. (a) Indicate 
the direction of the force F on the electron. (b) 
If the field of the wire has magnitude 0.003 T and 
Ifil = 6 x 10 4 m/s, find I FI. (c) Find the acceleration 
in terms of g = 9.8 m/s 2. 

2 c m  | 
I ~ 0~ 

Figure 10.43 Problem 10-5.1. 

1 0 - 5 . 2  An electron beam moving from the bot- 
tom of the page toward the top of the page deflects 
upward out of the page. (a) If this deflection is due 
to a magnetic field, in what direction is that field? 
(b) Repeat for an electric field. 

10-5.3 For an electron of energy 2 eV, how large 
a magnetic field will produce a maximum magnetic 
force equal in magnitude to the electron's weight? 

10-5.4 The screen of a cathode ray tube is dark 
except for a single bright dot at the center. If a wire 
is placed just above the top of the screen, carrying 
current to the right, in what direction will the dot 
deflect? Hint: Consider the electron during its path 
to the screen. 

10-5.5 Find the force on a positron (the antipar- 
ticle of the electron, with charge +e and mass  me) 
with velocity ~ = (0 .761-  0.26]~) x l0 s m/s in a 
magnetic field/~ = 0.34f - 0.96 j + 0.63]~ T. 

1 0 - 5 . 6  A proton with velocity ~ =  (0 .351-  
0.86]~) x l0 s m/s is subject to a net force F = 
(2.5i + 4 . 7 ~ -  1.4]~)x 10 -~s N. Can this be due 
solely to a magnetic field? Explain your reasoning. 

1 0 - 5 . 7  A magnetic field lies in the yz-plane. If the 
instantaneous magnetic force on an electron mov- 
ing with velocity ~ = (0.241 + 0.96]~). x 106 m/s is 
given by F = (0.441 - 0.29] - 0.1 lk) • 10 -14 N, 

find the field B. 

10-5.8 An electron at (0,3 cm) moves at 25 ~ 
counterclockwise to the y-axis. A wire carries cur- 
rent into the paper, intersecting the paper normally 
at the origin. See Figure 10.44. (a) Indicate the 
direction of the force F on the electron. (b) If 
the field of the wire has magnitude 0.004 T and 
Ivl = 5 x 1 0  4 m/s, find I FI. 
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25 ~ 

Figure 10.44 Problem 10-5.8. 

10-5.9 Derive the sign of the magnetic force law, 
(10.30), for q < 0. 

ated through a voltage difference V, show that 
M = (B2d2Ze/8V). 

B 
J 

o o 

-~---d.--~ 

10-6.1 (a) Describe the orbit of an electron that 
moves into the page (-~), where it encounters a 
magnetic field that points along 3~. (b) Repeat for a 
proton. 

1 0 - 6 . 2  An electron moving in a magnetic field has 
a cyclotron period of 3 #s. (a) Find the magnetic 
field. (b) Find the magnetic field needed to make a 
proton have the same cyclotron period. 

1 0 - 6 . 3  A singly ionized 7Li atom, of mass 1.16 • 
10 -2~ kg, moving along the x-axis, enters a region of 
uniform magnetic field B pointing along z. It then 
orbits in a semicircle of radius R --- 2 cm. (a) Indi- 
cate the direction in which it deflects. (b) If I/~1- 
0.06 T, find the velocity of the atom. 

1 0 - 6 . 4  An electron beam with energy 8 keV 
moves in a circle of radius 2.4 cm. Find (a) its veloc- 
ity, (b) the period of the motion, (c) the magnitude 
of the magnetic field it is in, (d) the magnetic force, 
(e) the radial acceleration. 

10-6.5 Two particles both make clockwise cir- 
cles in a magnetic field, one having twice the 
period of the other, and a larger orbit than the 
other. A mechanics student says the larger pe- 
riod must be due to the larger orbit. How do you 
respond? 

1 0 - 6 . 6  Find the current associated with a proton 
in a cyclotron orbit when B = 1 T. 

1 0 - 6 . 7  An alpha particle makes 150 revolutions 
before emerging from a cyclotron of radius 9.5 cm 
with energy 25 MeV. Find (a) the cyclotron period, 
(b) the magnetic field, (c) the voltage across the 
dees. Assume two accelerations per revolution. 

1 0 - 6 . 8  In a mass spectrometer, an ion of charge 
+ Ze and mass M enters a region of uniform field B, 
and travels in a semicircle until it hits the wall a dis- 
tance d from where it entered. See Figure 10.45. 
If the ion achieved its energy by being acceler- 

Figure 10.45 Problem 10-6.8. 

10-6.9 Consider a mass spectrometer. Find the 
deflections of a deuteron (a 2H, or deuterium, nu- 
cleus), a triton (a 3H, or tritium nucleus), a 3He 
nucleus, and a 4He nucleus, if the deflection for a 
proton of the same kinetic energy is 1.8 cm. 

1 0 - 6 . 1 0  Using crossed electric and magnetic 
fields that produce canceling forces, we can design 
a velocity selector. For a 0.4 T magnetic field, find 
the electric field needed to produce a 2 • 10 s m/s 
beam. 

10 -6 .11  A deuteron (ionized 2H) moves at v = 
0.5c in a 12 cm radius. (a) Find the field B using 
the deuteron's rest mass. (b) Find the field B, using 
the fact that, at high speeds, the mass increases 
by the factor (1 - ~2/c2)-1/2. 

1 0 - 6 . 1 2  A heavy ion has charge Ze and mass M. It 
is to be accelerated in a cyclotron to v = 0.1 c, where 
c is the speed of light. The accelerating voltage V 
is 50 kV per crossing of the dees, in B = 5 T. (As 
a function of time, the accelerating voltage, ideally, 
is a square wave flat-top, but in practice it is a sine 
wave whose peak matches the particle's crossing of 
the dee.) (a) If the initial radius is small compared 
to the final radius R, find the number of trips N be- 
fore the ion is ejected. (b) Evaluate N with Z = 31 
for 129Xe at 25 MeV/nucleon, with R = 0.7 cm. 
Note that a characteristic separation between the 
dees is 3 cm. 

1 0 - 6 . 1 3  Figure 10.19 depicts a charge q and mass 
m in spiral motion about a field B. (a) Explain why 
vB, its velocity component parallel to B, does not 
change during the motion. (b) Explain why v• 
the magnitude of its velocity component perpen- 
dicular to B, does not change during the motion. 
(c) Show that the period T to make one turn around 
the field direction satisfies T = 2zcm/qB, just as 
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when vB = 0. (d) Show that, projected normal to 
B, q makes a circle of radius R = v L/27r. (e) Show 
that the pitch p satisfies p = vB T. 

1 0 - 6 . 1 4  The isotope 12C is quadruply ionized to 
become 12C4+, with energy 12 MeV per nucleon. It 
moves at a 37 ~ angle to the earth's magnetic field, 
of local magnitude 420 #T. (a) Find the period. 
(b) Find the radius. (c) Find the pitch of the spiral. 

1 0 - 6 . 1 5  A proton has velocity ~ = (5)~- 4:9) x 
10 s cm/s and is in a magnetic field B = ( - 3 ) ~ -  
25') x 10 -3 T. (a) Find the angle between ~ and/] .  
(b) Determine the radius of the spiral on which the 
proton moves. (c) Determine the pitch of the spiral 
on which the proton moves. See Problem 10-6.13. 

1 0 - 6 . 1 6  A magnetic field B points along 5, in 
the half-space z < 0. There is no magnetic field for 
z > 0. A particle with charge q > 0 and mass m is 
injected at the origin with initial velocity ~ = -v0~. 
See Figure 10.46. (a) Describe its trajectory in the 
field; (b) determine how far it penetrates into the 
field region; (c) determine how long it remains in 
the field region; (d) determine where it exits the 
field region. 

z 

X 

Figure 10.46 Problem 10-6.16. 

10-6.17 A magnetic field B points along :9 in 
the half-space z < 0. There is no magnetic field 
for z > 0. A particle with charge q > 0 and mass 
m is injected at the origin with initial velocity 

= v0(-~ + )~). (This case is similar to that of 
Figure 10.46.) (a) Describe its trajectory in the field; 
(b) determine how far it penetrates into the field 
region; (c) determine how long it remains in the 
field region; (d) determine where it exits the field 
region. 

10-6 .18  A magnetic field B points along :9 in 
the half-space z < 0. There is no magnetic field 
for z > 0. A particle with charge q > 0 and mass 
m is injected at the origin with initial velocity 

= v o ( - i  + ;9). (This case is similar to that of 

Figure 10.46.) (a) Describe its trajectory in the field; 
(b) determine how far it penetrates into the field re- 
gion; (c) determine how long it remains in the field 
region; (d) determine where it exits the field region. 

10-6.19 For/]  making an angle 0 to z, a charge 
q moves with vz << v• as in Figure 10.23. Let T 
be the period of the cyclotron orbit in (10.34). 
(a) Show that t h e  effective current le f  t = ( q / T )  
and that v• = (2zcr /T) .  (b) Hence show that, in 
(10.38), qv• = (leff T ) ( 2 z c r / T )  = leff2zcr. (c) Com- 
pare (10.38) with (10.29) for the audio speaker. 

1 0 - 6 . 2 0  Consider a point mass m moving in a cir- 
cle of radius r due to the gravitational force from 
a much more massive point mass M. (a) Show 
that o) = v / r  = vfGM/r  3. (b) Show that the "year" 
T = 2zc/~o = 2zcr3/2/(GM) 1/2. Hence in this case 
the year depends on the radius, as determined in 
detail by Kepler. 

1 0 - 6 . 2 1  Consider an object of mass m moving in 
a circle of radius r due to the force from a rope 
of (variable) tension F. (a) From F = my 2/r,  show 
that o) = v / r  = v / F / m r .  (b) Show that the "year" 
T = 2rr/oo = 2re(mr~F) 1/2. 

10-7.1 Maxwell wrote "the mechanical force 
which urges a conductor carrying a current across 
the lines of magnetic force, acts, not on the elec- 
tric current, but on the conductor which carries 
it . . . .  The only force which acts on electric currents 
is electromotive force." Discuss how the Hall effect 
contradicts this assertion. 

1 0 - 7 . 2  One of Maxwell's objections to the elec- 
tric fluid model was that it was not possible, given 
the state of knowledge of his time, to tell whether 
there was one fluid or two (or more!), and if one 
fluid, its sign. He also objected that it was not pos- 
sible to determine the velocity of flow of the fluid. 
How did the Hall effect change this situation? Re- 
late the drift velocity (to be inferred) to measureable 
quantities. Can the Hall effect give the magnitude 
of the charge on the charge carrier? 

1 0 - 7 . 3  A conducting wire of width 0.68 cm car- 
ries a current I to the right. A voltmeter reads that 
the top side is 0.3 ~tV higher than the bottom side. 
There is a uniform 0.05 T magnetic field pointing 
into the paper. (a) Find the sign of the charge carri- 
ers. (b) Find the drift velocity of the charge carriers. 

1 0 - 7 . 4  A conducting rod of length 0.48 m, ori- 
ented parallel to y, is in the xy  plane and is mov- 
ing along the x-axis with velocity 0.2 m/s. There 
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is a uniform 0.4 T magnetic field along the z-axis. 
(a) Find the motional E field acting on the rod. 
(b) After any transients have died down, which end 
of the rod is at the higher voltage, and by how much? 
(c) Find the electrostatic field/~s in the rod. 

1 0 - 7 . 5  (a) Taking n : 8.5 • 1028 m -3 for Cu, find 
the Hall coefficient. (b) If a Cu wire has width 
5.6 mm and thickness 0.35 mm, in a 0.05 T field, 
find the Hall resistance. (c) Find the amount of 
probe misalignment (along the direction of current 
flow) to make the ordinary resistance between the 
probes equal the Hall resistance. 

10-7.6 Consider a conducting rod in the xy-plane 
at a counterclockwise angle of 20 ~ to the x-axis. It 
moves along 3) with velocity 20 cm/s in a 0.005 T 
magnetic field that points along ~. See Figure 10.47. 
(a) Which end of the rod is positively charged? 
(b) Find the motional electric field and the electro- 
static electric field. (c) Find the voltage difference 
between the two ends. 

Q 
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Figure 10.47 Problem 10-7.6. 

10 -7 .7  Consider a conducting rod of length l par- 
allel to the y-axis, moving along the x-axis with 
velocity v. It is in a magnetic field/~ along the z-axis. 
(a) Which side has the higher voltage? (b) Find the 
motional electric field and the electrostatic electric 
field. (c) Find the voltage difference between the 
two ends. (d) How do the answers change if the rod 
tips by 0 toward the x-axis? 

1 0 - 7 . 8  Consider a wire made of soft iron, with 
relative permeability of 1200. If the Hall voltage 
is measured to be 0.058 V, what would the Hall 
voltage be if the relative permeability were one? 
Note: The Hall voltage of soft magnets shows ex- 
perimentally that in the magnetic force q~ x/~ it 
is indeed B due to electric currents (both macro- 
scopic and microscopic) that appears. An alterna- 
tive and reasonable possibility, but one contradicted 
by experiment, would~be that~ the magnetic force is 
qv x ~oH, where # 0 H -  B - ~t0M is due to mag- 

netic poles and 2V/is the magnetic moment per unit 
volume. 

10-8 .1  If dWpmf = 0.084 J on a loop that moves 
in a constant field/~, find dWemf. 

10-8.2 For an ordinary metal, the ponderomo- 
tive force acts directly on the charge carriers, not 
the ions. Nevertheless, the wire in Figure 10.15 can 
move, which means that the ions move. (a) Explain 
how this occurs. (b) If the ratio of the ion mass to 
the charge carrier mass is 5.6 x 104, and the pon- 
deromotive force is 2.40 N, find the drag force acting 
on the electrons. 

10-G.1 Devise an experiment to determine the 
magnetic moment of a magnet that has been em- 
bedded in a potato. 

10 -G.2  Following (6.52), t a k e / =  1/na 2 for the 
mean-free path l of a particle in a gas of number 
density n, where a is of the order of an atomic 
dimension. Taking a = 0.2 nm and T = 300 K, 
find the density and pressure P = nkB T needed to 
make l = 10 cm. This indicates how good a vacuum 
Thomson needed for the e/m measurement de- 
scribed in Section 10.6.4. 

10 -G .3  Find the force between two co-axial cur- 
rent loops at constant 11 and 12 and radii R~ and 
R2, that are far from each other. Use U = - /~ -B ,  
with/~ due to one magnet and/~ due to the other 
magnet (in the dipole limit), and F - - V U  to find 
the force on either magnet. Make sure that in F you 
vary the position of the magnet for which you want 
the force. Verify that the result gives the correct 
sign. 

10-G.4 In a current-carrying wire subject to a 
magnetic field, the local magnetic forces on the 
charge carriers would cause them to accelerate. 
(a) What force causes the charge carriers to reach 
terminal velocity? (b) Discuss the reaction force as- 
sociated with the previous part, and argue that it 
must be accompanied by a force acting on the ions, 
which have the vast majority of the mass of the 
wire. 

10 -G .5  For the current loop in a flaring mag- 
netic field, as in Figure 10.17(b), Elmo says that 
IFI = ~ildPil = f IdPil. What is wrong with this? 
Think in terms of a sum on a spreadsheet. Note that 
(10.29) gives zero force for 0 = 0, as we expect for a 
uniform field, but Elmo's approach gives a nonzero 
value. 
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10-G.6 Derive d]F/dA =/7( x/~ for the force per 
unit area on a current sheet with current per unit 
length/7(in a magnetic field/~. 

10-G.7 Derive dF/dV= j x/~ for the force per 
unit volume on a volume distribution of current 
with current per unit area j in a magnetic field/~. 

1 0 - G . 8  Place a small bar magnet between the 
poles of a large horseshoe magnet, N to N and S 
to S. Let the magnetic field of the large horseshoe 
magnet be uniform. (a) Is there a net force on the 
small magnet? (b) Does the small magnet tend to 
compress or expand? (c) If the small magnet is re- 
placed by a small current loop, is there a net force 
on the current loop? (d) Does the loop tend to com- 
press or expand? 

10-G.9 Consider a circuit carrying a current I. If 
the wires are jiggled without disturbing the con- 
tacts, give at least two reasons (one discussed in 

Chapter 7 and one discussed in this chapter) why 
this might change the current or voltage reading for 
the circuit. 

10-G.10 Let a 40 eV electron move perpendicu- 
larly to a field B = 2 x 10-1~ appropriate to in- 
terstellar space. Take the hydrogen atom number 
density to be n -~ 1/m 3. (a) Find the electron's cy- 
clotron frequency and cyclotron period. (b) Find 
its velocity and orbit radius about the field. (c) Es- 
timate the mean-free path for collisions of the elec- 
tron with hydrogen atoms, and the characteristic 
number of cyclotron orbits the electron will make 
before it collides with a hydrogen atom. Hint: See 
Problem 10-G.2. 

10-G.11 The earth has a magnetic moment  of 
magnitude. Given that the earth's geographic north 
is a magnetic south, if this magnetic moment  is due 
to a current around the equator, find the magnitude 
and direction of this current. 



"The word "electromagnetic" [has been] used to characterize the phenomena produced by 
the conducting wires of the voltaic pile. I have determined to use the word "electrodynamic" 
in order to unite under a common name all of these phenomena [of the sort that Oersted 
discovered], and particularly to designate those which I have observed between voltaic 
conductors." 

--Andre Marie Ampere (1820) 

"These attractions and repulsions between electric currents differ fundamentally from the 
effects produced by electricity in repose." 

--Andre Marie Ampere (1822) 

Chapter 11 

How Electric Currents Make 
Magnetic Fields: The Biot- 
Savart Law and Amp re's Law 

Chapter Overview 

There are three major parts to this chapter: the Biot-Savart Law, Amp~re's Law, and 
applications of these laws to superconductors and electromagnets. Section 1 1.1 gives 
a brief introduction to this chapter and a brief history of the discovery of how elec- 
tric currents make magnetic fields. The first part begins with Section 11.2, which 
states the Biot-Savart law, giving the magnetic field due to any current-carrying 
circuit (somewhat like C oulomb's law for the electric field due to electric charge). 
Section 11.3 derives the Biot-Savart law using Ampere's equivalence. Section 11.4 
shows how to use the Biot-Savart law. Section 1 1.5 applies it, using the principle of 
superposition. Section 11.6 finds forces due to these magnetic fields derived from 
the Biot-Savart law. This leads to the definition of the ampere in terms of the force 
between two parallel, current-carrying wires. 

The second part begins with Section 1 1.7, which states Ampere's law. Section 1 1.8 
derives Ampere's law using Ampere's equivalence, which relates the circulation around 
an arbitrary closed circuit and whatever current may pass perpendicularly through 
it. Such an arbitrary closed circuit is called an Amp~rian circuit. This relationship is 
somewhat like Gauss's law relating electric flux to the charge enclosed by an arbitrary 
closed surface, called a Gaussian surface. Section 1 1.9 shows how Amp~re's law can be 
used to make a noninvasive measurement of the current passing through an Amperian 
circuit. Section 1 1.10 obtains the magnetic fields of very symmetrical current sources 
by application of Amp~re's law. 

The third part is optional. Section 1 1.1 1 discusses field expulsion by perfect diamag- 
nets (which are superconductors). Here, surface currents make a magnetic field that, 
within the diamagnet, cancels any externally applied magnetic field. Section 11.12 

460 
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discusses soft magnets, and how they intensify applied magnetic fields with their 
Amp~rian currents. Section 11.13 discusses two experiments establishing that the 
electric currents associated with perfect diamagnetism flow over macroscopic paths, 
whereas those associated with magnets flow over microscopic current paths. In both 
cases, the currents do not decay with time, so they must flow without resistance. 
Section 11.14 discusses electromagnets, which are used to produce very large mag- 
netic fields. Superconductors are also used to produce very large magnetic fields, w 

11oi Introduction 

This is the third and final chapter on static magnetic fields. Chapter 9 studied 
magnetic materials and used an analogy to electrostatics to study the properties of 
magnets. Chapter 10 showed how Ampere's equivalence between magnets and 
current loops yields the force and the torque on current-carrying wires in mag- 
netic fields. The present chapter discusses how electric currents make magnetic 
fields: the Biot-Savart law (pronounced bee-oh-suh-var) and Amp6re's law. Ap- 
plications run from the microscopic (the magnetic field produced at the atomic 
nucleus, due to electrons within the atom) to the macroscopic (the earth's mag- 
netic field, due to electric currents deep within the earth). More important for 
daily life, these laws also have been used on the human scale to design mo- 
tors, electromagnets, write-heads for magnetic memory, and a vast array of other 
devices. In the late 1800s, electrical engineering departments were founded to 
teach students how to develop and exploit such applications. Because there is so 
much material, we organize it into three parts. 

Some History 

Arago, while traveling, learned of Oersted's work. On returning to France, he 
described Oersted's experiments on the interaction between a magnet and a 
current-carrying wire to the Academie des Sciences on September 11, 1820. 
From this, Ampere deduced that two current-carrying wires would also interact. 
Within a week, he had confirmed this result, showing that two parallel wires 
carrying current in the same (opposite) direction attract (repel) On October 30, 
Biot and Savart presented the results of their experiments on the interaction of a 
magnet and a long straight wire. They showed that the direction of the magnetic 
field of a long straight wire is as given by what we have called Oersted's law, and 
they showed that the field falls off with radial distance r from the wire as r -1 . 
They went on to study the magnetic field produced when the wire was bent into 
two semiinfinite straight sections making an angle of 2~ (2~ - ;r being a straight 
wire). Ampere pointed out two errors in their initial theoretical analysis of their 
experimental results. However, the mathematical physicist Laplace, using their 
data, deduced the correct form of the law for the field produced by any section 
of the wire; this is what we know as the Biot-Savart law. Ampere's work, both 
experimental and theoretical, consisted of studies of the interaction between two 
current-carrying wires, and led to the Amp6re force law of the previous chapter. 
What is called Ampere's law actually may be due to Maxwell (in the 1860s), 
rather than Ampere (in the 1820s). 
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Observer /Source 

r 

I 
/ 

Origin 

Figure 11.1 Geometry for the 
Biot-Savart law giving the magnetic 
field B at F due to a current-carrying 
wire, with vector length elements dY at 
F'. Here/~ = F -  F' is the vector 
pointing from the source at F' to the 
observer at ~. 

11.2 

11,2,1 

Magnetic Field of a Current-Carrying Wire 

Statement of  the Biot-Savart Law 

The Biot-Savart law tells us how to compute the magnetic field B at the obser- 
vation point F due to an electric circuit-carrying electric current I (i.e., a current 
loop). First some definitions. As usual, R = F -  Y' is the vector pointing from 
the source at F' to the observer at F. Define R - I/~1 so that/~ - / ~ / R .  The current 
loop consists of segments of length ds that point along ~ defined by the local di- 
rection of the electric current l. Thus the vector length element is ds = ~ds, 
where ds = Ids'l > 0. See Figure 11.1. 

The Biot-Savart law states that 

- f :  . - .  _ d s  . l d g  B = dB,  dB = kmI . . . . . .  R2 .. = le,,, R3:::~::: 

k i n - 1 0  -TT-m i l i i ~  
A " 

(The second form for d/3 follows f rom/~ /R  2 = / ~ / R 3 . )  Except for the vector 
cross-product d~" x/~, (11.1) is not much more complicated than the expression 
for the electric field due to electric charges distributed along a line. Nevertheless, 
because of the cross-product, it is worth examining in more detail. 

Numerical Analysis 

In part because of the vector cross-product, students often find the Biot- 
Savart law to be complicated and difficult to apply. In the spirit of "know 
your enemy," it is useful to analyze the Biot-Savart law from the viewpoint 
of a spreadsheet analysis, imagining how you would calculate B if you had 
some source-measuring elves who would approximate it by many tiny ele- 
ments of length. The elves would then determine the midpoint F' of each 
source element, and the vector d~" along which the current flows for that el- 
ement. In addition, they would measure the observation position F. Alter- 
natively, they could measure the four quantities ds and ~, and then d~" = ~ds 
could be computed within the spreadsheet. However, we have chosen to make 
it easier on them, since d~" involves only three quantities. To be specific, let the 
index i on the elements go from 1 to 28. See Figure 11.2. 
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In what  follows, refer to Table 11.1, which shows the first two rows of a 
spreadsheet calculation. The first column (unlabeled) would contain the entries 

17 16 15 14-xs"v'e--l'w-l~ 9 Source 
Observer 1 ~ "  " " ~ 8  / 

\ 19~" R v  = r~ - t:'v ~ - / .  

T ~ = 2 ~  ' ' _ j ~ ~ 6 7 =  7 " a s .  '~ ds7 
/ 21__~ ~ r '7 Ts 

u r i g i n  . . . .  - 

Figure 11.2 Discretized version of Figure 
l l. l, with circuit broken up into 28 elements. 

1 to 28, one for each source ele- 
ment. Columns A to C contain the 
three components of the source 
position vectors ~'. Columns D to 
F contain the three components of 
the source element vector ds A 
separate part of the spreadsheet 
stores the three components of 
the observer vector ~, as well as km 
and l. Once the input entries have 
been made, the computations 
begin. 

Columns G to I contain the components of the v e c t o r / ~ -  ~ -  ~' from the 
source point to the observation point. For example, R x - r x -  r'x. Column J 
contains the length R - I/~ l, obtained by the Pythagorean theorem with the en- 
tries in columns G to I. Columns K to M contain the components of ds x/~. 
Finally, columns N to P contain the components of d B -  kmI(ds x R) /R  3. 
Thus, summing column N yields Bx; similarly, column O yields By, and column 
P yields B~. 

From a computational point of view, it is preferable to work with d/~ = krnl (d~ x R)/R 3, 
rather than d/~ = kml (d_~ x /~) /R 2, since then we do not need to have separate columns 
for/~ and d_~ x/~. However, for analytic work the inverse square form is often preferable. 
Note that ~' ~' r i+ 1 - ri -t- d.~- connects consecutive entries of F', so the relationship dFi+ 1 - 
ri+l - ri = d-~i holds. 

~ Calculation of dB 

- " (7,2,0) m, In the preceding circuit, let I 4 A, 7 =_- (-0.5,2.2,0) m, r 7 = 
and ds -~ (-0.2,0.4,0) m. Determine dBT. 

Solution: R7 = F - r  7 =(-7.5,0.2,0)  m, from which [R7] = 7.503 m and 
ds x/~7 - (0,0,2.96) m 2. Hence 

kmlds • 0_9 d/37 = = 2.80 x 1 Tie. (11.2) 

Columns N to P in the seventh row successively receive the three entries corre- 
sponding to (dBx, dBy, dBz) - (0, 0, 2.80 x 10 -9) T. 

Table 11.1 Spreadsheet calculation of d/3 

ii  ii!iii!iiii  iiii!ili!giiiiiii! iiiii i iili !! i !i il iil ii i ill ii il ii  iiiii! i ii !ii! 
i i:iiiiiiiiiii:i:i:: i ll:iiiiiiiiii~ii~iiiiiiii~iii~ii~iii~i!ii~iiiiii~!iii!i!i~!i~iii::i~i~!::i!i:iii!::~i~i;i~iii~ii:~iii!iiiiiiiiiiiiiii~!iiiiiiiii~iiii~iii~iiiii~iiiiiiiiiii!iiiiiiii~iii~iiiii~!i~iiiiiiiiiii~iiiiiJiiiii!i~iiiiiiiiiiiiiii 

1 r x ry r" dsx dsy dsz Rx Ry Rz I/~1 (ds (ds (ds d Bx d By d Bz 
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This procedure is complicated but completely well defined, and it works even 
when the circuit is so complex that analytic methods fail. Once the source entries 
are made in columns A to F, and the observer entries are made elsewhere, all 
the other results can be obtained completely automatically by the spreadsheet. 
If the observation point is changed, only the observer position need be changed. 

Sections 11.4 and 11.5 present some situations that do not require numerical 
methods. First, however, we derive the Biot-Savart law using AmpSre's equiva- 
lence. 

11.3 Derivation of Biot-Savart Law: Field 
of Current-Carrying Wire 

To find the field B at the position F, d u e  to a current loop I, we first use the 
definition of B in terms of the force F q m  on a magnetic pole qm placed at F. See 
Figure 11.3. 

Thus 

Fqr,, , = qmB. (11.3) 

Now note that, by action and reaction, the force FI on a circuit due to the 
monopole qm is equal and opposite Fq,: 

Fq 

Combining (11.3) and (11.4) yields 

(11.4) 

~ -  F q m  -'-- - -  F I  . (1 1.5) 
qm qm 

Hence, from the force FI on the current loop, we can deduce B. For example, 
if qm - 2 A-m and t F I I -  0.08 N, then 1/31-0.04 T. Now consider the general 
case. 

From Amp~re's force law, (10.20), the force FI on the current-carrying loop 
in the field B qm due to the monopole is 

FI - f d . F -  l f ds'x.Bqm. (11.6) 

Note that the vector - /~ - - ( ~ -  F') points from F to ~'. Then (9.4) gives the 

qm ~ Source 
N = ! ; - -  -;; / ? ds ;T 

Origin 

Figure 11.3 Geometry for proof of the 
Biot-Savart law. Here a long magnet, 
with nearby pole q,z, is acted on by the 
current loop, and vice versa. 
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field Bqm at position F, due to qm at F', as 

B qm km qm(-[~) 
R 2 

( R - F - F ' )  (11.7) 

Placing (11.7) into (11.6) yields 

-~ f km qm(-[-{) Fi - I d s  x R2 , (11.8) 

Finally, using (11.8) in (11.5) gives the Biot-Savart law for the field B at F due 
to the current loop l" 

f3 - kmI f d~'x R f ds x R -. ,) R2 = kmI R-----T-. (R - ~ - F (11.9) 

For surface currents, we use f (dA rather than Ids (where /7( includes the 
direction of the surface current K), and we integrate over the element of area 
dA. Similarly, for volume currents, we must use JdV rather than Ida, and we 
must integrate over the element of volume dV. 

11 

!1,4~! 

Applications of the Biot-Savart Law 

Circuit in Plane, Observer in Plane 

Figures 11.1 through 11.3 depict a circuit in a plane and an observer in that 
same plane. At the observer, the field is perpendicular to the plane. This follows 
immediately because, when d~ and/~ are in the same plane, their cross-product 
ds x/~ is perpendicular to the plane. In our earlier numerical calculation of 
(11.2), the field was along ~. This simplifies the problem of finding B because 
we only have to add up the d Bz column (P) with nonzero entries. The Bx and 
By columns sum to zero because each d Bx and d By is zero. 

Field at Center of  Circular Current Loop 

Y 

Observer 

g 

Figure 11.4 Geometry for 
magnetic field at the center 
of a circular current loop of 
radius a. 

Circular current loops are an important and 
commonly encountered geometry. Consider a 
loop of radius a in the yz-plane, centered at the 
origin, with its normal along )?, which we take 
to be out of the page. Let the observer be at 
the center of the loop; this is a specific example 
of the previous general case of the observer 
in the plane of the circuit. See Figure 11.4. With 
the current counterclockwise as viewed from 
the positive x-axis, ds x/~ points along )?, and 
Id~ x/~l - [d~ll/~l] sin90~ - (ds)(1)(1) - ds. 
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By (11.1) with R -  a, all source ds produce dBx = kmlds/a 2. With f d s -  
2tea, this integrates to 

2rr km I 
B~ = ~ .  (field at center of circular loop) (11.10) 

If I -  2 A and a - 2  cm - . 0 2  m, then (11.10) gives B x -  6.28 x 10 -s T, 
approximately the strength of the earth's field. Ten turns of wire (all wound 
in the same direction) would give ten times this field. 

~ Field on axis of circular current loop 

Consider the same loop as in Figure 11.4, but let the observer be anywhere 
on the axis (x) of the loop. See Figure 11.5. The current is counterclock- 

Z ~ y ~ I  Observer 

- { a L l  x . . . . . .  

Near side p ~ i ~  ) dB 

Figure 11.5 Geometry for magnetic field 
on the axis of a circular current loop of 

wise as viewed from the posi- 
tive x-axis. At point P on the 
current loop, ds points along ~, 
/~ lies in the xz-plane, and the 
angle between d~" and/~ is 90 ~ 
(a) For the observer, indicate the 
direction of the total field B. 
(b) For the d/3 produced by I ds 
at P, indicate which components 
are nonzero. (c) Compute the 
total field B expressed in terms 

radius a. of the current. (d) Check your 
result at x = O. (e) Compute the total field B expressed in terms of the mag- 
netic moment #. (f) Check your result for large x/a. (g) Evaluate Bx for 
I - 1 A a n d a -  4 cm = 0.04 m, at x -  3 cm = 0.03 m. 

Solution: (a) By rotational symmetry about z, By and Bz are zero. (Thinking of 
this as a magnet, by Amp~re's equivalence the field points along the axis of the 
loop.) (b) As indicated in Figure 11.5, dB has nonzero components along x and 
z. In general, all three components are nonzero. (c) Because only Bx is nonzero, 
we need only consider dBx = ]d/~l cos0, where cos0 = a/R = a/(x 2 + a2)�89 By 
(11.1), I d B I -  kml]d~ x [~I/R 2. Also, 

Ida* x/~1 = Id~'tl/~ll sin90~ = ds(1)(1) - ds, 

where ds - Ids'l. Thus 

dBx = IdBI cosO - ~ d S - R  = 
kmI(ds)a 

R 3 

Since R is a constant, the integral yields 

Bx kmla f kmla 2rrkmla 2 
= R3 ds= R3 2r ra=  (x2+a2) ~. (field on axis of loop) 

(1].11) 

(d) For x = O, so R = a, (11.11) gives Bx = 2rrkml/a, in agreement with (11.10). 
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(e) Using/, = I A = I zra 2, (11.11) takes the form 

Bx = 2kin# (field on axis of a circular loop) (11.12) 
(x2 + a2) V 

(f) For large x, so R-+ x, (11.11) and (11.12) go to Bx = 2 k m b t / x  3. This is 
as expected for a dipole, by Ampere's equivalence; see (9.8). For comparison, 
far along the axis of an electric dipole of moment p, Ex = 2kp/x3; see (3.12). 
(g) For our current loop,/, = I A = 0.503 A-m 2. At a distance x = 3 cm = 0.03 m, 
so ~/x 2 + a 2 = 0.05 m, (11.12) gives Bx = 8 x 10 -6 T, about a fifth ofthe earth's 
magneticfield. Ten turns of wire wound in the same direction will increase the/ ,  
and the B by a factor of ten. 

This example has some important  generalizations. (1) By taking two identical 
co-axial coils, with equal currents, and by spacing them just right, it is possible 
to make a field that  is very uniform in the vicinity of their midpoint.  This simple 
method  to produce a nearly uniform field along the x-axis is due to Helmholtz.  
(2) By taking two identical co-axial coils, with equal and opposite currents, and 
by spacing them just right, it is possible to make a field that  is zero at the midpoint  
and has a very uniform slope along the x-axis in the vicinity of their midpoint.  
MRI often employs magnetic fields with very uniform slopes. (3) By winding a 
wire around a long cylinder, we can simulate a long set of equally spaced co-axial 
coils, with equal currents. As indicated in Chapter  10, this is known as a solenoid. 
It is useful because it produces a uniform field everywhere within the solenoid. 
(In fact, to produce a uniform field, the cross-section need not be circular so long 
as it is the same all along the axis of the tube.) 

~ Field on axis of disk-shaped magnet 

Consider a magnetic disk of thickness l = 2 mm, radius a = 2 cm, and with 
M ~ 1.0 x 106 A/m (the remanent magnetization Mr of the permanent 
magnetic material NEO). See Figure 11.6. Find the field a distance x = 3 cm 
along its axis. 

Solution: By Amp~re's current loop decomposition (Section 10.2), a finite cur- 
rent loop can be decomposed into many tiny current loops. By Amp~re's equiv- 
alence, at a distance we may consider each tiny current loop to be a tiny magnet. 
These magnets add up to a thin magnetic disk with the same perimeter and thick- 
ness as the current loop of Figure 11.5. Since the disk really is thin (l << a), (11.12) 
for the current loop applies. For the parameters given, /, = MV = M(zra2/) = 
2.51 A-m 2. Then at x = 3 cm, (11.12) gives Bx = 0.0107 T. 

M 

a ! 
-+1 

l 

o 

Ob~sserver 

Figure 11.6 Geometry for magnetic field on the axis 
of a thin, circular magnetic disk of radius a, 
magnetized normal to the slab. With # = I A = 
I (rr a2), this gives the same field as for the current 
loop of Figure 11.5. 
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" ~  A 

ds = dxi 

I - - x  

Observer - r ~  

Figure 11.7 Geometry for magnetic field due to an 
infinitely long current-carrying wire. 

~ Field due to long current-carrying wire 

Long wires are an important  and commonly encountered geometry. Let a wire 
be along the x-axis, carrying current along +)~, so ds = )~ dx.  Let the observer 
be a distance r below the origin. See Figure 11.7. (a) Find the direction and 
magnitude of the field due to the wire. (b) Evaluate this for I = 10 A and 
r =  1 cm = 0.01 m. 

Solution: Figure 11.7 shows that the circuit and observer are in the same plane. 
By Section 11.4.1, the field is perpendicular to this plane. Let 0 be the angle 
between )~ and/~ (to the observer). From Figure 11.7, if x ~ -oe ,  then 0 -* 0, 
and if x -* +ec, then 0 ~ zr. Also from Figure 11.7, ds x/~ points along -~, and 
ds x [~ = -~dxs inO,  where we have ds = dx. To evaluate the integral in (11.1), 
use 0 as the variable so that x and R must be expressed in terms of 0 and r. Since 
co t  (zr - O) = - c o t  O, 

d (cot O)dO = r csc 20dO, x = r cot (zr - 0) = - r  cot 0, dx = -r-ff~ 

and R 2 = x 2 + r 2 = r 2 csc 2 0. Then (11.1) becomes 

Bz - kml / (ds x = - k m l  f_oc dx  sin 2 

O0 

= - k m  l Z ~ r csc2 O dO sin O - - k  m l fo ~ d~ sin O 2 c s c  2 0 r - ~ (1113). 

Since ~ points out of the paper, the field points into the paper, in agreement with 
Oersted's right-hand rule. This procedure also applies to finite lengths of wire, 
with appropriate changes in the limits of integration. 

More generally, at a distance r from a long current-carrying wire, the field has 
magnitude 

~ B =  2k=, (fiel r od  rlongl ~ ..... .... i l l i ~ i  

Its direction is given by Oersted's right-hand rule. 

11.5 Applications of the Principle of Superposition 

The magnet ic  fields for many  configurations can be de te rmined  by super impos ing  
some of the  preceding results. 

~ Field along plane midway between two long wires 

This example, a reprise of the configuration of Figure l O.2(c), is related to 
the magnetic field produced by power lines or ordinary line cord, along their 
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Figure 11.8 Use of superposition to find 
the field on the perpendicular bisector 
between two long wires carrying equal 
currents in opposite directions. 

perpendicular bisector. Let each 
wire carry current I, one into 
and one out of the paper. 
See Figure 1 1.8, where we use 
Oersted's right-hand rule for 
their directions. (a) Find the 
total field due to these wires. 
(b) Find the equivalent mag- 
net. (c) Evaluate the field due 
to power lines carrying I = 
2000 A, with wire separation 
a = 0.8 m, at a distance lyl = 
9 m. (d) Evaluate the field due 
to an electric blanket carrying 
I = 2 A with wire separation 
a = 2 m m  at a distance lyl = 
2 cm. 

Solution: (a) By symmetry, IB~I = IB21. Now add the fields vectorially.. If the 
wires are at •  along, the x-axis, then each is a distance R = v/y 2 + a 2 away. 
(/31)y is smaller than I B 11 by a factor of cos ~ = a~ R, and similarly for wire 2. The 
x-components cancel. Thus, using (11.14) for their magnitudes, with r -+ R, 

~ = ~l + ~2 _ 25,1~]cosff = 2~9(2kRI)  a 4kmla -~ =3)y2 + a  2" (11.15) 

(b) The circuit of Figure 11.8 can be converted to an infinite magnetic slab 
geometry on using (11.15), with I -+ Ml. See Figure 11.9, where Amp~rian 
surface currents K = I / l  = M must circulate around the outside of the magnet. 
Magnets of this shape (but not magnetized normal to their plane) are used to seal 
refrigerator doors. 

(c) For the power lines, (11.15) gives 1/31 = 7.84 x 10 -6 T. (d) For the electric 
blanket, (11.15) gives I /~1- 3.96 x 10 -6 T. These fields are about a tenth of the 
earth's magnetic field. By twisting a pair of wires carrying equal and opposite 
current, the net magnetic field can be decreased even more. This is the origin of 
the term twisted pair, often used to describe wires employed for communications 
purposes. 

Figure 11.9 Infinite magnetic slab magnetized normal 
to the slab. It is equivalent to the two wires of 
Figure 11.8. 
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I ~ bserver 
/ Figure 11.10 Current-carrying hairpin. It can be 

decomposed into two semi-infinite current-carrying 
wires and a current-carrying semicircle. 

~ Field at center of current-carrying hairpin 

In Figure 11.1 O, find the field at the observer's position. 

Solution: We decompose the hairpin into two semi-infinite wires and a half-loop 
of radius a. See Figure 11.10. The field due to the half-loop is half that due to 
the full loop, given by (11.10). Its direction is into the paper. In addition, the two 
semi-infinite wires each produce half the effect of a full wire, together yielding 
the same effect, (11.14), as a full wire. Their field also points into the paper. Thus 
the net field is into the page, with magnitude 

1 2JrkmI 2kmI kml(zr + 2) 
B - + = . (11.16) 

2 a a a 

~ ~ ~ ~  Field due to current sheet 

Let a current sheet lie in the xz-plane, with current into the paper (-~),  
and current per unit length K measured along x. See Figure 11.11. Find the 
magnetic field above and below the current sheet. 

Solution: A thickness dx of the sheet is like a subwire with current I -+ d I = 
Kdx directed into the paper. We will add up the effects of each of these sub- 
wires. Oersted's right-hand rule gives the direction of the field d B of the sub- 
wire, as shown in Figure 11.11. For an observer_along the y-axis, the distance 
to the subwire, of thickness dx, is R = v/y 2 + x 2. By (11.14), IdBI due to the 
subwire is 

IdBI = ~.2kmKdx (11 .17) 
R 

Figure 11.11 Cross-section of infinite current 
sheet carrying current per unit length K, where 
the length is measured along the x-direction. 
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Two variables appear: x and ~). Let us work with ~), using the fact that 
y is a constant. Then x - y tan ~), so dx - y sec 2 ~)d~) and R 2 = y2 -b- x 2 = 

y2 + y2 tan 2 0 -- y2 sec 2 ~9. Then 

y 2km Kydx _ 2kin Kydx 2km Ky 2 sec 2 {)d0 = 2km Kd~) 
dB~ = IdBI ~ = R2 - y2 + x 2 = y2 sec 2 0 

This integrates on ~) from -zt/2 to +zr/2 to yield (with Bx --> B) 

By symmetry, this is the only nonzero component of the field. By Oersted's right- 
hand rule,/~ is along ~ for y > O, and along - ~  for y < O. In each of these regions, 
/3 is uniform~that is, it does not weaken as one moves away from the current 
sheet. 

Uniformity is often desireable. By connecting a single ribbon of conductor as 
in Figure 11.12(a), a region of uniform field can be produced. Let us neglect edge 
effects and superimpose the fields of the top and bot tom of the ribbon. Then, us- 
ing (11.18), the total field within the ribbon has magnitude B = 4JrkmK. To pro- 
duce B = 2 • 10 -4 T then requires that  K = 1.592 x 102 A / m =  1.592 A/cm. 
The direction of the field within the conducting ribbon is in agreement with 
what  we would expect using Ampere 's  right-hand rule. 

We will shortly show that  a uniform field can also be produced by the cylin- 
drical current sheet of Figure 11.12(b), which also gives B = 4Jr kinK. As indi- 
cated earlier, this solenoidal geometry often is realized by a wire wound as in 
Figure 11.12(c). This can be thought  of as a superposition of a current sheet (as 
in Figure 11.12b) that  produces a field along the axis, and of a long wire that  
produces a field that  circulates about the axis. As a consequence, the field lines 
do not close on themselves, but  spiral out to infinity. (In Figure 11.12c we do 
not draw the complex spiral for B.) 

! 1,6 Forces on Magnets and Current-Carrying Wires 

Up to this point, the discussion has been only of the magnetic fields produced 
by electric currents. We now consider the forces that  such fields produce on 
magnetic poles and current-carrying-wires. 

(a) Co) (c) 

Figure 11.12 Sequence of related geometries with the same current per unit length K 
that produce the same uniform field within them: (a) bent-around ribbon, 
(b) cylindrical sheet, (c) solenoid with n turns per unit length and current I, where 
K = n I .  
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The Biot-Savart law originally was developed to find the magnetic field of a long wire, 
in order to explain the torque on a permanent magnet (a compass needle). Ampere's 
work was more ambitious: to determine the force between two current-carrying 
circuits. By theoretical reasoning, he found a form for B, which we do not present, 
that enforced action and reaction between every pair of current elements in the two 
circuits. Although this form correctly gives the net force between any current element 
and a closed current-carrying circuit, it is not accepted today. Although the Ampere 
force law and the Biot-Savart law do not enforce action and reaction between every 
pair of current elements in the two circuits, overall momentum is conserved when the 
momentum of the electromagnetic field (Section 15.10)is included. 

To obtain the force on circuit # l due to circuit #2, we use the Biot-Savart law 
to find B2 everywhere on circuit # 1 due to circuit #2, and then use the Ampere 
force law in the form, dPl - Ilds'l x/~2, to find the net force on circuit #1. 
We now apply the Biot-Savart law to find both the force on a magnet due to a 
current loop and the force between two long wires. 

11.6 .1  Force on a Monopole along Axis of  Current Loop 

Consider the force on a pole qm of a long narrow magnet, at the observer's position 
in Figure 11.5. Then (11.3) for Fq~ and (11.12) for Bx give that the force is along 
the x-axis, with magnitude 

2km qml,t 
Fqm - -  qmBx = ( x  2 -[- a2)3/2. (11.19) 

This has the same magnitude as, but is opposite to, the force on the current loop 
due to the magnetic pole, discussed in the previous chapter as an example of a 
flaring magnetic field. 

1 1 . 6 . 2  Force between Two Parallel Wires 

Consider a pair of overhead wires that carry current to and from a power sta- 
tion. See Figure 11.13(a). What  is the magnetic force between these wires, if 

Figure 11.13 (a) Two parallel wires carrying current in opposite 
directions. Their interaction is repulsive. (b) Two closed-circuit 
versions of the parallel wires, showing their magnetic moments, 
which lead to repulsion. 
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they carry equal currents 11 = 12 = I in opposite directions? Let us first obtain 
qualitative information about this interaction. Figure 11.13(b) illustrates two 
adjacent rectangular current loops carrying l circulating in the same direction. 
Their nearest arms, like the wires in Figure 11.13(a), carry current in opposite 
directions, and dominate the interaction between the two current loops. Using 
Ampere's equivalence, these circuits are equivalent to two magnets oriented in 
the same direction so that the force will be repulsive. Thus antiparallel currents 
repel; correspondingly, parallel currents add. 

We now determine the force on the wire to the right due to the field of 
the wire to the left. Both wires are normal to the paper, one passing through the 
origin with current into the paper, and the other coming out of the Raper at x = r. 
By (l l. 14), the field due to wire #1 on the left has magnitude I B I I =  2kmI1/r 
and points down the page (along -3)). Now apply the Ampere force law, in 
the form d/52 = 12d~2 x B1, to wire #2 on the right, with ds pointing along 
the current (out of the paper, along ~). Since ds and B1 are perpendicular, 
their cross-product ds2 x B1 has magnitude Ids sin90~ = (ds2)(B1). Thus 
dF - ] d / ~ 2 ] -  I2(ds2)B1. Moreover, dF2 - I2d& x B1 pointstotheright,  bythe 
vector cross-product right-hand rule or by ~ x (-3)) - x. The force is repulsive. 
Finally, the force per unit length on circuit #2 is given by 

d F 2kin ll 2km 11 I2 
ds = 12B1 - 12~r = ~ ' r  (11.20) 

For 11 = 12 = 100 A and r = 1 cm, (11.20) gives dF/ds = 0.2 N/m. 

i1~6~3 D e f i n i n g  t h e  A m p e r e :  SI  U n i t s  

If the two wires carry current in the same direction, the force per unit length has 
the same magnitude as (11.20), but instead of being repulsive, it is attractive. 
The international standard defining the ampere arises from this expression for the 
force. Placing two long wires a meter apart, and adjusting the current I in each 
until the force per unit length is 2 x 10 -7 N/m, gives by definition a current of 
1 ampere. This electromagnetic definition is the basis of the SI unit of current, 
and thus the basis of the SI unit of charge, for which k must be measured. 
Numerous other approaches have been taken to define the unit of charge. In 
electrostatic-cgs units, k = 1 serves to define the unit of electric charge, and k~ 
must be measured. In magnetostatic-cgs units, km = 1 serves to define the unit 
of magnetic pole strength, and k must be measured. We will work only with SI 
units, but be aware of the existence of these other, equally valid, sets of units. 

11~G4 
[.J ~J ,lm , ~ l a 

M a g n e t i c  P r e s s u r e  

A current-carrying circuit is subject to self-stresses that tend to expand it. Con- 
sider, for example, the ribbon of conductor in Figure 11.12(a). Neglecting edge 
effects, the field on the lower surface produced by the upper surface is given by 
(11.18). In d/~ = Id~ x/3, with Id~ replaced by [(dA, the force on an area dA 
of the lower surface becomes d/~ = f (dA x Bz. As fortwo wires carrying current 
in opposite directions, this force is repulsive. Since K and B are perpendicular, 
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the force per unit area is given by d F / d A  = KBl. This field Bl is half ofthe total 
field B - 4zrkmI(. Hence d F / d A -  �89 KB - B2/8zrkm. This can be interpreted 
as a magnetic pressure 

B 2 
Pmag = 8Jr k in"  (magnetic pressure) (11.21) 

For B -  1 T, (11.21) gives Pm~g ~ 4 X 10 ~ N/m 2, or about four atmospheres. 
Although it was derived only for the case of a ribbon conductor, (11.21) is 

true more generally. Note that for the ribbon conductor, the field lines are parallel 
to the ribbon. They can be thought of as exerting pressure on one another. In 
(11.21), letting k~ -~ k and B ~ E gives the corresponding pressure between 
electric field lines, in agreement with Section 6.10 on electric flux tubes. 

External magnetic fields tend to orient a circuit so that the field of the cir- 
cuit points along the applied field (as for a current loop, thought of as a mag- 
netic sheet). In addition, self-fields tend to make a circuit expand (i.e., pres- 
sure), to enclose the maximum amount of magnetic flux. (Think of a square 
circuit, where opposite sides repel.) Hence, a flexible circuit of fixed length in 
a uniform field B will form a circle whose enclosed area has its normal aligned 
with B. 

You've now finished the discussion of the Biot-Savart law, which is part one 
of the chapter. This is a good place to take a break. Then we will continue with 
Amp~re's law (of magnetic circulation), which is part two of the chapter. 

11.7 

11.7,1 

Statement of Amp~re's Law 

Amp~re's law relates the magnetic circulation around a closed path, called an 
Amp~rian circuit, to whatever current passes through the area defined by that 
closed path. Any closed path can be used with Amp~re's law, just as any closed 
surface can be used with Gauss's law. Amp~rian circuits are purely imaginary. 
They can be made to correspond to real electric circuits, but such Amp~rian 
circuits are rarely useful. In Section 11.7.1, we discuss how Amp~rian circuits 
can be applied. 

Magnetic Circulation F8 

Magnetic circulation FB, for a given closed path defined by a set of directed line 
elements d~" = ~ds, is a measure of the "swirliness" of the magnetic field around 
that path. Here ds = ]ds > 0. Specifically, FB is defined as 

Here d e s / d s  - [~ �9 ~, the component of B along the path direction ~, is the mag- 
netic circulation per unit length. It has units of T, whereas the magnetic circulation 
has units of T-m. 
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Figure 11.14 (a) An Amp~rian circuit that encloses an 
actual, current-carrying circuit. (b) The circuit-normal 
right-hand rule relating the direction of circulation ds 
around, and the normal ~ to, an Amperian circuit. 

For a given Amp~rian circuit, the magnetic field due to a magnetic pole 
qm has zero net magnetic circulation. This follows by analogy to electrostatics, 
where by (5.35) the electric field due to a charge q has zero circulation for 
any circuit. However, if electric current in an actual physical circuit passes 
through that same Amp~rian circuit, the magnetic field B due to an elec- 
tric current can have nonzero magnetic circulation. See Figure 11.14(a), where 
the closed path we refer to is the Amp~rian circuit. Amp~re's law implies that 
a magnetic field B due to electric currents differs from a magnetic field Bqm due 
to magnetic charges. 

For the current in Figure 11.14(a), by Oersted's right-hand rule the mag- 
netic field circulates counterclockwise. Let the magnetic circulation be calcu- 
lated for the Amp~rian circuit of Figure 11.14(a), which encloses this current. 
With ds counterclockwise (clockwise), by (11.22) the circulation is positive 
(negative). 

11~,7~2 Current Enclosed lenc 

From Chapter 7, the current [enc passing through the Amp~rian circuit defined 
by d~" is given by an integral over the associated cross-section: 

The relationship between the normal ~ in (11.23) and the Amp~rian circuit 
element ds in (11.22) is given by the circuit-normal right-hand rule. 

~ i ~ ~ ! i ~  ~ ~  ~ ~ i i i  i iii;iiiii !ii iiiiii iiiiiiiii! iii iiiiiiiil !!;iiii i iiiiiiiii i !iii!i iliiii i iiiiiiiiii!!i i 
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11.7.3 

11.7.4 

Amp~re's La w 

With all this defined, we now state Ampere's law: 

: r .  =4:,-,-k,.I~, or ~ ~ =  

with d~ and h related by the circuit-normal right-hand-rule of Figure 11.14(b). 
Typically, in using Amp6re's law, we select an area through which current flows, 
and the perimeter defines the Amperian circuit. Thus, the actual physical circuit, 
which provides I~c, typically passes through the Amperian circuit. 

Uses of  Amp~re's Law 

Recall that Gauss's law, which employs Gaussian surfaces, has three primary 
uses: (1) noninvasive measurement of the charge Qenc within a closed surface; 
(2) relationship between surface charge density as and the normal component 
E out" it of the electric field just outside a conductor in equilibrium (for which 
#in -- 6 inside); (3) determination of the electric field/~ when the charge distri- 
bution is so symmetrical that it produces a uniform electric flux density. 

Similarly, Amp6re's law, which employs Amperian circuits, has three pri- 
mary uses: (1) noninvasive measurement of the current Ienc through a closed 
circuit (Section 11.9); (2) relationship between surface current density K and 
the transverse component f ix  Bout of the magnetic field just outside a perfect 
diamagnet, for which Bin -- 6 inside (Section 11.11); (3) determination of the 
magnetic field B when the current distribution is so symmetrical that it produces 
a uniform magnetic circulation per unit length (Section 11.10). 

But before using Ampere's law, first we derive it using Ampere's equivalence. 

11o8 

11,8,1 

Derivation of Amp~re's Law for Magnetic 
Circulation: The Magnetic Shell 

The derivation is performed in steps. First we consider a trivial case. Next we 
introduce the concept of the magnetic shell. Then we outline the strategy of the 
proof, using a numerical example. Finally, we give the proof itself, followed by 
some additional applications of the magnetic shell concept. 

Circuit Not Enclosing Current 

Consider an Amp~rian circuit for which Ienc = 0, as in Figure 11.15(a). If 
Ampere's law holds, then by (11.24), FB = 0. Let us derive this result. 

By Amp6re's equivalence, at a distance from the current loop, the field B 
produced by the current loop is equivalent to the field Bm produced by the mag- 
netic poles qm of a distribution of equivalent magnets. Because the corresponding 
electric field produced by electric dipoles has zero circulation for this and any 
other circuit, the magnetic circulation for this circuit is also zero. That is, 

FB - f B . d s  f Bm.ds (distant sources) (11.25) 
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Figure 11.15 (a) An Amperian circuit that does not enclose an actual, 
current-carrying circuit. (b) An Amperian circuit that encloses an actual, 
current-carrying circuit. (c) An Amperian circuit that pierces the magnetic 
shell that is equivalent to an actual, current-carrying circuit. 

11~..,8,2 Amp~re's Magnetic Shell 

Now consider the magnetic circulation for an Amperian circuit with Ien c ~ O, as 
in Figure 11.15(b). This can be obtained using another idea of Ampere, called a 
magnetic shell. It has positive poles on one side and negative poles on the other, 
and is a generalization of the magnetic disk of Section 11.4.4. The argument 
bears repeating. 

First, decompose the actual current loop, which can be quite irregular, into a 
set of tiny equivalent circuits, as discussed in Section 10.2. (This decomposition 
is not unique, so we are free to employ a useful one.) 

Second, use the equivalence, at a distance, between each tiny current loop 
and a tiny magnet. Then add up the tiny magnets, which, placed side by side, 
simulate the actual circuit of Figure 11.15(a) or Figure 11.15(b). This yields the 
magnetic shell of Figure 11.15(c), of small and unspecified thickness l; shortly, 
we will take the limit l -+ O. Like the current loop, the magnetic shell can be 
irregular. See Figure 11.15(c), where the top of the magnetic shell is positive 
and the bottom is negative, by Ampere's right-hand rule. 

We now find the magnetic moment that the magnetic shell must have 
to produce the same field as the actual current loop. From # = I A of 
Chapter 10 and # = qml = Crm Al  of Chapter 9, the magnetic moment per unit 
area is 

pt = crml -- I, (11.26) 
A 

just as in (10.7). Thus crml --  I, for all l, no matter how small. Equivalently, 
from Chapter 10 K = M = am, so Kl = I = crml. Thus the current loop has been 
replaced by the magnetic shell. 

Strategy for Proving Amp~re's Law 

We now show that, in Figure 11.15(c), integration of dFBm only through the 
shell from the bottom to the top equals, in Figure 11.15(b), the integral of dFB 
for all the Amperian circuit. 
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11.8,4 

1 The interior circulation pint for the magnetic shell (taken from - - O "  m to -1-o m 
�9 Bm 

within the shell) is determined easily using an analogy to our old friend 
the parallel-plate capacitor. Let's say it takes on the numerical value pin t  __ Bm m 

- 5 0  T-m, the minus sign because in Figure 11.15(c) B m , i n t  w i t h i n  the mag- 
netic shell opposes ds 

2 For the magnetic shell, the exterior circulation pext  ( f r o m  -]-o" m t o  --o" m outside �9 Bm 

the shell) must be the negative of the interior circulation because the total 
circulation for the magnetic shell is zero. Hence, for the magnetic shell, F ext -- Bm m 

50 Tom. 
- . ~  _ +  

3. Bm,ext, the field exterior to the magnetic shell, equals Bext, the field exterior to 
the current loop. Thus the exterior circulation pext for the magnetic shell 

Bm 
(see Figure 11.15c) and the exterior circulation p~xt for the current 
loop (see Figure 11 15b) must be the same. Hence, for our example, pext_ �9 B - -  
50 T-m. 

4. For the current loop, the exterior circulation p~xt is essentially all the magnetic 
circulation FB; it neglects only terms proportional to l, which go to zero as 
l -+ 0. Hence, for our example, F~ -- 50 T-m. 

Working backward from 4 to 1, this argument is equivalent to the sequence 
of equalities 

P B - -  F ~  t - -  p e x t  __Hin t  
Bm - -  Bin" 

(11.27) 

Proof of  Amp~re's Law 

Let's now obtain H int algebraically. We must integrate o v e r  Bm, int for the magnetic 
Bm 

shell, taking the integral from --Om to +Om. This is like taking the integral of the 
electric field E within a capacitor from -c~ to +~. There Eint  =-- ]Eint] - 4rrkcr, 
and the voltage difference (electric circulation) for plate separation d is Eintd - 
4zrkod. Here B m , i n t -  4rrkmo-m within the magnetic shell. Moreover, as noted 
above, since for our path d~" o p p o s e s  #m,int, 

H int  - -  Bm, intl - - 4 z r k m c r m t  - -4zrkml Bm D (11.28) 

Hence, applying (11.28) to (11.27) yields 

FB = 4zrkml. (11.29) 

This is Amp~re's law, which, written out in even more detail than (11.24), is 

J B. d s  4rckmlenc- 4Jrkm f J. fidA. (11.30) 

As usual, the circuit-normal right-hand rule, given in Figure 11.14, relates ds 
and ft. 

We have only proved Ampere's law for a single current-carrying wire. How- 
ever, by the principle of superposition, if we add other wires, their circulation 
adds to the left-hand side of (11.30), and their Ienc adds to the right-hand side. 



11.8 The Magnetic Shell 479 

11,8.5 

11~8,5 

Figure 11.16 (a) Long wire and finite circuit that has a common arm with that 
wire, showing the field and the equivalent magnetic moment fi of the circuit. 
(b) Field outside the magnetic sheet that is equivalent to the finite circuit of 
part (a). Imagine that the sheet thickness l is infinitesimal. 

Field of  a Long, Thin Current-Carrying Wire 

The magnetic shell can be used to find the already known B field of an infinitely 
long current-carrying wire l. Consider this wire to be part of a large rectangular 
circuit with one side fixed, whose other sides can be chosen at an arbitrary angle. 
For simplicity, let the shell lie in the xy-plane for positive y, so the equivalent 
magnetic moment points along the +z-axis. See Figure 11.16(a), which shows a 
finite rectangular circuit. By Oersted's right-hand rule, the magnetic field must 
circulate about the axis of the wire, taken to be y. We will now find the magnetic 
field due to the wire by finding the exterior magnetic field of the magnetic shell. 

We determine f B �9 d~" for two paths starting on the positive side of the mag- 
netic shell, and ending on the negative side. See Figure 11.16(b), where the 
shell thickness is finite for clarity. One is an exterior path of radius r, chosen 
symmetrically, so that the circulation per unit length, dFB/ds - B ext" s, is uni- 
form along the path, if the infinitesimal thickness l of the shell is neglected. 
Then f B. ds gives Bext(2;rr). The other path goes through the shell from pos- 
itive to negative, and is the negative of (11.28), or 4zrkmI. We thus conclude 
that Bext(27rr) = 47rkmI, o r  Bext-- 2kmI/r. With Bext --~ B, this is the same as 
(11.14). 

Fringing Field of  a Capacitor 

The equivalence of the magnetic shell and a long wire can be turned into the 
electrical problem of the fringing field of a parallel-plate capacitor. For distances 
much larger than the plate separation, a parallel-plate capacitor looks very much 
like the electrical equivalent of a magnetic shell. See Figure 11.17 (a). 

From Ampere's equivalence, the current I of Figure 11.16(a) goes to 
Kl = MI = crml of Figure 11.16(b). Thus (B, km, 1) --~ (B, km, O'ml). Making the 
analogy to electricity, we let a ~ O'm, SO (B, km, Crml) --~ (E, k, crl). Then from 
B = 2kmI/r for the long wire, the analogy yields 

2k~l 
Eext -- (11.31) 

for the fringing field of a closely spaced capacitor. See Figure 11.17 (b). Note that 
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Figure 11.17 (a) Parallel-plate capacitor, showing fringing field. 
(b) Side view of parallel-plate capacitor, showing fringing field that is 
analogous to that of Figure 11.16(b). 

within such a capacitor Ein - 4 z rko ,  so (11.31) becomes 

Einl A V 
- = . ( 1 1 . 3 2 )  

E ext - 2 zr r 2 sr r 

If A V - -  100 V and l - 0.001 m, for r - 0.02 m (11.32) gives Eext - 796 V / m ,  

compared with E i n t -  I A V I / I  -- 10 s V/m. P. Heller has verified (11.32) experi- 
mentally. 

11,9 Amp~re's Law Implies That Circulation 
Yields Current 

If we can compute  or measure the circulation [the left-hand side of Amp~re's 
law, (11.24)] around some Amp~rian circuit, then we can deduce [by the right- 
hand side of (11.24)] the current I~c passing through that  circuit, including its 
direction of flow. This is the basis of the Rogowski coil and the clip-on ammeter. 

~ Using the circulation 

Consider an irregularly shaped Amp~rian circuit of length L - 12 cm (e.g., a 
circuit shaped like the Amp~rian circuit in Figure 11.15b). For d~" circulating 
counterclockwise, let F B --0.042 T-cm. Find (a) how B circulates (on aver- 
age); (b) the average component of/~ along the circuit; (c) the direction of 
Ienc; and (d) the magnitude of I~c. 

Solution: (a) Since the circulation is positive, B and d~* must circulate in the 
same direction, on average. Thus both d# and B circulate counterclockwise. (b) 
The component of/~ along the circuit is B. ~ = dFB/ds .  Hence, the average 
value of B. ~ is the average value of dFB/ds ,  which equals F B divided by its 
length L, or (0.042 T-cm)/(12 cm) - 0.0035 T. (c) Since B circulates coun- 
terclockwise, Oersted's right-hand rule tells us that Ienc points out of the page, 
as in Figure l l.15b. (d) Finally, use of Amp~re's law as FB = 4zrkmlenc gives 
lenc = FB/4Jrkm = 3.34 • 102 A. Thus we have determined I in Figure 11.15. If 
the sign of the circulation were negative, the current would reverse in direction. 
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(0,b) (a,b) 

(0, (a,0) 

Figure 11.18 Amp~rian circuit for the computat ion of 
the magnetic circulation, and the subsequent 
calculation of the current Ienc that  passes through it. 

• Computing the circulation 

Consider  a magnet ic  field 

/3 - (2  - x 2) ] ,  ( 1 1 . 3 3 )  

where  x in cm gives/~ in 10 - 4  T. Take as the  Amp~r ian  circuit  a rectangle 
in the  z = 0 plane, wi th  corners (0, 0), (a, 0), (a,b), (O,b). Let a = 7 cm and 
b = 4 cm, and consider clockwise circulation. See Figure 11.18. D e t e r m i n e  
the  circulation for this Amp~r ian  circuit, and de te rmine  the  a m o u n t  and 
direction of current  flow th rough  it. 

Solution: To find the total circulation, consider each arm separately. 

1. The first arm goes from (0,0) to (O,b) = (0,4 cm), so d s  jdy, with ds - 
dy > 0. Then 

/3. ds = ( 2 -  x 2) x 10-4dy = 2 x l O-4dy, 

since x - 0 for that  arm. It gives a contribution of 

b 

2 x 10-4 j0 dy = (2 x 10 -4 T)(4 c m ) =  0.08 x 10 -4 T-m 

to the total circulation. 

2. The second arm goes from (0,b) = (0,4 cm) to (a,b) = (7 cm, 4 cm) so that  
d s  ~dx, with ds - dx > 0. This d~ is perpendicular to /3 ,  so it gives zero 
contribution to the total circulation. 

3. The third arm goes from (a,b)= (7 cm,4 cm) to (a ,O) -  (7 cm,0) so that  
d-~ - - ]ds, where ds = - d y  > 0, from the limits of integration. Thus/3 �9 d~ = 
(2 - x2)dy = - 4 7  x 10-4dy, since x = a = 7 cm for that  arm. It gives a con- 
tribution of 

10 ( - 4 7  x 10 -4) dy = ( - 4 7  x 10 .4 T ) ( - 4  cm) - 1.88 x 10 -4 T-m 

to the total circulation. 

4. The fourth arm goes from (a, 0) = (7 cm,0) to (0, 0) so that  d~ = -~ds, where 
ds - - d x  > 0, from the limits of integration. This d~ is perpendicular to B, 
so it gives zero contribution to the total circulation. 

Summing all four terms gives a total circulation F B = 1.96 x 10 - 4  T-m. By 
(11.24), it must  equal 4zrkmlenc, where Ienc is positive into the paper for a 



482 Chapter l 1 ~ The Biot-Savart Law and Ampere's Law 

positive clockwise circulation. Thus lanc= Fs/4zrkm = 156 A; we have non- 
invasively determined Ianc, both in magnitude and in its sense relative to the 
page. 

• Measuring the circulation" coils and clip-on Rogowski 
ammeters 

Devices known as Rogowski coils surround a current-carrying wire and permit 
the current to be read noninvasively (i.e., without breaking the circuit to 
include an ammeter). Although they have a small gap, they may be thought of 
as closed Amperian circuits. (Electric current can only circulate around a real 
circuit that is closed, but a magnetic field can circulate around an Amperian 
circuit that is nearly closed.) Rogowski coils do the equivalent of measuring 
the circulation Fs. They are calibrated, by Ampere's law, (11.30), to display 
the current lane. For example, a Rogowski coil could surround the current loop 
in Figure 11.15(b), like the Amperian circuit in that figure. A more common 
but less precise device, which measures a characteristic magnetic field due 
to the wire, is the clip-on ammeter: it clips on (properly, around) a current- 
carrying wire. The Hall voltage yields Ianc for dc clip-on ammeters, and the 
emf from Faraday's law--to be discussed in the next chapter--yields Ianc for 
ac clip-on ammeters. P. Murgatroyd has developed Rogowski coil devices that 
measure local current densities. 

11.10 Applications of Amp~re's Law and Symmetry 

Gauss's law can be used to determine E where the electric charge distribution 
has a high degree of symmetry (spherical, cylindrical, or planar) and is known. 
Similarly, Ampere's law can be used to determine B where the electric current 
distribution has a high degree of symmetry and is known. 

To see this, note that for a circuit of length s, the average circulation per unit 
length is given by 

- 0  

dFB = ~ .  ~ _  ~ B.  d-d _- 4zrkmlenc. (11.34) 
d s  s s 

When the circulation per unit length is uniform along the circuit, or part of a 
circuit, the average circulation per unit length is the same as the local circulation 
per unit length and both equal ]B I. Both then are given by (11.34). 

~ Field inside a wire with uniform current density 

Consider a long, straight wire of radius a carrying a uniform current density 
into the paper, with J -  [ J [ .  See Figure 11.19. It carries total current 

l = J ( z r a 2 ) ,  so J - l/(zra2). Use Amphre's law and symmetry to find the 
magnetic field inside the wire (r < a). 

Solution: By Oersted's right-hand rule, for r > a the magnetic field/3 will cir- 
culate clockwise around the center of the current distribution. Moreover, by 
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Uniform current density J Amp6rian circuit 

Outer surface of wire 

Figure 11.19 Cross-section and field/~ of a 
long wire of radius a with uniform current per 
unit area. The current is into the page and area 
is measured normal to the page. 

the circular symmetry of 
- +  

the current distribution, I BI 
should depend only upon r. 
This also should be true for 
r < a. Let 0 represent the 
clockwise tangential direc- 
tion. Then ~ = 0 and/3 = BO, 
where B = I/3t. Because the 
problem has so much sym- 
metry, we can choose an 
Amp6rian circuit in Figure 
11.19 for which the circula- 
tion per unit length dr'B/ds = 
[ 3 . 2 ~ = B O . O = B  has the 
same value all along the 
Amp6rian circuit. Such 
Amp6rian circuits are circles 
concentric with the current 
distribution. (A nonconcen- 

tric circle wouldn't give a uniform circulation per unit length, nor would 
a noncircular circui t . )The total circulation, with path length 2zrr, is thus 
PB = (dFB/ds)(2rrr) = B(2Jrr). 

The corresponding enclosed current is Ien~- J (~rr2). Hence Ampere's law, 
(11.24), yields 

B(2zrr) - 4Jrkm[enc = 4JrkmJ(zrr2), (11.35) 

so 

2kmlr (field within wire of finite radius) (11.36) B = 2rrkmJr = a---T-. 

This result could have been obtained from the Biot-Savart law only with great ef- 
fort. Alternatively (11.34), with lenc -- J (rrr 2) and s - 2Jrr, reproduces (11.36). 
Note that, forr  - a, where Ienc-  J(zra2), (11.36) gives B - (2rckm)( I / r ta2)a-  
2kmI/a,  which matches (11.14). 

~ Field outside current-carrying wire of finite radius long 

Consider a clockwise-circulating Amp~rian circuit with radius r > a. See 
Figure 11.20. Use Amphre's law and symmetry to find the magnetic field 
outside the wire (r > a). 

Solution: The circulation per unit length dV~/ds =/~ �9 ~ for this symmetric cir- 
cuit takes on the uniform value B, and the total circulation is B (2Jrr). By (11.24), 

wire Long ~ 1 ~ ' ~ . . . . . N / A m p ~ r i a n  circuit 

Figure 11.20 Field/~ of a long, thin wire 
carrying current into the page. 
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this must equal 4zrkmlenc, and here Ienc -- I. Hence B(2zrr) - 4rckmI, or 

B __. 
2kml 

t" 
(field outside wire of finite r a d i u s ) C i i  ~ 

in agreement with (11.14). For r = a, this matches the value obtained in the 
previous problem. Alternatively, (11.37) follows from (11.34) with Ienc= I and 
s = 2zrr. Equation (11.37) is much more general than (11.14), which was only 
derived for an infinitesimally thin wire. 

~ Field inside toroidal coil 

Consider a finite solenoid (compare Figure 11.12.c) with N turns of wire 
bent into a circle. See Figure 11.21. This is called a toroidal coil, or toroid. 
(a) Use Amp6re's law and symmetry to find the magnetic field within the 
coil, of inner radius a and outer radius b, and height w normal to the page. 
(b) For a = 3 cm and b = 4 cm, and 250 turns, evaluate the field at the mean 
radius. 

Solution: (a) By Amp~re's right-hand rule, for the current in Figure 11.21, 
circulates counterclockwise. (Neglect the nonuniformities due to the turns not 

being infinitesimally close 
Toroid with N turns Aml:~6rian circuit 
(current I per turn) 

\ 

r 

B 

Figure 11.21 Toroid with inner radius a and 
outer radius b, with N turns, each carrying 
current I. The field B is confined to the interior 
of the toroid. 

to one another, and consider 
only the average field.) Take 
an Amp6rian circuit that 
is a circle of radius r, con- 
centric with the toroid, 
with d~ circulating coun- 
terclockwise, so ~ points 
along /]. Here B = [B[ 
is uniform because the 
Amp6rian circuit is concen- 
tric with the toroid. Then 
d F 1 3 / d s - B . ~ = B  is uni- 
form. Hence F/3 = f(dF/3 / 

ds)ds = B f ds = B(2Jrr). Since the toroid has N turns, each carrying current I, 
we have Ienc -- NI.  Thus, by (11.24), B(2zrr) = 4zrkmlenc = 4zrkm(NI), so 

B .==. 
2/~NX 

~ ! ~ii,~i~,! �84 !i!il/ii~:~ !iiii~i!/,iiiii~iiiiii!!~7:: i~ii!i~!!iiii~i!ii!i!!iiiii!i!iiii?!i!!i~il 

(field within toroidal c o i l ) ( 1 ~ I  i~8) 

Alternatively, (11.34) with Ienc- NI  and s = 2Jrr reproduces (11.38). This 
result could not have been obtained from the Biot-Savart law without a great 
deal of effort. Although the toroid of Figure 11.21 has a small circular cross- 
section, (11.38) holds for more general cross-sections. (b) For our parameters, at 
the mean radius of 3.5 cm, (11.38) yields B = 2.86 x 10 -3 T. 

~ Field outside current sheet 

Consider a current sheet with current per unit length K that points  into 
the paper, with the sheet centered about the x-axis. See Figure 11.22. Use 
Amp~re's law and symmetry to find the magnetic field. 
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Figure 11.22 Finite current sheet carrying 
current per unit length K into the page, with 
length measured along the x-direction. 
Amp~rian circuit A1 contains no current, and 
thus has zero circulation, which implies that 
the field is the same on its top and bottom 
arms. Amp~rian circuit A2 contains a finite 
current, and thus has nonzero circulation. 

Solution: By Oersted's right-hand rule, the field above the sheet will be to the 
right, and below the sheet it will be to the left. Consider Amp~rian circuit Aa, 

where d~ circulates clock- 
wise. It has t e n  c = O. For arm 
1, f / 3 .  d~ = Bll, since B and 

are parallel. For arm 2, 
f / ] .  d~ = O, since B and 
are perpendicular. For arm 
3, f f3 .d-~= -B31, since /3 
and ~ are antiparallel. For 
arm 4, f B . d ~ = 0 ,  since 
/3 and g are perpendicu- 
lar. Thus the total circula- 
tion is F B = (B1 - B3)l. By 
Amp~re's law, (11.24), this 
must be zero because Ienc= 
O. Hence B1 = B3. Hence 
the field above the current 
sheet is uniform, an echo of 
the uniform field of a sheet of 
charge (but the direction is 
different for the two cases!). 
Call the field magnitude B. 
By symmetry, B is the same 
above and below the sheet. 

Now consider Amp~rian 
circuit A2, where d~ circu- 

lates clockwise. It has IencKl. For arm 1, f / 3 - d ~  = BI, since/3 and ~ are parallel. 
For arm 2, f B. d~ - O, since B and ~ are perpendicular. For arm 3, f B. d~ - Bl, 
since /~ and ~ are again parallel. For arm 4, f / 3 - d ~  = 0, since /~ and ~ are 
perpendicular. Thus the total circulation F = 2Bl. By Amp~re's law, (11.24), 
FB = 4rrkmlenc, so 2Bl = 4rrkm(I(l). Thus 

as in (11.18), derived by direct integration. Alternatively, (11.34) with ]enc = I(l 
and s = 2l reproduces (11.39). 

~ Field inside and outside solenoid infinitely long 

Consider a solenoid with n turns per unit length, each carrying current I, 
as in Figure 11.23. Use Amp~re's law and symmetry to find the magnetic 
field. 

Solution: By Amp~re's right-hand rule, within the solenoid /3 points to the 
right. Outside the solenoid, if/3 is nonzero, it should point along the axis. Con- 
sider Amp~rian circuit As, which is outside and above the solenoid, d~ for 
arm 1 is along the field [3top, and d~ for arm 3 is opposed to the field t3bot. 
Since arms 2 and 4 do not contribute (because/~ is perpendicular to d~), from 
(11.22) the total circulation then is F B = Btopl- Bbotl. Since the total current 
enclosed by the Amp~rian circuit is zero, by Amp~re's law r'B = 0. This implies 
Btop = Bbot. Since the separation of the arms could have been anything--including 
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Am 3~rian circuit A] 

/ 
4 l 1 2 

B~ -~,-" 3 ........... 

I 

' (J [J [J"-[}4t ~'-' V V' lU ........ LIT l 2 

~3 
Ampkrian circuit A 2 

Figure 11.23 Solenoid with n turns per unit length, 
each carrying current I. Amp/~rian circuit A1 contains 
no current, and thus has zero circulation, which 
implies that the field is the same on its top and 
bottom arms. Amperian circuit A2 contains a finite 
current, and thus has nonzero circulation. 

infinitylBtop could have corresponded to the field at infinity, which we assume 
to be zero. Hence, the field outside the solenoid is both uniform and zero. 

Now consider Amp~rian circuit A2, which is partially inside the solenoid. 
Since the field outside is zero, and since sides 2 and 4 don't contribute, the only 
contribution to the circulation comes from side 1, within the solenoid, which gives 
Bl. In this case, Ienc is due to N = nl turns of wire, each carrying current I. By 
the circuit-normal right-hand rule, the sign of Ienc is positive so that Ienc = (nl)I. 
By (11.24), Bl = 4rrkm(nl)I, so 

B = 4rtkmnI = #onI. (field anywhere w i t h m S o l e n o i d ) ( i l  40) 

Alternatively, (11.34) with Ienc= (nl)I and s = l reproduces (11.40). Besides 
this result being independent of position within the solenoid, it is also in- 
dependent of the solenoid cross-section, which could be rectangular or even 
irregular. 

If the solenoid is enclosed by a concentric solenoid at infinity, the field is not 
zero at infinity, so the field everywhere within the region we have considered will 
be larger by the field of the solenoid at infinity. 

This concludes of the second part of this chapter. For those of you who will 
go on to study surface currents for perfect diamagnets and magnets, and the 
electromagnet, this is good a place to take a break. 

Surface Currents and Perfect Diamagnetism 

Chapter 9 showed that there is a class of materials, called perfect diamagnets, 
that can completely expel applied B fields, and that these materials also have 
zero electrical resistance, so that they are also called superconductors. This section 
shows, for a simple example, how within a perfect diamagnet an applied magnetic 
field can be cancelled by a magnetic field due to the perfect diamagnet itself. It 
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does this by setting up an electric current that is localized at its surface over a 
distance on the order of a few atoms to perhaps a few hundred atoms, depending 
on the material. We will not concern ourselves with the distribution ofthe current 

near the surface, simply assuming that, for 
our purposes, it is literally localized at the 
surface. Close to the surface, we treat the 
surface as locally flat. See Figure 11.24. 

Consider a point on the surface of an ar- 
bitrary material, with fi the local outward 
normal. Let Bfar be due to distant sources, 

Figure 11.24 Closeup of the surface and thus it does not change on moving from 
of a perfect diamagnet, which is just outside to just inside the surface. Let 
characterized by having zero B s be due to the local current density K on 
field inside" Bin --  (). This is the surface, so by (11.39) IBsl - 2yrkmK. 
accomplished by the material ~s changes sign on crossing the surface, so 
developing just the right surface B ~ - - B 2 .  Henc% just outside the ma- 
current density K. terial Bout Bfar + s :~ _.. - -  - ~  B ~ Likewise, just in- 

side the material B~ - Bfar + Bs .  Subtract- 
ing these gives B o u t -  B in -  B~ ~ n _  2BOUt. Again using (11.39), 21BsUtl- 
2(2yrkm)K = 4rckmK, s o  IBout-  Binl = 4:rtkmK. 

For a perfect diamagnet Bin-  6, s o  IBoutl = 4rrkmK. With /re the (vector) 
surface current per unit length, in vector form this becomes 

- +  --~ 

fi x B out -- 4 rr km K. (outside perfect diamagnet) (11.41) 

The directions associated with (11.41) may be verified by considering/~( into 
the paper, for a semi-infinite perfectdiamagnet with fi - j,  as in Figure 11.24. 
Then, by Oersted's right-hand rule, Bout must b e  along i. 

Equation (11.41), relating the magnetic field Bout outside a perfect diamagnet 
to the surface current K, describes what we will call electromagnetic shielding. It 
is a consequence of the properties of perfect diamagnets and Ampere's law. It is 
similar to 

Eout" fi - 4rckas (outside conductor) (11.42) 

for electrostatic screening of the electric field. This relates the electric field E out 
outside a conductor to the surface charge density as. Equation (11,42) is a con- 
sequence of the properties of conductors and Gauss's law. 

~ Monopole above a perfect diamagnet 

Consider a monopole qm at a distance h above an infinite sheet of perfect 
diamagnet, as in Figure 11.25(a). (A monopole can be simulated by either 
one end of a long, narrow magnet, or by one end of a long, narrow solenoid.) 
What do the magnetic field lines look like? Since the field is expelled by the 
perfect diamagnet, field lines that approach the material will be bent away. See 
Figure 11.25(a). The simplicity of the geometry suggests using the method 
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Figure 11.2S (a) A monopole qm above a perfect 
diamagnet. The field lines are due to both the monopole 
and the perfect diamagnet. (b) The monopole and its 
"image" within the perfect diamagnet, as viewed from 
outside. 

of images: from outside the material, it appears that the perfect diamagnet 
responds with an image monopole qm a distance h beneath the surface of the 
sheet. See Figure 11.25(b), where B s is due to the source and B I is due to 
the image. The field due to both the actual and to the image monopoles never 
enter the sheet: the field is expelled. (a) Find the field just outside the surface. 
(b) Find the local current density K. 

Solution: (a) At a distance fi from the center of the sheet, and just outside the 
sheet, in Figure 11.25(b) the total magnetic field is given by 

-. km qm P -- 2km qm P Bout -- 2lBqm] cos0 = 2 (p2 + h 2 ~  (p2 + h2)1/2 - (p2 + h2)3/2 �9 

(11.43) 

The factor of 2 arises because of the equal contributions of both the actual and 
the image monopole. The factor ]Bqm]- kmqm/(P 2 +  h2) is the magnitude of 
the field due to either pole at that position just above the sheet. The factor 
cos0 = fi/(p2 + h2)1/2 gives the component of the field along the surface. 

(b) Since Iti x Boutl = Bout, (11.41) gives K =  Bout/4zrkm; substitution of Bout 
from (11.43) then yields 

K -  qm P (11.44) 
2Jr (p2 + h2)3/2 �9 

This gives the surface current K. It is zero just below the actual monopole qm 

0.4 

l 0.3 

t t / -~  qm 0.1 

~  1 2 
,o_~. 
h 

(a) (b) 

Figure 11.26 (a) Pattern of surface currents K for a monopole 
qm above a perfect diamagnet. (b) Surface current K as a function 
of p / h .  
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Figure 11.27 (a) Surface current for a monopole qm above a perfect 
diamagnet. (b) Surface current for a monopole qm above a soft 
ferromagnet. 

(fi = 0). For small p, K varies as ,o, but for large ,o, K varies as p-2. For a positive 
monopole qm above the sheet to be repelled by the magnetic field due to K, the 
magnetic field due to K must point upward at qm. Thus, by Amp~re's right-hand 
rule, the surface current Kmust circulate counterclockwise as viewed from above. 
This is illustrated in Figure 11.26(a). The thicker the line, the greater the surface 
current. For K as a function of p~ h, see Figure 11.26(b). 

Figure 11.27(a) gives the surface currents from the same viewpoint as in 
Figure 11.25. The larger dots and x's represent larger surface currents. Also drawn 
is the field B K due to the surface currents, at the site of the monopole qm. 

1 1,12 Amp~rian Surface Currents and Magnets 

The surface current of (11.44) can be used to reveal how a soft magnetic mate- 
rial develops its magnetic field. Infinite sheets of perfect diamagnet and perfectly 
soft ferromagnet with monopoles above them both behave as if there were image 
monopoles within them, but the image monopoles are of opposite sign. Hence 
the surface current K for the soft ferromagnet will be of the same magnitude 
but in opposite direction to that for the perfect diamagnet. See Figure 11.27 (b). 
Moreover, the field B K due to these surface currents will be in opposite direc- 
tions, repelling the monopole for the perfect diamagnet (Figure 11.27a), and 
attracting the monopole for the soft ferromagnet (Figure 11.27b). In short, for a 
perfectly soft ferromagnet, (11.44) also describes the magnitude of the surface 
current. 

The next time you see a permanent magnet against a refrigerator, think about 
the Amp~rian surface currents set up in the refrigerator to hold the magnet in 
place. Why don't these Amperian surface currents die down because of electrical 
resistance? Chapter 10 argued that such currents involved resistanceless micro- 
scopic current loops throughout the magnet, rather than a single ordinary current 
loop circulating around the outside of the magnet. We now present additional 
evidence for the absence of electrical resistance. 

11,13 How We Know 

The following experiments establish that (1) the surface current for perfect 
diamagnets is due to macroscopic current loops, and (2) the surface current for 
ferromagnets is due to microscopic current loops. Consider two long, cylindrical 
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Figure 11.28 Current for the following cases: (a) solenoid, (b) perfect diamagnet with 
a hole, (c) ferromagnet with a hole. 

samples, one a perfect diamagnet with an external field applied along its axis, 
and the other a hard ferromagnet. (From our conclusions for a hard ferromagnet 
we will extrapolate to all types of magnets, including soft ferromagnets.) 

• Drilling a a cylindrical magnet: hole in effect 
on magnetic moment 

Consider a solid, cylindrical perfect diamagnet with a surface current I ( tha t  
produces a magnetic moment/~, as for the solenoid inFigure 11.28(a). The 
current arises in response to a uniform external field B ext that points oppo- 
site to/~. Within the diamagnet Btot = (), so the field due to the diamagnet 
Bdia---Bext.  Treating the diamagnet as a solenoid, with K - n I ,  (11.40) 
gives K = Be~t/4zrkm. If a hole then is drilled through the center of the per- 
fect diamagnet, as in Figure 11.28(b), the magnetic moment /~  does not 
change. Moreover, the current on the outside is unaffected, and no current 
flows around the inner surface. This is what we expect for electric currents 
with a macroscopic circuit that is localized around the outer surface. These 
are true macroscopic electric currents, and they must flow with zero electrical 
resistance. Thus perfect diamagnetism implies superconductivity. 

For the hard ferromagnet, there is also a surface current flowing around its 
outside, as in Figure 11.28(a). As for the perfect diamagnet, K -  B/4zr kin. If 
a hole is then drilled through its center, the magnetic moment/~ decreases in 
proportion to the volume removed. Moreover, the current on the outside is 
unaffected, but an equal and opposite current flows around the inner surface. 
See Figure 11.28(c). The net current is due to microscopic Amp~rian current 
loops that fill the entire sample, and the current in these loops must flow with 
zero electrical resistance. 

• Drilling a a cylindrical magnet: hole in effect 
on magnetic circulation 

Another way to establish that the current due to a perfect diamagnet is macro- 
scopic is to use a Rogowski coil or a clip-on ammeter to measure the circula- 
tion around the hole in the solenoid. See Figure 11.29(a). By Amp~re's law, 
the circulation is proportional to the current; these are nonzero for the per- 
fect diamagnet. For the permanent magnet with the hole in it, the Rogowski 
coil or clip-on ammeter will read zero circulation around the hole, since the 
Amp~rian current on the inner surface cancels the Amp~rian current on the 
outer surface. See Figure 11.29(b). 
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Figure 11.29 (a) Perfect diamagnet. (b) Ferromagnet. 

t !~,13,1 Perfect Diamagnets Carry Macroscopic Currents 
and Are Superconductors 

We have just established that perfect diamagnets carry currents that circulate 
over macroscopic circuits. These currents do not decay in time. Therefore, at a 
macroscopic scale, a perfect diamagnet has zero electrical resistance, and hence 
is what is called a superconductor. Its primary property is perfect diamagnetism, not 
zero electrical resistance. All materials that are called superconductors are perfect 
diamagnets, at least for weak enough applied fields. When the applied magnetic 
field gets too strong, the materials cannot produce large enough surface cur- 
rents to completely expel the field, and there is some field penetration. For even 
larger magnetic fields, it is too energetically costly for the material to produce 
any surface currents at all, and therefore it can no longer "afford" to be super- 
conducting. 

11 ,.,., t 3~2 Ordinary Magnets Carry Microscopic Amp~rian Currents 

This still leaves us with the peculiar conclusion that the microscopic Amp~rian 
current loops in a magnet have zero electrical resistance. Does this imply that 
macroscopic electric currents passing through a magnet have zero electrical re- 
sistance? Although recently some materials have been discovered that display 
both superconductivity and magnetism, it appears that the electrons responsible 
for the superconductivity are in different orbitals than those that cause the mag- 
netism. How, then, do we deal with zero electrical resistance at the microscopic 
level? This should not be difficult to accept, since we have already accepted the 
Bohr picture of the atom, with electrons perpetually circling around the nucleus, 
without any resistance. 

Further study of the magnetism of magnets shows that it is associated with 
electrons in certain orbitals (e.g., electrons in the d orbitals are responsible for the 
powerful magnetic properties of Fe). The magnetism due to moving charge (the 
electrons in the orbitals) does not provide any further conceptual difficulties: by 
the Biot-Savart law, we know how to calculate the magnetic field for a given 
electric current, such as that associated with a specific orbital. 

There is a difficulty, however, with understanding the magnetism of the elec- 
tron itself. What might be the microscopic current circulating within the elec- 
tron? We have no real physical picture for what such a microscopic current is like: 
on the scale of 10 -1~ m, within which they have been probed so far, electrons 
seem to be point particles. This is still one of the great mysteries of nature. 
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1 i . 1 4  The Electromagnet 

Our society uses electromagnets in a variety of ways, most of them hidden from 
plain sight. They are inside electrical transformers; they are used to produce 
magnetic forces to lift heavy objects (automobiles in junkyards); and they are 
used to move light objects (doorbell ringers). 

There are two ways to compute the total B when there are both free electric 
currents (from ordinary electric circuits) and Amperian electric currents (from 
magnets). The first way is to find all the currents (freeand Amp~rian) and to 
use the Biot-Savart law. The second way is to find the Bfree of the free currents 
using the Biot-Savart law, and the /~m due to magnetic poles qm, as discussed 
in Chapter 9. In discussing the electromagnet, it is useful to employ this latter 
viewpoint. 

Recall that, in Chapter 9, the quantity/2/was introduced, via 

- Vto(~-I + 2('I). (#o - 4zrkm) (11.45) 

We will need H because, for soft magnets, the magnetization is determined via 
M ~ x H .  

H has two types of sources. Magnetic poles qm, as discussed in Chapter9,  
produce what we will call/2/m, and free currents produce what we will call HI. 
The free currents contribute via the Biot-Savart law: 

I ~ 0 1 ~ I  = kmlfree f d~r 2x 

or 

-. l free ~ d-~ x 
HI = ~ f r2 

I f~ee a( d-~ x______(~ 
(11.46) 

4zr J~ r 3 " 

Comparison with (11.24) yields an Amp~re's law for the contributions of free 
currents to H as 

r .  - = C ;  e (11.47) 

11.14.1 Field wi thin Soft  Transformer Core 

The next chapter discusses Faraday's law. It is the basis of electrical transformers 
that "transform" ac voltages (e.g., from 4000 V on power lines to 120 V or 240 V 
in houses). An essential part of a transformer is its magnetically soft core, a solid 
toroidal piece of magnetic material. See Figure 11.30(a). The directions of the 
current I and the magnetic field B are related by Amp~re's right-hand rule. 

Consider a wire toroid, thought of as a bent-around solenoid, filled with a 
soft magnetic core. From (11.40) for the solenoid, the toroid alone produces 
BI = 4rrkmnl = #onI, to which corresponds HI = Bi/#o = nI. As shown in 
Chapter 9, within a solid toroid magnetized along its axis, Hm = 0 because there 
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l 

(a) (b) 

Figure 11.30 (a) Soft magnet used for transformer core. 
(b) Soft magnet with a gap. 

are no pole charges qm. Hence, within the toroid, H = HI + Hm = HI. Then, 
from the definition of the magnetic susceptibility x, 

M =  z H  = zHI  = xnI .  (transformer core) (11.48) 

Thus 

Bin - -  #o(H + M) = #o(1 + x)HI = #o(1 + x)nI .  (transformer core) 
(11.49) 

For X >> 1, this gives an enormous enhancement of the B field over an air-core 
solenoid (for which x ~ 0). 

This result was derived only for a uniformly wound core, not the locally 
wound core of Figure 11.30(a). However, because soft iron retains nearly all 
magnetic flux produced by the windings, each winding produces a uniformly cir- 
culating flux in proportion to its current, no matter where the winding is placed. 
Hence the windings can be localized around one part of the electromagnet. 

11 ,:~ 14,~2 Field in Gap of Electromagnet 

Consider a horseshoe-shaped piece of soft iron, wrapped with N turns of wire, 
each carrying current I. See Figure 11.30(b). 

Let the gap be l and let the magnet have length L, with I << L. In addition, 
let the magnet taper from a cross-sectional area A far from the poles to a smaller 
area Agap in the gap. See Figure 11.30(b). We take both B~ within the magnet 
and Bgap within the gap to be essentially uniform. Because the B field lines do 
not originate or terminate on any magnetic poles, the magnetic flux within a flux 
tube is conserved. Hence the flux Bin A leaving the bulk of the electromagnet 
equals the magnetic flux BgapAgap entering the gap. Thus 

BinA - BgapAgap. (11.50) 

Since Agap (( A, by (11.50) Bgap >> Bin, so the field in the gap is enhanced. The 
adjustment from Bin to  Bgap takes place within the tapered region. We need an 
additional relationship to obtain both Bin and Bgap. First, however, we introduce 
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H/n and Hgap. From (11.49), with HI rewritten as Hin , 

B i n - - # 0 ( X  + ])H/n. (11.51) 

From (11.45), with M = 0 in the gap, 

Bgap = #oHgap. (11.52) 

The additional relationship we need is Amp~re's law for H, (11.47). With 
Ien free --  NI ,  this yields 

LHin + lHgap = NI .  (11.s3) 

Employing (11.51) and (11.52), Equation (11.53) becomes 

LBi,, 

x + l  
-t- l Bgap = # o N I .  (11.54) 

Equations (11.50) and (11.54) enable us to solve for Bgap. Explicitly, with 
12.o -- 47rkm, 

47r k m N I  
Bgap --  l + L(Agap/A) / (]  + X)" 

(gap of electromagnet) (11.55) 

Often we may neglect the second term in the denominator of (11.55), yielding 

47rk,,,NI (LAgaP<<I+x) (1156) 
Bgap ~ l " l A 

This result may also be obtained by neglecting the first term on the left-hand 
side of (11.54) and then solving for Bgap. Equation (11.56) is similar to (11.38) 
for the field within a toroid, where for comparison we should replace r by L/2~r. 
However, instead of the magnet length L, (11.56) has the much smaller gap 
length l in the denominator, leading to a very large enhancement. This is a very 
effective way to produce a large magnetic field without actually being inside the 
magnet! 

Equation (11.56) is not valid if/is so small that l << L(Agap/A) / (]  + X). Then 
the field approaches the value 

B '''ax-4zrkmN[(l+X) (LAgaP>>I+x) (1157) 
gap L(Agap/A ) " l A 

This result may also be obtained by neglecting the second term on the left-hand 
side of (11.54), solving for Bin, and then using (11.50) to obtain Bgap. 

Recall that H has two types of source: free currents I and magnetic poles qm 
(at the poles of the magnet). The magnetic poles make H change discontinuously 
on crossing from the magnet to the gap: within the magnet, it is like being outside 
a parallel-plate capacitor; within the gap, it is like being inside a parallel-plate 
capacitor. 
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Problems 

11-2 .1  Letd~ point along ~, have length 0.05 mm, 
and be centered at 4~ + 6 ~ -  8k (in cm). If I -  
1.7 A, find dB at the origin. 

1 1 - 2 . 2  Let d~ point along ], have length 0.05 mm, 
and be centered at 4~ + 6 ~ -  8k (in cm). If I - -  
1.7 A, find d B at 2~ - 5 ] + 6k (in cm). 

11 -3 .1  Consider a surface current ~, with I f  el in 
units of A/m, and let d A be the surface element. 
Show that B - km f f( x [~dA/R 2. 

1 1 - 3 . 2  Consider a volume current J, with I J in 
units of A/m 2, and let dV be the volume element. 
Show that B -km f J • [~dV/ R 2. 

11-4.1 A wire that can safely carry a steady 0.68 A 
current, and can be formed into a coil of radius no 
smaller than 0.3 cm, is to be used to form a multi- 
turn coil to produce a maximum magnetic field of 
0.04 T at its center. (a) Find the minimum length of 
wire that will do this. (b) Find the number of turns 
needed. 

1 1 - 4 . 2  The field is 0.00046 T at 6.5 cm along 
the axis of a 12-turn coil with radius 1.4 cm. Find 
the current through the coil. 

11-4.3 A uniformly magnetized disk of thickness 
1.4 mm and magnetization 0.8 x 10 S A/m pointing 
along its axis produces a 0.025 T field just above its 
center. Find its radius. 

1 1 - 4 . 4  A long thin wire is hidden within and par- 
allel to a pipe of 3.4 cm inner diameter and 4.0 cm 
outer diameter. The wire makes a 0.004 T field at a 
position just outside the pipe, and a field 0.0025 T at 
a position 2 cm outside the pipe. See Figure 11.31. 
Determine the distance between the pipe's axis and 
the wire, and the current in the wire. 

Figure 11.31 Problem 11-4.4. 

1 1 - 4 . 5  A wire carries current I along a straight 
line from ( - ~ ,  0) to ( -a ,  0), then along a semicircle 

of radius a from (-a, 0) to (a, 0), and finally from 
(a,O) to (~ ,0) .  (a) Find the direction and magni- 
tude of the magnetic field d J3 at the origin, due to 
an element d~ on the semicircle. (b) Determine the 
total magnetic field J3 at the origin. 

1 1 - 4 . 6  A long, thin solenoid of circular cross- 
section has 200 turns/cm and 3 A through each 
turn. (a) If it is 15 cm long and has a radius of 2 mm, 
determine its magnetic moment. (b) If the solenoid 
is approximated by a long magnet, determine the 
magnet's pole strength. (c) Estimate the magni- 
tude of the magnetic field 2 cm away from either 
pole. 

1 1 - 4 . 7  Find the current needed to cancel the 
earth's field of 0.5 x 10 -S T at the center of a coil 
of 1.2 cm radius and 26 turns. 

1 1 - 4 . 8  (a) Find the magnetic field at (x,y) due 
to a lightning discharge along the y-axis carrying 
current I from y = 0 to y - l. (b) For l - 2 km and 
I - 1600 A due to a cloud-to-ground lightning bolt, 
find the field at (10 km, 1 km). See Figure 11.32. 

I 
X 
=.= 
v 

Figure 11.32 Problem 11-4.8. 

11-4.9 Two identical wires of length l are used to 
make circular current loops. One is bent into a single 
circle, and the other is bent into a two-loop circle. 
If both loops carry the same current I and the field 
at the center of the one-loop circle is 1.5 x 10 -s T, 
find the field at the center of the two-loop circle. 

11-4.10 Two small, charged conducting balls are 
separated by a distance l. A straight wire connects 
them. See Figure 11.33. If the current is I, find the 
magnetic field at a distance a along the perpendic- 
ular bisector of the wire. 

IT a 
l I 

Figure 11.33 Problem 11-4.10. 
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11-5.1 Three sheets are stacked normal to the 
y-axis at y = O, y = d, and y = 2d. They carry par- 
allel currents per unit length K, 2K, and - 3 K  
along -~.  See Figure 11.34. (a) Find the field 
on the planes y = -0 .5d ,  y = 0.5d, and y = 1.5d. 
(b) Evaluate the field numerically on the plane for 
y = 0.5d, d = 2 cm, and K = 25 A/cm. 

2d J ~  / 

d J ~  / 

0 J  

- d  . . . . .  

T 
Y 

X 

Figure 11.34 Problem 11-5.1. 

11-5.2 A current sheet carries 5 A/m into the 
page; it is normal to the y-axis and passes through 
the origin. A long wire carries 2 A into the page; 
its center is 2 cm above the origin. See Figure 
11.35. (a) Find the magnitude and direction of 
the magnetic field in the plane of the page at 
point P~ = (0,1 cm ); (b) repeat, but at point P2 = 
(1 cm, 1 cm). 

,) 
I 

2 ~P1 eP2 

Figure 11.35 Problem 11-5.2. 

11-5.3 Two concentric coils (Helmholtz coils) 
carrying the same current l, in the same direction, 
can give a very uniform field at their midpoint. Let 
the coils be of radius R, with normal along the 
y-axis, one centered at ( 0 , - s / 2 )  and the other at 
(0, s/2). See Figure 11.36. Consider only the field 

s,2  
s,2  

I 

Figure 11.36 Problem 11-5.3. 

on the y-axis. (a) Give a qualitative argument that, 
for s ( (  R, the field at the origin is a local maximum, 
as a function of y. (b) Give a qualitative argument 
that, for s >> R, the field is a local minimum, as a 
function of position x. (c) Compute, as a function 
of y, the field along the axis. (d) Find the opt imum 
separation s, where the field is nearly uniform at 
y = 0. (This corresponds to d 2 B y / d y  2 = 0.) 

11-5.4 Consider a wire shaped like a partial annu- 
lus with radial coordinates (a,O), (a,O), (b,O), (b,O), 
the current I flowing clockwise. Take b > a. See 
Figure 11.37. (a) Find the field at the origin. (b) For 
small 0 and small (b - a)/a, compute the magnetic 
moment  #. (c) Verify that the dipole field normal 
to the axis of a magnet of moment  #, as in part (b), 
agrees with the result of part (a), at large distances 
from the magnet. 

b 

Figure 11.37 Problem 11-5.4. 

11-5.5 Consider a square-shaped current loop of 
side l, centered at the origin and carrying current 
I in the xy-plane. See Figure 11.38. Show that, 
on its normal axis at a distance z from the center, 
Bz = 2kmll2/[(z 2 + 12/4)v/z 2 + 12/2]. 

z y  I jx 
Figure 11.38 Problem 11-5.5. 

11-5.6 Consider a rectangle-shaped current loop 
with corners at ( - a , - b ) ,  ( -a,b) ,  (a,b), (a , -b) .  It 
has N turns, each carrying counterclockwise cur- 
rent I. (a) Find the field a distance z along the 
z-axis. (b) Find the magnetic moment  # of the loop. 
(c) Verify that part (a) gives the appropriate dipole 
field for z >> ~/a 2 + b 2. 
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11-5.7 Consider two long wires, both with I into 
the page, one crossing it at (a,O), and the other 
crossing it at (-a,O).  Show that B = 2c(4kmly)/ 
(y2 + a 2) at (0, y). 

1 1 - 5 . 8  Consider a wire carrying current l right- 
ward from negative infinity along the x-axis, at r = a 
bending from 180 ~ to 120 ~ then going radially out 
to r = b, then bending from 120 ~ to 60 ~ then going 
radially in to r = a, then going from 60 ~ to 0 ~ and 
finally going to positive infinity on the x-axis. See 
Figure 11.39. (a) Find B at the origin. (b) Evaluate 
this for I = 0.6 A, a = 3.2 cm, b - 4.8 cm. 

a 

Figure 11.39 Problem 11-5.8. 

11-5.9 Two long parallel wires, separated by s = 
3.8 cm, carry 8 A in opposite directions. See 
Figure 11.40. Find the magnetic field, including di- 
rection, (a) at the midpoint, (b) at 4 cm above the 
midpoint, and (c) at 30 cm below the midpoint. 

I 
f- 
S 

I 

Figure 11.40 Problem 11-5.9. 

11-5.10 A long strip of thickness 1.2 mm and 
width 2.4 cm has magnetization 0.4 x 106 A/m nor- 
mal to its plane. Find the magnetic field 8 cm above 
the midpoint. 

11-5.11 Consider a long strip of width w and 
current per unit length K into the page, intersect- 
ing the page between ( - w / 2 , 0 )  and (w/2,0). See 
Figure 11.41. Find B at (x, 0) for x > w/2.  

-w/2 w/2 

Figure 11.41 Problem 11-5.11. 

11-5.12 Consider a long strip of width w and 
current per unit length K out of the page, intersect- 
ing the page between ( - w / 2 , 0 )  and (w/2,0).  See 
Figure 11.41. Find/3 at (0,y). 

11-5.13 Consider a thin, rectangular slab cen- 
tered at the origin, of dimensions (a,b,d) along 
(x,y,z), respectively. Take the magnetization M 
along z, and take d << a, b. See Figure 11.42. 
(a) Find the equivalent surface current. (b) Using 
the Biot-Savart law, find the field along the 
z-axis. 

Figure 11.42 Problem 11-5.13. 

11-5.14 Consider an annular magnetic slab of 
inner radius a and outer radius b, with thickness 
d << a and magnetization M along its axis. (a) Find 
the equivalent surface currents. (b) Find the field 
along its axis. 

1 1 - 5 . 1 5  A finite solenoid of radius a has N turns 
and is of length L. It is centered at the origin with 
its axis along )~. See Figure 11.43. (a) Find the field 
a distance x from its midpoint. (b) Verify that this 
reduces to the expected results as L/a  -+ 0 and as 
L/a  ~ ~ .  

L 

Nea 

Figure 11.43 Problem 11-5.15. 

1 1 - 5 . 1 6  An annulus of inner radius a and outer 
radius a + d, where d << a, rotates at an angular 
velocity co. It has a uniform charge density ~ (half on 
each surface). This can be thought of as a coil car- 
rying current l. (a) Find I. (b) Find the field a dis- 
tance x along its axis. (c) Repeat (a) for arbitrary d. 
(d) Repeat (b) for arbitrary d. 

......... ii!!!,~: �9 1 1 - 5 . 1 7  A disk of radius a rotates at an an- 
...... :::::~~176176 ....... ....... gular velocity c0. It has a uniform charge den- 

sity ~ (half on each surface). This can be thought 
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of as a set of coils. See Figure 11.44. (a) Find 
the current per unit radial length, dI /dr .  (b) Find 
I. (c) Find the field a distance x along its axis. 
This so-called Rowland disk (1876), suggested by 
Helmholtz, was significant because it showed that 
electric currents from moving charges can produce 
a/3 field. 

(7  

Figure 11.44 Problem 11-5.17. 

..... ~i;~:~i::~ii:ii~i .... 11-5.18 A long, thin wire carrying current 
.... ~'::ii .......... l is wrapped around itself in a circle from 

r = 0 to r = a, with N turns. See Figure 11.45. 
(a) Find the current per unit radial length. 
(b) Find the field a distance x along its axis. 
(c) Compare with the rotating disk in Problem 
11-5.17. 

I 

I a 
Figure 11.45 Problem 11-5.18. 

11-6.1 An infinite wire carrying 2 A from left 
to right coincides with the x-axis. An electron at 
(0,2 cm) moves at a speed of 950 m/s along )~. 
(a) Find the magnitude and direction of the force 
on the electron. (b) Repeat if the electron velocity 
is along ~; (c) along ~. 

11-6 .2  An infinite sheet whose normal is along 3? 
and that intersects the page along the x-axis carries 
current density K into the page. A wire carries cur- 
rent l normally out of the page and intersects the 
page at (0,a). (a) Indicate the direction of the force 
F, of magnitude F = 0.5 N, on the current sheet. 
(b) If K triples, I quadruples, and a doubles, find 
the new force. 

1 1 - 6 . 3  Find the force on an electron a distance 
r from a long wire and moving with velocity 
parallel to the current l of the wire. See Figure 
11.46. 

i1 t v 

- - 8  

Figure 11.46 Problem 11-6.3. 

1 1 - 6 . 4  A long wire carries current 11 upward 
along the y-axis. A rectangular loop with sides of 
length a parallel to the long wire, and sides of length 
b perpendicular to the long wire, carries clockwise 
current 12. Its near arm is s from the long wire. See 
Figure 11.47. (a) Find the magnetic force on the 
rectangular loop. (b) Find the magnetic force on 
the long wire. 

S 

] 2  

I a 
,.= ,v 

b 

Figure 11.47 Problem 11-6.4. 

11-6.5 Consider a rectangular loop of width a 
and length b >> a. It is made of wire with ra- 
dius r << a, b, carrying clockwise current l. See 
Figure 11.48. (a) Estimate the magnetic force F 
on one of the short sides due to the two long sides, 
and indicate whether it is compressive or expansive. 
(If one of the short sides can slide, this corresponds 
to the geometry of a rail gun.) (b) For I = 12 A, 
r = 0.35 mm, a = 0.84 cm, and b = 18 cm, evalu- 
ate IFI. 

I 
a 

Figure 11.48 Problem 11-6.5. 

11-6.6 Consider two parallel wires carrying equal 
currents in opposite directions. One, with mass 
per unit length )~, is above the other. (a) Find the 
height h at which the upper wire would be sup- 
ported. (b) For I = 10 A and copper wire of radius 
a - 1 mm, determine h. The mass density of Cu is 
8.93 g/cm 3. 

11-6.7 A long, thin solenoid of radius a with n 
turns per unit length, and current 11 through each 
turn, sits on a table. It is co-axial with, and one end 
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is at the center of, a large loop of radius b >> a, car- 
rying current 12 opposite to 11. (a) Find the mag- 
netic field due to the current loop, at the end of 
the solenoid. (b) Find the force on the solenoid. 
(c) Evaluate the magnetic field and the force for 
n = 300/cm, I~ = 2 A, 12 = 4 A, a = 0.5 mm, and 
b = l  cm. 

1 1 - 6 . 8  (a) Show that the magnetic force between 
opposite sides of a current-carrying square loop 
tends to expand the loop. (b) Give a qualitative 
argument that the magnetic force on part of a cir- 
cular current loop, due to the rest of the loop, tends 
to make it expand. In general, the magnetic force 
tends to cause loops to expand. 

......... ~!!~:~:!!!!!i',ii,:~!~ ...... 11-6.9 Two long, parallel wires, separated 
........... "!i:!iiii!~,,::, ............ by 2a along the x-axis, both carry I into the 

page. Use the line tension B 2/8rr km to find the force 
per unit length between the wires. 

......... % ........ 11-6.10 Two long, parallel wires are sepa- 
..... ~:~:.~::i::'~,~ ........ 

:;::<::i .............. rated by 2a along the x-axis, the right wire 
carrying I into the page and the left wire carrying I 
out of the page. Use the line pressure B 2/8Jrkm to 
find the force per unit length between the wires. 

11-7.1 An Amp~rian circuit of fixed shape en- 
closes a wire carrying current I = 13.7 A. (a) Find 
the magnetic circulation. (b) The Amp~rian cir- 
cuit is moved far from the wire. Find the magnetic 
circulation. 

1 1 - 7 . 2  For a square loop of side 6 cm, the mag- 
netic field points along the y-axis, with By = 0.06 T 
on the right arm, and By = - 0 . 0 2  T on the left 
arm. (a) Determine the magnetic circulation F B = 

/3. d~ for d~ circulating clockwise. (b) Find Ienc. 

1 1 - 7 . 3  The magnetic circulation is 0.025 T-m 
for an Amperian circuit that wraps once around a 
current-carrying wire. (a) Find the current enclosed 
by the Amperian circuit. (b) Find the magnetic cir- 
culation if the Amp~rian circuit turns a second time, 
in the same sense, around the wire. (c) Find the mag- 
netic circulation if the second turn is in the opposite 
sense to the first turn. 

11-7 .4  A wire carries current I into the page at 
the origin. (a) For a square-shaped Amperian circuit 
in the plane of the paper, centered around the ori- 
gin, explicitly compute FB. (b) Compare with what 
is expected from Amp~re's law. 

11-7.5 For an Amperian circuit sitting on the 
page, of total length 2 cm, F B = 0.0008 T-m when 

d~ circulates counterclockwise. (a) Indicate how 
the magnetic field circulates. (b) Find the aver- 
age magnetic circulation per unit length. (c) Find 
the amount of electric current associated with the 
Amp~rian circuit. (d) Indicate the direction of the 
current flow. 

11-7.6 Let Bx = Bz = O, and let By depend only 
on x. Consider a rectangular Amp~rian circuit of 
dimension 3 cm by 5 cm, oriented parallel to the x- 
and y-axes. A current of 5.8 A flows into the page. 
If By -- 0.000048 T for the right-hand side of the 
circuit, find By for the left-hand side of the circuit. 

11-8.1 Prove Amp~re's law by starting with an 
infinitesimally thin wire surrounded by an infinites- 
imally thin concentric Amp/~rian circuit, and then 
deforming the Amp~rian circuit to give it an arbi- 
trary shape. 

11-8.2 In (11.28), we take Bm, int=4:rrkm~m . 
Using O" m = I/l, with I finite b u t / - +  O, show that 
this field dominates any finite correction terms due 
to the more distant parts of the circuit. 

1 1 - 8 . 3  Consider d~ for an arbitrary Amp~rian cir- 
cuit and d~ for a physical, current-carrying circuit. 
(a) Distinguish between them. (b) For which is the 
current usually in the direction of d~? Usually not 
in the direction of d~? 

1 1 - 8 . 4  A capacitor consists of two circular plates 
of radius 5 cm and separation 1.2 mm. Let the 
field along the midplane, 8 mm outside the edge, 
be 25 V/m. Estimate the charge on the capacitor 
plates. See Figure 11.17(b). 

11 -9 .1  Let/3 - (3 + 5y2)~ for y in m and/3 in T. 
(a) Find the circulation for a loop defined by the 
sides of the rectangle (1,2), (3,2), (3,-4) ,  (1,-4) .  
(b) Find the current enclosed, including its direc- 
tion. (c) Find the average current per unit area. 

11-9.2 Let /3 = (3 + 5y2)i for y in m and /3 
in T. (a) Find the circulation for a loop defined by 
the sides of the rectangle (1,2), (1.1,2), (1.1,1.9), 
(1,1.9). (b) Find the current enclosed, including its 
direction. (c) Find the average current per unit area. 

11-9.3 Let /~ = (3 + 5y2)~ for y in m and /~ 
in T. (a) Find the circulation for a loop defined 
by the sides of the rectangle (x,y), (x + dx, y), 
(x + dx, y + dy), (x, y + dy). (b) Find the current en- 
closed, including its direction. (c) Find the current 
per unit area. 
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11-9 .4  A magnetic field points along the x-axis, 
with Bx = ( -0 . 02  + 0.06y) T for y in cm. (a) For 
a square loop of side 5 cm, its top-left corner at 
(2 cm, 9 cm), determine the magnetic circula- 
tion FB = f B" d~ for d~ circulating counterclock- 
wise. (b) Find the current enclosed, including its 
direction. 

1 1 - 9 . 5  A field circulates clockwise, with sym- 
metry about the origin, and Bo = 0.05702, where 
fi = x / ~  + yZ in m gives Bo in T. (a) Find the mag- 
netic circulation for an Amperian circuit that is a 
circle of radius 2.5 cm, centered about the origin. 
(b) Find the average circulation per unit length for 
this circuit. (c) Find the current I and current per 
unit area d I / d A  passing through this loop. (d) Find 
the direction of the current passing through this 
loop. 

1 1 - 9 . 6  Consider a 3-cm-by-5-cm rectangular 
Amp~rian circuit oriented parallel to the x- and 
y-axes, its lower-left corner at (1 cm, 2 cm). Let 
B point only along the y-axis, with By = ( 0 . 0 4 -  
0.06y 2) T when y is expressed in cm. ia) Find the 
magnetic circulation taken clockwise. (b) Deter- 
mine the direction of the current enclosed by the 
loop and its magnitude. (c) Find the average circu- 
lation per unit length, and interpret that in terms of 
an average tangential component  of/] .  

1 1 - 1 0 . 1  Consider a long wire of radius 0.05 mm, 
carrying a uniformly distributed 6 A out of the page. 
(a) Find the magnetic field a distance 0.02 mm from 
its center. (b) Find the field at 0.08 mm from the 
center of the wire. (c) Indicate h o w / ]  circulates. 

1 1 - 1 0 . 2  A toroid with inner radius of 6 cm has 
a square cross-section with side 2.3 cm. Every one 
of its 180 turns is wound at 2 ~ relative to the one 
before it. (a) If the current is 4.2 A, estimate the 
field at the center of the toroid hole (r = 7.15 cm); 
at 6.8 cm on the axis of the toroid hole. (b) If the 
toroid is filled with soft iron of relative permeability 
2250, estimate the field at 6.8 cm on the axis of the 
toroid hole. 

1 1 - 1 0 . 3  A co-axial cable has an inner wire of 
radius a, plastic separator out to radius b, and then 
outer casing to radius c, where b ~ c. A current l 
comes out of the page for the inner wire, and a cur- 
rent 41 goes into the page for the outer casing. See 
Figure 11.49 for a situation where b and c are very 
different. (a) Indicate the direction of the magnetic 
field for r < a, a < r < b, and r > c. (b) Sketch an 
Amp6rian circuit that would be useful for finding 

the field for r > c. Take d~ to circulate clockwise. 
(c) For this Amp6rian circuit, find the circulation 
by direct computation, in terms of the symbol I BI. 
(d) Find the circulation using Amp6re's law. 
(e) Determine I BI for r > c. 

Figure 11.49 Problem 11-10.3. 

1 1 - 1 0 . 4  A toroid with N turns ofwire, each turn 
carrying current I, has a cross-section of area A, 
and inner radius a, outer radius b. See Figure 11.50. 
Indicate the direction of the magnetic field /3 at 
point P, a distance a < p < b from the axis of the 
toroid. (a) If the magnetic field has magnitude I/]1 
at P, determine the magnetic circulation for an 
Amp~rian circuit that is a circle of radius fi that 
is concentric with the toroid and passes through 
P. (b) Directly determine how much current 
passes through this Amp~rian circuit. (c) Deduce 
IBI at P. 

~ b  

a 

Figure 11.50 Problem 11-10.4. 

1 1 - 1 0 . 5  Consider a co-axial conductor with 
inner radius a carrying current l out of the page 
and a sheath for b < r < c carrying the return cur- 
rent l. See Figure 11.49. The current densities 
are uniform for r < a and for b < r < c. (a) Find 
the current density in the core and in the sheath. 
(b) Find the field at all radii. 

11-10 .6  Consider a co-axial cable with inner cur- 
rent 21 into the page and uniformly distributed 
over r < a, and outer current I out of the page 
and uniformly distributed over b < r < c. See Fig- 
ure 11.49. Find the field for (a) r < a, (b) a < r < b, 
(c) b < r < c, (d) c < r. 
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.......... ~ii~ai~,iii{ii~i:::: I ..... 11-10.7 Show that, within a cylindrical 
:<i ............... solenoid of arbitrary cross-section (e.g., tri- 

angular), the field points only along the axis z and 
is uniform. Take n turns per length, each carrying 
current I. (a) Consider two turns, 1 and 2, sym- 
metrically spaced above and below the observation 
point. Show that for two corresponding elements 
(so they have the same d~, and IR~I = I/~21), the 

= 1 (d/31 + d/~2) points along the average field d/3' 
axis of the solenoid. (b) Fix the circumferential 
angle of the loops and then integrate over 
dI = n l d z .  (c) Finally, integrate over the cir- 
cumferential angle to obtain /~ = 4rcnkmI~.. 
(J. D. Jackson.) 

......... '!}~,ii!{i~,i,~!i;;~ ...... 11-10.8 Consider two thin, vertical con- 
....... <:; ............. centric cylinders of length l and radii a < b. 

The inner one carries current upward, and the outer 
one carries current downward. On the top and bot- 
tom the current is radial. There is no buildup of 
charge anywhere in the circuit. See Figure 11.51. 
(a) Show that on the top and bot tom the radial cur- 
rent per unit length is K = I/2rcr. (b) Show that 
on the inner and outer surfaces the axial currents 
per unit length are K = I /2Jra and K = I/2Jrb. 
(c) Argue that, by symmetry, /3 can only circu- 
late about the axis. ( ~  Using Amp~re's law and 
symmetry, argue that B = 0 outside the cylinders 
(z < 0, z > l, r < a, r > b). ~(e) Using Amp6re's law 
and symmetry, argue that ]B] - 2kmI/r within the 
cylinders. (f) Show that B has the expected discon- 
tinuity relative to the surface current K over the 
surface of the conductor. 

Figure 11.51 Problem 11-10.8. 

11-11.1 A long magnet with square cross-section 
a 2, length l >> a, and magnetic moment  # is placed 
normal to a superconductor, its lower pole (N) a 
distance h from the superconductor. (a) For l >> h 
(so the near pole dominates), find the force on the 
magnet. (b) If the magnet, of mass M, levitates, find 
the equilibrium value of h. 

11-11.2 A levitation device using two permanent  
magnet disks (magnetized along their normals) and 
two diamagnetic disks (made of graphite) works as 
follows. Frame A holds the larger magnetic disk A 
on top. Below frame A, frames B and D hold dia- 
magnetic disks B and D. Magnetic disk C floats in 
the space between frames B and D. Explain. 

.......... % ....... 11-11.3 Consider a monopole qm a dis- ..... ~176176 ....... 

........ < ................ tance h above a superconductor whose 
top surface is the y =  0 plane, as in Figure 
11.25(a). By (11.44), the surface current is K =  
(qm/2rr)[fi/(p2+ h2)3/2], with direction indicated 
in Figure 11.27 (a). (a) Show that, on the monopole 
axis at any y > 0 (above the surface), K leads 
to Bz = km qm/(Y + h) 2, as you would expect the 
image charge to produce. (b) Find the field due 
to K for y < O. (c) Find the force on the source 
charge qm. 

.......... }i~iiiiiiiiii:,;i ........ 1 1 - 1 1 . 4  A magnetic slab with square cross- 
........ ~',~:i::::i section a 2 length l << a, and magnetic mo- ..... ~ ............. , 

ment  bt is placed normal to a superconductor, its 
lower pole (N) a distance h from the superconduc- 
tor. (a) For a << h (so the slab may be treated like 
a dipole), find the force on the magnet. (b) If the 
magnet, of mass M, levitates, find the equilibrium 
value of h. (c) Find the current per unit length K 
that causes the force. 

11-12.1 Consider a monopole qm above a soft 
magnet whose top surface is the y = 0 plane. (a) De- 
scribe the response of the magnet, as seen from the 
outside. (b) Determine the current per unit length 
K o n  the surface, due to Amphrian currents. (c) Find 
the force on qm. 

.......... ;~iiii~:. ........ 11-12.2 Consider a d ipo le / ,  above a soft 
........ < ............... magnet whose top surface is the y = 0 plane. 

Take its moment  to be along the outward normal. 
(a) Describe the response of the magnet, as seen 
from the outside. (b) Determine the current per 
unit length K on the surface, due to Amphrian cur- 
rents. (c) Find the force on qm. 

1 1 - 1 3 . 1  Describe two experiments indicating 
that, if the magnetism of magnets is due to electric 
currents, then these currents are not macroscopic 
currents subject to a finite electrical resistance. 

11-13.2 A long, hollow cylinder has uniform 
magnetization M along its axis (z) for a < fi < b. 
(a) Find the surface currents. (b) Find B for all ft. 
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11-14.1 Consider an electromagnet with a gap. 
Let l = 4 mm, L = 22 cm, I = 4 A, N = 14 turns, 
and X = 2500. (a) For Agap = A = 1.2 cm 2, find B 
within the magnetic material and within the gap. 
(b) For what value of Agap/A are the two terms in 
the denominator of (11.55) equal? 

1 1 - 1 4 . 2  N turns of wire carrying current I are 
wrapped around a toroidal-shaped soft magnetic 
material of mean radius R and known x, as in Figure 
11.30(a). (a) Estimate B and H inside. (b) Show 
that, if x = 1000, then B = 1001/z0H, so B >> 
/z0H. 

1 1 - 1 4 . 3  Consider a permanent magnet with 
magnetization M, in the shape of a toroid with a gap. 
Let the magnet have cross-section Am and length 
L, and let it have a gap of width d << ~A-~. Use 
NEO, with a remanence of Mr - 1.03 x 106 A/m 
and a coercive field of Hc -- 1.60 x 106 A-turn/m. 
Set Am--2  cm 2, L = 1 2  cm, and d - 0 . 2  cm. 
(a) Find the B field within the bulk of the magnet. 
(b) Find the field within the gap. 

1 1 - 1 4 . 4  Denote by I Amp the Amp/~rian current 
(due to currents that are not flee, but rather that 
circulate about atoms and molecules). (a) Show 
that I Amp = KL = ML.  (b) Show that Amp~re's 
law for B yields BinL + Bgapl - lzo(NI + ML).  
(c) Show that this reduces to (11.54). 

11-G.1 A magnetic field has the form B = 6x~, 
where x in m gives B in T. For a cube of side 
a = 0.5 cm that is in the first octant with one cor- 
ner at the origin, find the flux through each side, 
and the total flux. Is this an allowable B field? 

11 -G.2  Consider a long wire of finite radius b 
carrying uniform current density J into the page, 
its center intersecting the page at the origin. The 
wire contains a long nonconcentric hole of radius 
a < b, its center intersecting the page at (c, 0), with 
c + a < b. Find the magnetic field (a vector) within 
the hole. 

11 -G .3  A wire carrying current I is wrapped N 
times, tightly and uniformly, around a toroid of rect- 
angular cross-section, with inner radius a and outer 
radius b, and height h. Estimate the field outside the 
toroid, at a distance s normal to its axis. Hint: It is 
nonzero, and independent of N. 

1 1 - G . 4  The axis of a hollow tube of radius a and 
thickness d ((  a is normal to the page. The tube 
carries current l into the page, uniformly dis- 

tributed around its perimeter. (a) Verify that 
the field at the tube center is zero. (b) Find 
the field magnitude and direction if only the 
right-half of the tube (i.e., the first and fourth 
quadrants) carries current I. (c) Find the field 
magnitude and direction if only an arc of angle 
~, symmetrically placed around the y-axis, carries 
current l. 

11-G.5 A current density with axial symmetry 
flows along z (out of the page), so Jz = Jz(p). By 
symmetry, it makes a tangential magnetic field com- 
ponent Be that depends only on p (Be > 0 is coun- 
terclockwise). (a) For a concentric annulus of radius 
p and thickness dfi, show that d I / d p  = (2zrp)Jz. 
(b) For that annulus, show that Amp~re's law gives 
d(Ba(p)) /df i  = 2kmdl/df i  = 4~rkmpJz. (c) If Jz -- 
otp 2, and B~ = 0 for p = 0, find B~(p). 

1 1 - G . 6  A monopole of strength qm is at the cen- 
ter of a loop of radius b in the plane of the page, 
centered at the origin, carrying current I clockwise. 
(a) Find the magnetic field due to the current loop 
at the monopole. (b) If I = 2 A, b = 1 cm, and the 
force on qm points into the page and is of magnitude 
0.0005 N, find qm. 

11-G.7 A long, straight conducting wire is bent so 
that its two parts make an angle 2~) < Jr relative to 
each other. The wire is placed in the xy-plane with 
its bend at (O,s), and each half making an angle ~) to 
the y-axis. A current I flows in from the half-wire 
in the first quadrant and out of the half-wire in the 

- )  

second quadrant. Show that, at the origin, B points 
along 2, and that Bz = 2kmI(1 - cos~))/s sin~). This 
experiment was performed by Biot and Savart, and 
analyzed by Laplace. 

1 1 - G . 8  Consider the field B on the axis of a finite 
disk of radius R, magnetized normal to its surface. 
It may be thought of as due to the difference of the 
fields of two sheets of magnetic charge with charge 
d e n s i t i e s  -[-a m -~- M and thickness D. (a) Show that 
B = D(dBsheet/dx), where Bshee t i s  the field on the 
axis of a single sheet of charge density am. (b) Use 
(11.12) to obtain B, and then integrate to ob- 
tain Bshee t. ( c )  Compare this to the result for the 
electric field on the axis of a circular sheet of charge 
density a. 

11-G.9 Problem 9-2.11 considered two line poles 
-]-)~m parallel to y, intersecting the z - -0  plane at 
()co, 0) and (xo,l), respectively. The magnetic dipole 
moment per unit length is v - -  Xml. Letting l -~ 0 
a n d  A m --~ (X) at  constant v then led to a line of 
infinitesimal dipoles with field Bm --  2km[-~ + 2 
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(F. ~)~]/r 2, where r is the nearest distance to the 
dipole lines. (a) From Amp~re's equivalence, show 
that the circuit corresponding to these dipole lines 
is a pair of wires separated by a small distance w 
along x, carrying current l along and against 2, 
with v = I w held constant as w -+ 0 and I -+ oo. 
(b) Using superposition with w -+ 0 and I -+ oo at 
constant v, find the field/31 due to this pair of wires, 
and compare with/3m. 

1 1 - G . 1 0  Consider a semi-infinite dipole sheet 
(e.g., a magnetic shell) that is normal to the plane 
of the page and intersects the page along the nega- 
tive x-axis. Take its dipole moment  to point along 
:9, and let it have a finite dipole moment  per 
unit area d# /dA ,  which is the same as the mag- 
netization M. Such a sheet may be obtained by 
building up a set of dipole lines, as in the previ- 
ous problem, and letting F ~ dF = (d# /dA)~dx  = 
M~dx. From Problem 9-2.12, for an ob- 
server at (xo,yo), B =-[2kmMlo/ro](~ x/~0) 

-[2kmI/ro](~ x i0), where r0 = ~xg + y~ andS0 = 

3~ sin 00 + )~ cos 00. (a) Using Amp6re's equivalence, 
find the equivalent circuit. (b) Find the magnetic 
field of this circuit and compare wi th/ ]  for a semi- 
infinite dipole sheet. 

11-G.11 The Rogowski coil (1912) was origi- 
nally conceived by Chattock (1889), a student of 
J. J. Thomson. Here a long rod of length l and 
cross-section A is made of soft magnetic material. 
Wrapped around it are many turns of nonmagnetic 
wire. The i turn of wire intercepts a magnetic flux 
Bi A, where Bi is the field component along the axis 
of the rod. Thus the rod is like a toroid that corre- 
sponds to the Amp~rian circuit, and the nonmag- 
netic wire wraps around the rod. Show that for a 
tightly wound coil the sum over turns gives a total 
flux (I)B that is A~ l times the total circulation FB. 

11-G.12 Consider an infinite solenoid along the 
x-axis, of n turns per unit length and current I. This 
problem finds the force of attraction between its 
two halves x > 0 (1) and x < 0 (2). If/~(2) is the 

field due to 2, then the force Fz (1) on 1 (x > 0) is 
given by a sum over the force on each turn i of 1, 
which can be converted to an integral. Let f ds rep- 
resent an integral over the arc length ds of a single 
turn. (a) Show that 

F}~3-:Ci f ldsB~23- fo~ndx f ldsB~ 2~ 
= nI dx dsB(p 2) - nI [~(2). dA1, 

where fl dad is performed over the cylindrical sur- 
face defined by part 1, with normal ill, area el- 
ement dA1 = IdA1, and dA~ = fi~dA~. (b) Using 
f B. d A =  0, show that fl/~(2), dA1 is the flux 
through a disk at the mouth of the solenoid, which 
is half that due to a full solenoid, or (1/2)BsoiA= 
2rckmnlA. (c) Show that Fz = 2zrkm(nI)2A. With 
nI = K = M, this is F~ = 2rckmM2A, the same as 
the force of attraction of one infinite magnet on 
another. 

11-G.13 Two thin slab magnets, square shaped of 
side a and thickness d << a, have magnetization M 
normal to their axes. They are co-centered and par- 
allel, at a separation s, where a >> s >> d. Think of 
these as nearly parallel wires, with K = I / d  = M. 
Neglecting edge effects, show that the force F is 
given by F = 8kmM2adZ/s. As the magnets are 
moved closer, the force grows until it saturates at 
Fmax = 2rckmM2A = 2rckm Mza2. 

.......... ;~!~,i~,~,~iii,,ii,::::: 11-G.14 A quadrupole E field in a re- 
;:;i:'ii~!":':'::i gion can be produced by equal and oppo- 

site dipoles placed equally far away from the re- 
gion. Combining a quadrupole E field, such as 
E = c~(x)~ + Y~9 - 2z~), and a uniform B field along 
z, produces what is called an ion trap because it can 
confine a particle by enforcing harmonic motion. 
(a) Write the equation of motion in the z-direction. 
Find the sign of ~ that causes confinement along 
z, and give the frequency o)z of periodic motion 
along z. (b) Write the equation describing circu- 
lar motion in the xy-plane with radius r and speed 
v. Solve for Bz in terms of co• = v/r.  Find the o2• 
for which Bz is a minimum, and find the minimum 
value of Bz in terms of ~. (Another form of ion trap 
uses a quadrupolar potential that oscillates rapidly 
in time, herding the ions first one way and then the 
other, so quickly that the average displacement is 
always opposite to the average force.) 

1 1 - G . 1 5  Here is a very sophisticated problem 
that involves concepts from Chapters 1, 4, and 6, 
as well as the present chapter. Consider a long wire 
of radius a, with conductivity ~, carrier density 
n, and carrier charge - e . ( a )  Show that constant 
current density J = ~(/~ §  x / ] )  implies that at 
radius r < a there is a radial component of the elec- 
tric field E r - - ( 2 r c k m J 2 / n e ) r .  (Here /3 is due to 
].) (b) Find the corresponding bulk charge density 
and surface charge density. (E. N. Miranda.) 

1 1 - G . 1 6  Not knowing of Ohm's work, Henry 
found empirically that he could obtain a good 
electromagnet only by an appropriate (impedance) 
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matching of his battery (with its internal resistance) 
to his electromagnet. He used the term quantity bat- 
tery to describe a single cell or n cells in parallel, and 
the term intensity battery to describe one with n cells 
in series. He also used the term quantity magnet to 
describe an electromagnet wound with a short coil, 
and the term quality magnet to describe one with a 
long coil. Let each cell have resistance r and emf C, 
let the short coil have resistance R0, and let the long 
coil have N turns and resistance NRo. Further, let 
the electromagnet have a fixed area A and length l. 
(a) Explain why Henry could get a large magnetic 
field with matched coil and battery, but only a low 
field with an unmatched pair (for example, an inten- 
sity battery and a quality magnet). (b) Show that, 
for quantity matching, Bgap - -  4Jrkm(1/I)[E/(Ro + 
r/n)]. (c) Show that, for intensity-quality match- 
ing, Bgap = 4Jrkm(N/ l )[C/(NRo/n  + r)]. (d) Show 
that adding turns to an intensity magnet does not 
increase its effectiveness once it has enough turns 
(NRo/n  >> r). 

11-G.17 Consider a hollow cylinder of radius a 
with a net uniform current I flowing along its axis. 
Using Ampere's law and symmetry, show that the 
field magnitude B is B = 0 for r < a, and B = 
2k~ I / r  for r > a. 

....... ~II!IIIiEE!!~I: 11-G.18 Consider a hollow cylinder of ra- 
i:ii::!!i: ........ dius a with a net uniform current I flow- 

ing along its axis. By direct integration, determine 
the field inside and outside the cylinder. Hint: It 
may be helpful to use the result that, for b < 1, 
fo r a, - 27r (1 b 2 -1/2 (1-/,cos~) -- - ) 

(To establish this integral, substitute tan ~b/2 = 
y tan ~. The special value }/= v/(1 - b)/(1 q- b) 
then simplifies the integral over ~.) 

.......... ~iiiiii!',~il 1 1 - G . 1 9  Because of Ampere's equivalence, 
':~i~!!ii ........ electric fields and magnetic fields can take on 

very similar forms in the regions away from the field 
sources. We now use this idea to learn about mag- 
netic fields from some work on electric fields. Prob- 
lem 5-G.6 showed, for an electrical potential V that 
oscillated in one direction and grew or decayed in 
the other, that by appropriate choice of the rela- 
tive growth and decay, there would be no charge in 
the region described by the potential. [Specifically, 
V(x,y ,z)  = A sinqx exp(-ky),  where A isin V, and 

q and k are in m -1 .] For q - k, there was no bulk 
charge, so the associated electric field could also be 
a magnetic field. Now consider the problem of the 
stray field of a real solenoid, with individual wires 
separated by a distance a. Here, the magnetic field 
outside and very near the turns of the solenoid oscil- 
lates in space as you move along and around the axis. 
(a) Qualitatively, how does the magnetic field vary 
radially? (b) What is the spatial scale over which the 
magnetic field varies radially? Now consider what is 
called twisted pair, a pair of wires carrying current 
I to and from an electrical device. (c) If the wires 
were straight, how would the magnetic field fall off 
with radial distance r? (d) If the wires are wrapped 
around one another, with characteristic spacial pe- 
riod p, qualitatively how does the magnetic field 
vary radially, and quantitatively what is the charac- 
teristic length over which it varies? (Twisted pair is 
used to eliminate stray magnetic fields.) 

11-G.20 A circuit consists of a straight section 
from ( -a ,0 ,0 )  to (a,O,O), and then a semicircle 
of radius a from (a,0, 0) to ( -a ,  0,0). If the cur- 
rent circulates clockwise, find the magnetic field at 
(0,0,z). 

1 1 - G . 2 1  Consider a solenoid of arbitrary cross- 
section normal to the z-axis. Here is another way 
to show that, at any point within the solenoid, 
B - 4~rkmnI. (a) As in Problem 11-10.7, show that 
the sum of the contributions to /~ from two ele- 
ments, symmetrically above and below the obser- 
vation point, points along the axis. (b) Use trans- 
lational symmetry to argue that the field does not 
vary along the axis. (c) Use Ampere's law to show 
that the field does not vary within the solenoid. 
(d) Use Amp~re's law to find B. 

1 1 - G . 2 2  A cylinder of length l and radius a is 
wrapped with wire of radius r << a around its axis, 
as for a solenoid, beginning at one end and ending 
at the other with N turns. The wrapping contin- 
ues back to the original end, and back and forth 
again and again, until the effective cylinder radius 
equals b > a. The result is, effectively, a superposi- 
tion of concentric solenoids. Each set has the same 
N turns, length l, and common ends, but a ra- 
dius that goes from a to b in steps of 2r << b -  a. 
Find the field on the axis, a distance x from the 
midpoint. 



"When the contact was made, there was a sudden and very slight effect at the galvanome- 
ter, and there was also a similar slight effect when the contact with the battery was 
broken. But when the voltaic current was continuing to pass through the one helix, no 
galvanometric appearances nor any effect like induction upon the other helix could be per- 
ceived, although the active power of the battery was proved to be great, by its heating the 
whole of its own helix, and by the brilliancy of the discharge when made through charcoal." 

"As the wires approximated [approached], the induced current was in the contrary 
direction to the inducing current. As the wires receded, the induced current was in the 
same direction as the inducing current. When the wires remained stationary, there was 
no induced current." 

--Michael Faraday 
Experimental Researches, Vol. I 

Chapte  12 

Faraday's Law of 
Electromag netic I nd uction 

Chapter Overview 

There are two parts to this chapter. The first part discusses Faraday's law. The second 
part discusses Faraday's law applied to circuits. Section 12.1 provides a brief introduc- 
tion to electromagnetic induction, an emf due to a time-varying magnetic field. 

Section 12.2 places the discovery in its historical context. Section 12.3 discusses 
some of Faraday's original experiments, introducing the useful terminology of primary 
and secondary. The primary circuit is the source of the time-varying magnetic flux, 
usually due to electric current driven by a battery. The secondary circuit is the circuit 
to which Faraday's law is applied, and in which the emf is induced, as determined 
by the deflection of a galvanometer or some other measuring device. Section 12.4 
gives a qualitative rule for the direction of circulation of the induced emf (Lenz's 
law), and some of the complex possibilities for the forces due to the induced current. 
Section 12.5 formulates Faraday's law quantitatively, and shows the equivalence of 
the induced emf and the circulation of the electric field. Section 12.6 shows how the 
coupling between the primary and the secondary can be described in terms of what 
is called the mutual inductance. Section 12.7 discusses motional emf (motion of the 
circuit in a magnetic field), which provides another way to calculate the induced emf 
when there is motion. 

The second part discusses Faraday's law applied to circuits. Section 12.8 presents 
the experience of a young man, known to history only as Mr. William Jenkin, who 
received an electric shock on disconnecting an electromagnet from a battery. This can 
be understood in terms of self-inductance, which describes how a circuit produces 
an emf in response to changes in its current. Sections 12.9 and 12.10 discuss mutual 
inductance and self-inductance. Both forms of inductance are associated with induced 
emfs and induced currents produced by time-varying magnetic fields. 
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A capacitor has the property called capacitance (given the symbol C), a resistor has the 
property called resistance (given the symbol R), and an inductor has the property called 
self-inductance (given the symbol L ). These are the three basic types of circuit elements. 

Section 12.11 discusses a circuit with both a resistor and an inductor, and 
Section 12.12 discusses the energy to produce a magnetic field. Section 12.13 dis- 
cusses induced electric fields and considers an example where both an induced 
electric field and an electrostatic field are needed to produce uniform current flow 
through a circuit. Section 12.14 discusses Mr. Jenkin's circuit in some detail, m 

12.1 Introduction 

If a charged rod is moved to one side of a conducting loop, then, by electrostatic 
induction, charge on the conducting loop rearranged. However, there is no current 
flow circulating around the loop. This is because (cf. Chapter 5) the circulation 
of the electric field due to fixed electric charges is zero. On the other hand, 
as discovered by Faraday and Henry, a change in the magnetic field acting on 
a c o n d u c t o r -  such as an electric c i r c u i t -  leads to a non-zero circulation of 
the electric field, and thus a current, around the circuit. This process is called 
electromagnetic induction. In the quotation at the chapter head, Faraday spoke 
in terms of induced currents. For a circuit of resistance R, if there is induced 
current I then by Ohm's  Law there must be an induced emf C, by I = C/R. 
Therefore we speak both of induced currents and induced emfs. Associated with 
the induced emf is an induced electric field. 

Electromagnetic induction can occur in an electric circuit C in many ways. 
Here are a few: a magnet moves toward C; C moves toward a magnet; C is within 
a solenoid and the solenoid current changes with time; C rotates in a steady 
magnetic field, so that the normal ~ to C changes. In each case, a time-varying 
magnetic field causes a circulating electric field. See Figure 12.1 for an example. 

Figure 12.1 Electromagnetic induction caused by a magnet 
moving toward a conducting circuit C. On the 
galvanometer, zero current corresponds to the midpoint. 



12.2 Faraday's Law 507 

Electromagnetic induction, because it drives currents around circuits, powers 
modern civilization. Churning river waters (e.g., the Columbia river, from the 
quote in Chapter 1) and scalding hot steam provide the energy to rotate turbines- 
laden with copper wires- in external magnetic fields. The resulting time-varying 
magnetic field induces in the wires electricity that is carried through power lines 
as alternating current. On a much smaller scale, the signal to the pickup coil 
of an electric guitar is induced by the time-varying magnetic field of the vibrat- 
ing steel string (magnetized by a small permanent magnet within the pickup 
coil.) 

12o2 

12o2~ ? 

Faraday's Law 

The Discovery of Electromagnetic Induction 

A. Lost Opportunities After Oersted's 1820 discovery that electric currents 
produce magnetism, scientists tried to determine if magnetism could produce 
electricity. Ampere and de la Rive came close in 1822 but, not expecting a 
temporary induced current, misinterpreted their results. Faraday, came close in 
in 1825, but he connected his secondary circuit only after he powered up his 
primary circuit. Also in 1825, an associate of de la Rive, Colladon, in Geneva, 
placed the sensitive galvanometer of his secondary in one room and his primary 
coil in another. After thrusting a powerful bar magnet into the coil (as in Figure 
12.1), by the time he would reach the galvanometer, it had returned to its zero 
point, thus giving the appearance of no response at all. Again, not anticipating a 
temporary induced current, the effect was missed. 

B. Arago's Needle Curiously, in 1824 Arago discovered an effect that indeed 
was due to electromagnetically induced emfs. He noticed that, on disturbing his 
compass needle mechanically, it equilibrated more quickly when inside its metal 
case than when outside the case. He correctly surmised that this was somehow 
due to relative motion of the magnetic compass needle with the metal of the 
case. He then built a turntable with a large metal disk. The compass needle, 
placed above the rotating disk, tended to twist in the sense of the disk's rotation; 
when turned fast enough, the compass needle would even spin. Others imme- 
diately took an interest in this apparent "magnetism of rotation;" finding that a 
conducting (but nonmagnetic) disk would turn if a powerful magnet was rotated 
near it. Ampere showed that the effect persisted if a solenoid (i.e. an electro- 
magnet) was substituted for the magnet, thus providing further evidence for 
the equivalence between conducting loops and magnets. The effect was greatest 
for those materials with the greatest "conducting power," although there was not 
yet a quantitative measure ~ conductivity ~ of that conducting power. Never- 
theless, no explanation was found for Arago's effect, known as "Arago's needle." 

C. Discovery by Faraday and Henry Electromagnetic induction finally was 
discovered independently by two men. One was Michael Faraday, working at 
the Royal Institution (founded by an expatriate American, Count Rumford) in 
London. The other was Joseph Henry, working at Albany Academy, in New York. 
Henry's discovery was made in August of 1830, but he did not publish his results. 
Faraday's discovery was made in August of 1831, and his results were announced 
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in November of that year. Not until learning of Faraday's work did Henry publish, 
in 1832. By then he was at the College of New Jersey (since 1896, Princeton 
University). 

Just as the study of electrostatic induction of electricity involved the concept 
of capacitance (both self- and mutual-), so the study of electromagnetic induction 
of electricity involves the concept of inductance (both self- and mutual-). Fara- 
day especially studied the effects of mutual induction between two circuits (the 
primary and the secondary), whereas Henry especially studied the effects of the 
self-induction of a circuit. Indeed, Henry remarked upon self-induction in his 
paper of 1832, whereas Faraday did not discover self-induction until 1834. Fara- 
day's work, however, is more general than Henry's, because Faraday noted that 
electromagnetic induction occurs when there is relative motion of the primary 
and the secondary, whereas Henry worked with fixed circuits. Faraday's work is 
very well-documented because of his habit of taking meticulous notes (now a 
standard practice in scientific laboratories). On the other hand, many of Henry's 
notes were burned during a fire in his Washington, DC office of the Smithsonian 
Institution (in a peculiar symmetry, founded by an Englishman), where Henry 
had become Director. We present many of Faraday's 1831 experiments in detail, 
following in his Experimental Researches, Vol.I, and his Notes. 

12 3 Faraday's Experiments 

Current Induced with Voltaic Cells 

In his published work, Faraday begins by recounting a number of failures to see 
induced currents in his galvanometer-containing secondary, even on increasing 
the number of turns of wire in both the primary and secondary. Because insulated 
wire was not available (except for cotton-covered, soft iron bonnet wire), to use 
anything but iron wire he had to make his own insulation layer between turns 
of the wire. As he writes: 

About twenty-six feet of copper wire one-twentieth of an inch in diameter were 
wound round a cylinder of wood as a helix, the different spires of which were 
prevented from touching by a thin interposed twine. This helix was then covered 
with calico [to serve as insulation], and then a second wire applied in the same 
manner. In this way twelve helices were superposed. 

Six of these helices were connected in series and then connected to a gal- 
vanometer. The other six helices were connected in series and then connected 
to a battery consisting, at first, of 10 copper-zinc voltaic cells with 4-inch 
plates. See Figure 12.2(a). There was no response until Faraday increased the 
number of copper-zinc voltaic cells in the primary from 10 to 1 O0 (and then 
to 120). This produced a small effect at the galvanometer, both on connecting 
and disconnecting the battery; the needle's response on opening was opposite 
to its response on closing. The first quotation at the chapter head describes this 
phenomenon. 

Faraday wanted to amplify the effect. He argued that the temporary current 
might be enough to magnetize a steel needle placed within a helix, as he knew 
occurred in the rapid discharge of Leyden jars (capacitors). See Figure 12.2(b). 
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Figure 12.2 Two methods Faraday used to detect induced current in the secondary 
when the primary circuit was connected or disconnected: (a) a galvanometer, (b) an 
iron needle, which can magnetize. 

He found that the needle magnetized one way on connecting the battery, and 
the other way on disconnecting it. The magnetization M on disconnection was 
in the same direction as expected if it were produced by a steady current I in the 
battery circuit, of emf Eb and resistance R. However, I MI on both connection and 
disconnection was much larger than expected for I given by Cb/R. Hence, during 
both connection and disconnection, a temporary but  large emf was induced, over 
and above the battery emf Cb. 

Faraday next describes a striking variant of the preceding experiment, now 
employing motion to produce the time variation: 

Several feet of copper wire were stretched in wide zigzag forms, representing the 
letter W, on one surface of a broad board; a second wire was stretched in precisely 
similar forms on a second board, so that when brought near the first, the wires 
should everywhere touch, except that a sheet of thick paper was interposed. [See 
Figure 12.3.] One wire W was part of a circuit that included a galvanometer, and 
the other wire W was part of a circuit that included a battery of voltaic cells. The 
first wire was moved towards the second, and as it approached, the needle was 
deflected. Being then removed, the needle was deflected in the opposite direction. 

Figure 12.3 Faraday's rotating W circuits. By rotation about its axis, the 
wooden frame is opened and closed at the resonance frequency of the 
galvanometer. The current in the left-hand W (the primary) then induces 
current in the right-hand W (the secondary). 
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He then made the wires approach and recede at the mechanical resonance 
frequency of the galvanometer needle (much as we push a child at the resonance 
frequency of a swing). He found that "the vibrations of the needle . . . soon 
became very extensive; but when the wires ceased to move from or towards each 
other, the galvanometer-needle soon came to its usual position." The second 
quotation at the chapter head indicates the directions of the induced currents. 
Adding a voltaic cell to the secondary circuit, thus giving the secondary a steady 
current in addition to any induced currents, did not affect the induced current. 

12o3.2 Current Induced with Soft Magnets and Voltaic Cells 

In his published work, having described the induction of electric currents by 
electric currents (what he called "volta-induction"), Faraday then turned to "the 
evolution of electricity by magnetism" (what he called "magneto-electric induc- 
tion"). He describes his work with primary and secondary both wrapped around 
an iron toroid 7/8-inch thick and of outer radius 6 inches. The primary (P) 
contained three separate helices, each made with 24 feet of copper wire. The 
secondary (S) contained a helix made with 60 feet of copper wire. With the 
three helices connected in series, the primary was connected to a battery of only 
ten copper-zinc cells. See Figure 12.4(a). 

The galvanometer was immediately affected, and to a degree far beyond what has 
been described when with a battery of tenfold power without iron was used; but 
though the contact was continued, the effect was not permanent, for the needle 
soon came to rest in its natural position, as if quite indifferent to the attached 
electro-magnetic arrangement. Upon breaking the contact with the battery, the 
needle was again powerfully deflected, but in the contrary direction to that in- 
duced in the first instance. 

When both primary and secondary were wrapped around a hollow pasteboard 
cylinder, a very weak current could be induced, but when an iron rod of 7/8-inch 
diameter and 12-inch length was placed within the cylinder, and the primary 
switched on, "the induced current affected the galvanometer powerfully." See 
Figure 12.4(b). A copper rod produced no such enhancement of the induced 
current. 

Galvanometer Iron ring 

_ L  

Galvanometer 

-'N Hollow 
) pasteboard 
] cylinder 

I I I I I I i ~  

�9 / - -~L/  I I I I I I I I ]1  I I I  I I  I I  

~e~PxPerwir6~~l__~~~S~176 

(a) (b) 

Figure 12.4 Current induced with electromagnets. (a) The soft iron of the toroid 
serves to enhance the common field of the primary and secondary. (b) With the helix 
filled with soft iron (but not when filled with air or copper), the galvanometer would 
respond when the primary was connected or disconnected. 
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Figure 12.S (a) When the magnets are brought together or pulled apart, there 
is an induced current in the galvanometer. (b) When pushed in or out of the 
core of the helix, the soft iron rod strengthens or weakens the field seen by the 
secondary. 

12~:~3o3 Current Induced with Hard Magnets 

Faraday also used a pair of identical 24-inch-long permanent magnets to pro- 
duce the magnetic field in the iron core. He arranged the magnets with their 
opposite poles at one end in contact, and then contacted the other poles with 
the opposite ends of the iron core, "so as to convert it for the time into a mag- 
net." Figure 12.5(a) shows the view looking down on the laboratory bench at 
the galvanometer. On bringing the magnets together, the induced current was 
in one direction; on separating them, the induced current was in the opposite 
direction. 

To eliminate the possibility that the preceding results were associated with 
the magnetization process, Faraday took a permanent magnet 3/4 inches in di- 
ameter and 8 1/2 inches long and thrust it into and out of the hollow pasteboard 
cylinder, successively inducing currents one way and then the other, consistent 
with turning on and off an electromagnet. See Figure 12.5(b). When the magnet 
was pushed all the way through, current was induced first in one direction and 
then the other. Adding a voltaic cell to the secondary circuit, thus giving it a 
steady current, did not affect the induced current. 

Faraday also performed an experiment in which the galvanometer responded 
to wires from two secondaries made of different materials. In this way, he de- 
termined that "the currents produced by magneto-electric induction in bodies 
is proportional to their conducting power." From this and other experiments, 
he came to the important conclusion that the amount of induced emf is indepen- 
dent of the material of which the wire is made. Although he was on the verge of 
discovering Ohm's law, he did not quite couch his results in terms that would 
permit a quantitative determination of "conducting power." In modern terms, 
we would say that if Faraday had used two wires with resistances R1 = 1 ~2 and 
R2 = 100 ~2, and subjected them to the same induced emf of E = 5 V, then 
currents 11 = 5/1 = 5 A and 12 = 5/100 = 0.05 A would have been induced. 

~I2o3~4 The Order of  Faraday's Discoveries 

Faraday's notes reveal that he made his first discoveries about electromagnetic in- 
duction while using electromagnets and permanent magnets, only later turning to 
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current-carrying electric circuits without soft iron. Since he accepted Amp~re's 
equivalence between magnets and current-carrying circuits, likely this order de- 
veloped because he was searching for effects associated with magnetic fields, and 
electromagnets and magnets typically provided more powerful fields than electric 
circuits. Only after seeing an induced current when thrusting a magnet into a sec- 
ondary would he have been confident of seeing an induced current on moving one 
W-shaped circuit toward another. Even then, as indicated, he had to exploit the 
galvanometer needle's mechanical resonance to cause an appreciable response. 

12~3,~5 Summary of Faraday's Results 

Faraday performed a number of other experiments, but we now know enough 
of them to draw the most important conclusions: 

1. A change of current in the primary P induces an emf m ~ e  s e c o n d ~  ....... 

2. Relative motion of the primary P and the secondary S induces ~ e ~  ~ ~ e  
secondary. (This is true only when there is current in the p n m ~ )  

3. Relative motion of a magnet and the secondary S i ~ c e s  an e ~  i~ ~ e  
secondary. 

In each case, a time variation in a magnetic field causes an electric current to 
circulate around an electric circuit. More precisely, as Faraday came to see it, a 
change in the number of magnetic field lines enclosed by a circuit causes an electric 
current to circulate around the circuit. But if more field lines are enclosed by the 
circuit, in which direction will the current circulate? 

Faraday gave a rule for the direction of the circulation of the induced electric 
current circulating around an electric circuit. He thought in terms of magnetic 
field lines crossing a circuit. They can point up or down relative to the area 
enclosed by the circuit. Here is his rule. If field lines due to an external field 
enter the area enclosed by the circuit, the response is to induce a current in the 
circuit that makes field lines that leave the circuit; and if external field lines leave 
the circuit, then the response is to induce a current making field lines that enter. 
(In doing the field line count, an entering field line oriented one way is equivalent 
to a leaving field line oriented the other way.) 

Figure 12.6(a) presents an example corresponding to relative motion of two 
circuits, case 2 in the shaded summary box. The primary and secondary are co- 
axial coils, with the primary carrying current le counterclockwise as viewed from 
the right, and moving rightward toward the secondary. Depicted are the field lines 
produced by the primary, as well as the time rate of change in the external 
field "seen" by the secondary, which we call d[3ext/dt.Figure 12.6(b) depicts the 
response of the secondary, which makes its own field Bind by the induced current 
lind, where Amp~re's right-hand rule relates Bind and [ind. 

Food for Thought: Convince yourself that if in Figure 12.6(a) the primary 
movesleftward, but the current Ip remains counter-clockwise, then lind reverses. 
Does Bext n o w  point - ,  or +-? [My Answer: ] Does d[3ext/dt now point --~ or 
+-? [My Answer: ] Does Bind now point ~ or , -?  [My Answer: ] 

Food for Thought: Convince yourself that if in Figure 12.6(a) the cur- 
rent Ie reverses, thus reversing [3ext, and if the primary moves rightward, 
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Figure 12.6 (a) A primary current loop carrying current 
Ie is moved toward the secondary loop, subjecting the 
secondary loop to a field Bext that is increasing to the 
right. (b) The secondary responds with an induced 
current  lin d that produces a field Bind that is to the left 
(i.e., opposite to dBext/dt). 

then ]in d reverses.  Does /3e~t now point -+ or +-? [My Answer: ] Does 
dBe~t/dt now point -+ or +-? [My Answer: ] Does Bind n o w  point -+ or ~ ?  
[My Answer: ] 

Food for Thought: If in Figure 12.6(a) the current Ie reverses, thus reversing 
- +  

B ext, and if the primary moves leftward, is I~ud in the same or the opposite direc- 
tion relative to lin d of  Figure 12.6(a)? [My Answer: ] Does/3e~t now point -+ 
or +-? [Answer: ] Does dBext/dt now point -+ or +--? [My Answer: ] Does 

- +  

Bind now point -+ or +-? [My Answer: ] 
Food for Thought: From these cases, is there any general correlation between 

the direction of Be~t and the direction of Bind ? [My Answer: ] Between the 
direction of dBext/dt and the direction of/3~nd? [My Answer: ] 

Figure 12.7 (a) presents an example corresponding to relative motion of a mag- 
net and the secondary, case 3 in the shaded summary box. An equivalent magnet 
moves toward the secondary, whose response is the same as in Figure 12.6(b). 
If the equivalent magnet were to move in the opposite direction, then dBext/dt, 
Bind, and [in d would all reverse direction. 

Figure 12.7 The same response in the secondary of Figure 12.6 can be produced when 
(a) an equivalent magnet moves toward the secondary loop, (b) the current Ie in the 
primary increases. 
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Figure 12.7 (b) presents an example corresponding to a changing current in the 
primary, case 1 in the shaded summary box. Here the current le in the primary 
is increasing. The response of the secondary is the same as in Figure 12.6(b)~ If 
Ip were decreasing, then dBext/dt, Bind, and lind would all reverse. However, Bext 
would continue to point rightward because it is determined by le. 

12 4 Lenz's Law: A Qualitative Statement 
of Faraday's Law 

Another rule for the direction of induced currents was given by Lenz in 
1834. Translating it into modern terminology, Lenz's is our most complete and 
accurate qualitative statement of Faraday's law. It is formulated in terms of the 
idea of magnetic flux. For Gauss's law, the electric flux through a closed sur- 
face is what mattered. For Lenz's law, what counts is the magnetic flux through 
an open surface, defined by the circuit whose induced emf we seek. One way 
of visualizing a change in magnetic flux through a circuit is to think, as did 
Faraday, in terms of field lines crossing the electric circuit. 

Lenz's law: A change in magnetic flux through a circuit 
field; this, in turn, induces a circulating electric curr~ 

As discussed in Section 9.5 and Figure 9.13(a), a perfect diamagnet in a static 
applied magnetic field produces its own magnetic field that, within the diamag- 
net, completely cancels the applied field. Thus we say that it "expels" the mag- 
netic field. It produces this field by setting up (surface) currents (Section 11.11). 
Lenz's law implies that all materials are like dynamical versions of perfect dia- 
magnets, producing induced currents whose field opposes changes in the applied 
magnetic field. 

Because Lenz's law only tells us about directions of induced currents and 
emfs, the magnitude of the rate of change of the magnetic flux is irrelevant in 
Lenz's law. Here is how to maximize the response, that is, to make a material 
respond most like a perfect diamagnet: (1) for a given material, the faster the 
change in the applied field, the closer the response to that of a perfect diamagnet; 
(2) the greater the conductivity, the greater the induced current, the greater the 
induced field, and the closer the response to that of a perfect diamagnet. (Thus, 
insulators are ineffective at producing induced currents.) 

If materials reinforced (rather than opposed) changes in magnetic flux, the 
universe would be unstable: a tiny fluctuation in field would cause a circuit to 
reinforce that field, so an infinitely large field (and current) would build up. 
You can imagine external field lines entering a circuit, and then the circuit itself 
making more field lines enter the circuit, and so on. 

Let us now cut our teeth on Lenz's law by considering some examples. Ideally, 
we should show separate figures giving (1) the initial field B ext applied to the 
circuit, (2) the final field applied to the circuit, and (3) the field Bind produced 
by the current induced in the circuit. In practice, we will indicate only the 
directions of dB~xt/dt and Bind" 
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Figure 12.8 Induced currents in two very similar cases, where the N pole of the 
magnet is moved toward the right. The field acting on the secondaries points 
rightward and increases. (a) Current loop as secondary. (b) Conducting sheet as 
secondary (the induced current is called an "eddy current" because it is similar to 
a swirling eddy in a stream). 

~ Moving a permanent magnet toward a coil 

Consider an experiment like that of Figure 12.5(b). Figure 12.8(a) depicts a 
circular loop in the yz-plane at the origin. To the left of the loop, its north 
pole pointing to the origin, a bar magnet moves toward the loop. Determine 
how the motion of the magnet affects the field seen by the coil, and how the 
coil opposes the change in field by its induced emf, the net force on the loop, 
and whether the loop expands or contracts. 

Solution: The motion of the bar magnet increases the applied field Bext in the 
rightward direction. By Lenz's law the loop produces its own induced field Bind 
in the leftward direction. Figure 12.8(a) depicts dBext/dt and Bind. 

By Amp~re's right-hand rule, to make such a Bind the induced current circu- 
lates clockwise as seen by an observer on the right. Further, by Amp~re's equiv- 
alence, this current loop is like a magnetic disk (not drawn) whose magnetic 
moment points to the left. Since the N pole of the permanent magnet and the 
N pole of the equivalent magnetic disk are opposed, the force on the coil is re- 
pulsive (i.e., to the right). A similar geometry was discussed in Chapter 10, for 
the force on a speaker coil due to a permanent magnet (see Figure 10.16). There 
it was also concluded that a net compressive force acts on the loop. Table 12.1 
summarizes our results for the response of the loop in Figure 12.8(a). The direc- 
tions are given as seen by an observer to the right. (In stating directions, we must 
always state the position of the observer.) 

Properly, this table should be given in terms of magnetic flux, instead of mag- 
netic field. We use magnetic field here because we haven't yet defined magnetic 
flux in a precise fashion. 

Food for Thought: How would table 12.1 change if the magnet were pulled 
away from the loop? If the loop were pushed toward the magnet? If the loop were 
pulled away from the magnet? If the magnetic poles were reversed? 

Table 12.1 Description of Example 12.1 

To right E) | Clockwise (Z) Compress 



516 Chapter 12 ~ Faraday's Law of Electromagnetic Induction 

• Moving a permanent magnet a conducting toward 
sheet: eddy currents 

Analyze the previous example if the coil is replaced by a sheet of alumi- 
num foil. 

Solution: The induced currents in the sheet, now distributed continuously, and 
called eddy currents (because of their similarity to small eddies, or whirlpools, in 
water), will circulate in the same sense (clockwise as seen by an observer to the 
right) as the induced current in the coil. See Figure 12.8(b). The term eddy currents 
is used to describe currents induced in a solid object rather than a circuit. Faraday's 
law applies both for solid objects and for conducting circuits. 

The preceding examples lead to a left-hand rule, which we will call Lenz's 
left-hand-rule. 

Lenz's Left-hand rule: If the thumb of your left hand is pointed a~ng the d i ~ o ~  
of the rate of change of the magnetic flux, then the fingers of your left ~ ~  ~ l l  ~ r l  
in the direction of the induced electric field. ...... .................. 

This rule is not often stated, but it is true nevertheless. Some students may 
find it helpful (different strokes for different folks), but  we will not make further 
use of it. 

• Powering up primary the 

Consider an experiment like that of Figure 12.9(a), which depicts two co- 
axial coils, their normals along the x-axis. Turning on the switch in the primary 
(at the origin)causes current to flow counterclockwise as seen by an observer 
to the right. B ext denotes the external field acting on the secondary due to 
the primary, and Bind denotes the induced field acting on the secondary due 
to the secondary itself. This configuration applies to induction ranges, where 
the primary is built into the range, and the secondary corresponds to the pot 
or pan to be heated (so that eddy currents are induced in the secondary). (a) 
Apply Lenz's law to obtain the directions of the induced emf and the induced 
current. (b) Find the magnetic forces acting on the secondary coil. 

Solution: (a) When the current is switched on in the primary, from Ampere's 
law this produces a dBext/dt that points toward the observer (-+ to us, or O to 
the observer). Since, by Lenz's law, Bind must point opposite to dBext/dt, then 
Bin d points away from the observer (+- to us, or | to the observer). Again by 
Ampere's law, to produce such a/3ind, the induced emf and the induced current 
must circulate clockwise as seen by the observer. Thus, for an element at the top 
of the secondary, d~" points into the page. 

(b) To find the force on the secondary due to the induced current, use the 
force law di~ = Ida" x B, where I = Is is the induced current in the secondary and 
B = B ext is the applied magnetic field. See Figure 12.9(b). (This is the same 
geometry as Figure 10.16b.) Consider an element d~" at the top of the secondary 
so that it points into the page. A short amount of time has elapsed so that B = 

. . +  

Bext from the primary has had some time to build up; it flares outward and 
points toward the observer. The cross-product then gives that d/~ points partly 
toward the observer (repulsion) and partly radially inward (compression). This is 
consistent with a motion statement of Lenz's law. 
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Figure 12.9 (a) Turn-on of a primary causes a rightward field at the 
secondary, whose induced current tends to make a leftward field. 
(b) Detailed analysis that gives the force dF on an element d~" due to 
the induced current in the field Bext of the primary. At the top of the 
loop, d~" points along | (into the page). 

This rule must not be applied too literally. If the system already has a current, 
there may be preexisting forces on the system; the motion statement of Lenz's 
law refers only to the forces due to induced currents. Thus, in Figure 12.9(a), if 
there initially had been a current going down the near side, initially there also 
would be an attractive force between the loop and the magnet, independent of 
any induced currents and forces. 

Another way to obtain the direction of the interaction force is to employ 
Amphre's equivalence. Replace the primary and its current by its equivalent 
magnet with its magnetic moment pointing toward the observer, and replace the 
secondary and its current by its equivalent magnet with its magnetic moment 
pointing away from the observer. These two magnets repel; hence the two circuits 
repel, so the secondary feels a force toward the observer. 

The force on the primary is equal and opposite to the force on the secondary, 
and can be obtained from the equivalent magnet viewpoint. The primary also 
will feel a force of compression, to oppose the change in its own flux. 

Table 12.2 summarizes our results for the response of the secondary in Figure 
12.9(a). The directions are given as seen by an observer to the right. 

Food for Thought: How would table 12.2 change ifthe primary were powered 
up in the opposite direction? 

• Magnet above turntable (Arago's needle): rotating 
eddy current drag, lift, and radial force 

Sometimes, the induced force on an object may require an even more complex 
description. Consider a magnet held above a rotating aluminum turntable, 

Table 12.2 Description of Example 12.3 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .  . . . . . . . . . . . . . . . .  . . . . . . . . . . . . . . .  . . . . . . . . . . . . . . .  

To right | | Clockwise | Compress 
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Figure 12.10 Eddy currents induced when a magnet is fixed above a 
rotating conducting disk. (a) At high rotation rates, the induced currents 
predominantly expel the field of the magnet (lift, without drag). (b) At low 
rotation rates, the induced currents predominantly lead to drag (without lift). 

where eddy currents are induced, as in Figure 12.10. We now discuss the 
eddy currents and forces acting on the turntable, as a function of its rate of 
rotation. 

Figure 12.10(a) shows a rapidly rotating conductor. This corresponds to a 
situation like that of a perfect diamagnet, where the field is expelled and thus 
the dominant force on the magnet is lift. By pushing the magnet away from 
the turntable, this decreases the rate of change of magnetic flux seen by the 
turntable. This lift is called eddy current magnetic levitation (MAGLEV). The 
eddy currents correspond to an image magnet that repels the actual magnet. 
Figure 12.10(b) shows a slowly rotating conductor. Here there is relatively 
little flux expulsion. But there is another way to satisfy Lenz's law. At low 
velocities, the dominant force on the magnet is drag. This brings the magnet 
into rotation with the turntable, thereby decreasing the rate of change of 
magnetic flux seen by the turntable. The eddy currents correspond to image 
magnets that tend to drag the actual magnet into rotation. Both lift and drag 
forces occur, to a certain extent, at all rotation rates. In addition, there is 
a radial force: it is inward when the magnet is near the center (tending to 
minimize the rate of change of magnetic flux), and outward radial when the 
magnet is near the edge (tending to minimize the rate of change of magnetic 
flux). If we were to analyze this system in terms of primary and secondary, 
the magnet (or its equivalent current) would serve as the primary, and the 
turntable would serve as the secondary. 

These phenomena are closely related to those observed by Arago (see 
Section 12.2.2) with his compass needle above a rotating metal disk al- 
though Arago originally noticed only the equivalent of the drag effect; the 
two poles of his magnetic needle were dragged in opposite directions, leading 
to a torque that tended to bring the needle into rotation. They are also closely 
related to magnetic braking: the rotating disk corresponds to the wheel of a 
train, and the magnet to an electromagnet that is applied when braking is 
desired. 

Food for Thought: How would the eddy currents in Figure 12.10(a) be re- 
placed by a magnet or magnets within the material of the turntable? in Figure 
12.10(b)? 
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Figure 12.11 (a) A rectangular loop moves into the region of a uniform 
field B. (b) A realization of the situation in part (a), where a solenoid of 
square cross-section produces/3. 

~ Loop pulled through a/~ field 

This resembles the experiment of Figure 12.3. Consider a rectangular loop 
(the secondary) of resistance R, length a along x, and length l along y. It 
moves along +x with constant velocity ~ in a region of zero magnetic field, 
until it reaches a region of uniform field B that points into the paper (-~). 
Figure 12.11 (a) depicts the situation in two dimensions, and Figure 12.11 (b) 
depicts it in three dimensions. From Faraday's law, there will be an emf, and 
from the motion statement of Lenz's law, there will be an induced magnetic 
force leftward, opposing the motion. Assume that a rightward external force 
ensures that the velocity remains constant. Determine the response of the 
system: (a) on entering the field region; (b) on leaving the field region. 

Solution: (a) On entering the field region, the loop gains flux into the paper, so 
by Lenz's law the loop generates its own flux out of the paper. Thus the induced 
field is opposite the external field. By Amp~re's right-hand rule, the associated 
current and emf must be counterclockwise. The motion statement of Lenz's law 
says that the net force due to the induced current opposes the motion, and thus 
will be to the left. In addition, by the motion statement of Lenz's law, to oppose 
the increase in flux there must be a compressive force due to the induced current. 
Once completely within the region of field, the flux is constant, and there is no 
tendency to generate an emf. Table 12.3 summarizes the response of the loop. 
The directions are given as seen by the reader. 

(b) On leaving the region offield, the flux into the paper due to  Bext decreases, 
so by Lenz's law the loop generates its own flux into the paper. By Amp~re's law, 
the associated current and emfmust be clockwise. The motion statement of Lenz's 
law says that the net force due to the induced current will oppose the motion, 
and thus will be to the left. In addition, by the motion statement of Lenz's law, to 
oppose the decrease in flux there must be an expansion force due to the induced 
current. In this case, Bind is in the same direction as [~ext. 

Table 12.3 Description of Example 12.4 

........................................... . . . . . . . . . . . . . . . . . . .  . . . . . . . . . . . . . . . . . .      iiiiiiiiiiiiii ...................... ...................................................... ....... 
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Another way to look at Lenz's law is to use Faraday's idea that an emf is 
induced whenever a magnetic field line crosses the circuit. If a line of magnetic 
field leaves the circuit, then the induced emf drives a current that tends to replace 
the lost field line. Similarly, if a line of magnetic field enters the circuit, then the 
induced emf drives a current that tends to cancel the gained field line. 

We now turn from a qualitative to a quantitative discussion of Faraday's law. 

12.5 

12.5,1 

!2~5o2 

Faraday's Law--Quantitative 

To determine the forces due to induced currents, we need the currents, and for 
that we need the induced emf and Ohm's law. Faraday's law relates the induced 
emf of a circuit to the rate of change of magnetic flux through that circuit. 

Defining Electromagnetically Induced EMF 

We must first define what we mean by the emf 8 around a closed circuit, due to 
the electric field/~. This is the work per unit charge done by the electric force 
F e l  - qE, or 

E -  W lJPel.d~. = if - ~ = - - q / ~ . d s  ( 1 2 . 1 )  
q q q 

This may be rewritten as 

i : ~ 7: !i~ ~ :i �84 ~?i~ iil !iii:i!iii~!iii!ii~i!~ ii~ili~ ~i!i~!~iii!ii~!ii~i~ iii ~!iiiiiii~iii~ i!i 

8 ~F, .  d f  q~E. ~ds _= I'~, (induced emf equals electric circuhtion) 
d d 

which is precisely the circulation FE of the electric field. Note that ds = [dr[ > O, 
and $ points along the direction of dr. Thus the electromagnetically induced emf 
and the electric circulation are one and the same. 

Chapter 5, on electric potential, showed that the circulation FE = 0 for elec- 
tric fields due to static charges, so that static electric fields produce no emf for 
a circuit as a whole. However, they can produce an emf across part of a circuit, 
such as a resistor, as we show explicitly in Example 12.13. 

Defining Magnetic Flux ~8 

The total magnetic flux O B passing through a circuit is defined by 

Here d A -  IdAI > 0 is defined by the circuit itself, and fi is along the normal to 
the circuit. OB is measured in units ofWb = T-m 2, called the weber. The concept 
of magnetic field lines translates into magnetic flux, just as the concept of electric 
field lines translates into electric flux. 

Faraday's law relates g around a circuit to the time rate of change of the 
magnetic flux OB, defined in (12.3), that passes through the open area bounded 
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X 

d ~  B + 

k ~ Circuit ds and normal a 
related by circuit-normal 

ds right-hand rule 

(a) (b) 

Figure 12.12 (a) A square loop in a uniform field B that is inclined to the 
loop's normal ft. (b) A more general circuit, with the relation between a circuit 
element d~" and the circuit normal r 

by the circuit. Before stating Faraday's law, let us consider a simple example of 
how to use (12.3) to compute magnetic flux. 

(ample 12.: II Square loop in a B field 

Consider a square loop of area A -  25 x 10 - 4  m 2 in a uniform /3 field in 
the xz-plane, with [ B ] -  0.02 T. Let B make an angle of 60 ~ to the normal 
fi, which is along ~. See Figure 12.12(a). (This situation can be produced 
by putting the loop within a large solenoid, and tilting the axis of the loop 
relative to the solenoid by 60~ Find the flux ~B through the square loop. 

Solution: By (12.3), 

f / f *B = B . fidA= IBII~I cos60~ 1/31 ~ dA 

-.~ -+ 

IBI f dA = IBI 0_ 4 = 2 - ~ A =  2.5 x 1 Wb. 

On the other hand, if the loop has N - 200 turns in the same direction, then the 
total flux is larger by a factor of 200" C B = 0.05 Wb. 

-xamp 

12.5o3 Quantitative Statement of Faraday's Law 

Faraday's law relates the emf, or electric circulation around a closed path defined 
by a set of line elements d~', to the rate of change of the magnetic flux through 
the area associated with this path, defined by a set of area elements dA - ~dA. 
The same circuit-normal right-hand rule is used as in Amp~re's law: when ds 
circulates clockwise (counterclockwise), the direction of ~ is into (out of) the 
paper. See Figure 12.12(b). With this convention, Faraday's law is 

ii~iii~ ~iili i~! ~ ~iiiiiiiiiiii!i!ii!iiiiiiiii!iiiiiiiiiiii!iiiiiiii!iii!iiiii iiiiiiiiiiiiiii!ii!ii!ii!iiiiiiiiiiiiiiiiii!iiiiiiiiiii! !iiJ!ii iilii iil iiiiiii!iii! i ii iiii iiiii!ill ii!iiiiiiii iiiiii iill i i!i !ilil ii ii i ii 

ii ! !iiii!iiiiiiiiiii{   !ii ii!iiiii! i i ! 

In this chapter, we will often apply (12.4) to circuits that correspond to real 
physical circuits made of conducting wire, but (12.4) applies to all circuits, and 
thus applies to eddy currents, as in Figure 12.8(b). 
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From (12.4), there are three independent  ways to change a flux: (1) change 
the field, (2) change the area though which the field passes, and (3) change the 
angle between the field and the area. Of  course, any combination of these three 
also can change the flux. 

Faraday's law gives an induced magnetic field that  satisfies Lenz's law. From 
- .  - +  

Chapter  7, for an ohmic material the current density J -  ~E,  where ~ is 
the conductivity. Integration around the current path yields ~ J - d ~ ' - e r  J E-  
d~" r O. Hence, for a uniform system, if the electric field has a circulation, so 
does the current. Typically, this is true even if the system is not uniform. The 
electric, field may be thought  of as having a part that  is electrostatic, denoted by 
Eas, and an electromagnetically induced part, called Eind. Only Eind has nonzero 
circulation, and on ly  the E ind can cause current to be driven around a.circuit. 
However, since E ind usually is not uniform around a circuit, usually both E~na and 
E es are needed to drive a uniform current around a circuit. That  means charge 
must  rearrange to produce a nonzero E es. 

• Square in B field of solenoid loop time-varying 

In Example 12.5, the square loop of Figure 12.12(a) is the secondary, and the 
primary may be taken to be a solenoid (not shown) that encloses the square 
loop. Let the field of the primary increase at the rate ]dB/dt] = 500 T/s, 
so the flux increases. (a) Discuss the induced current, forces, and torques. 
(b) Find the magnitude of the induced emf. 

Solution: (a) To oppose the increasing field in Figure 12.12(a), by Lenz's law the 
induced current is clockwise as seen looking down from the z-axis. By Chapter 1 O, 
because the field is uniform, there is no net force on the loop, even when it carries 
a current. However, because the flux through the square loop is increasing, the 
motion statement of Lenz's law states that to oppose the change in flux there 
must be a compressive force on the loop due to the induced current. In addition, 
the motion statement of Lenz's law says that there will be a torque on the loop, 
tending to rotate it so that it picks up less flux. From the direction of the induced 
current, by Ampere's equivalence the magnetic moment/~ points opposite to ~, 
and this leads to a torque that rotates h toward -5c. (b) For a single turn, with 
Wb/s = V, 

daPB f f = - ~ .  hdA  = -~- I~1 cos 60~ 

= -dT- -2 d A =  -dt- ~ A - 0 . 6 2 5 V .  

Together, 200 turns in the same direction would pick up an induced emf of 200 
times 0.625 V, or 125 V. Table 12.4 summarizes our qualitative conclusions. 

Table 12.4 Description of Example 12.6 

Below loop | | Counterclockwise None h toward -)~ Compress 
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Figure 12.13 (a) The same situation as in Figure 12.11, but 
in more detail. (b) The circuit-normal relation for part (a). 

E • • •  Rectangular loop pulled through a field 

The previous example considered a situation where the flux change is due to a 
time variation of the field. Here we consider a situation where the field is con- 
stant in time, but  the flux changes because the circuit moves into the region 
of the field so that the area in the field changes. Thus, as in Figure 12.13(a), 
consider a rectangular loop (our secondary) of resistance R, length a along x, 
and length l along y. It moves along +x  with constant velocity v in a region 
of zero magnetic field, until it reaches a region of uniform field B that points 
into the paper (-~).  See Figure 12.13(a). To be specific, take B = 0.005 T, 
v = 2 m/s, l = 0.1 m, and R = 0.1 82. (If the loop simply were thrown into 
the field, by Lenz's law the loop would slow down, so a force is needed to 
keep the loop moving at a constant velocity.) Find (a) the magnetic flux, 
(b) the emf, (c) the magnetic force on the loop, and (d) the power needed to 
pull the loop at a constant velocity. 

Solution: To find the magnetic force, we must solve simultaneously for both the 
current and the velocity. (a) Take d A -  ~dA out of the paper (so d~" circulates 
counterclockwise, to be consistent with the motional emf analysis shown earlier), 
as in Figure 12.13(b). Then 

*B- f f3. dA- f f3.SdA=-B f dA=-BA=-Blx (12.5) 

as the loop enters the field region. (b) Let v = dx/dt.  Because of the motion, the 
rate of change of the flux is given by 

d~B 
dt = -Blv ,  (12.6) 

where v = dx/dt. This leads to an emf 

d~B 
s = dt = Blv (12.7) 

that circulates along d~: counterclockwise, in agreement with the qualitative anal- 
ysis of Example 12.4. There is a similar analysis as the loop leaves the field. While 
in the field the flux remains at the constant value Bla, so there is no induced emf. 

For our values of B, l, and v, (12.7) gives s = (.005 T)(0.1 m)(2 m / s ) =  
1.0 x 10 .3 V. Taking (12.7) to be the only emf that acts, this causes a current 

s Blv 
I -  R -  R " (12.8) 

For R = 0.1 fl, (12.8) gives I = 1.0 x 10 -3 V/0.1 fl = 0.01 A. (c) The associated 



524 Chapter 12 ~ Faraday's Law of Electromagnetic Induction 

magnetic force F on the right arm is obtained from 

" f " 
F - I d# x B. (12.9) 

(Recall that I is the induced current and/] is the applied field.) From (12.9), i ~ 
points to the left, and from (12.9) and (12.7), it has magnitude 

F - IIB = v(Bl)~2. (12.10) 
R 

For our case, F = (.01 A)(.1 m)(.O06 T) = 6.0 x 10 -6 N. (d) To make the loop 
move at constant velocity v, an external force (e.g., from our hand) of magnitude 
F must be applied in the opposite direction. Using (12.10), this external force 
provides power 

(vBl)2 (/R)2 - I2R. (12.11) 7 ~ -  F v =  = - 

R R 
This is precisely equal to the rate of Joule heating. For our case, 7 ~ = 
(.01 A)2(0.1 f2) - 1.0 x 10 -5 W. Thus, all the power provided by the hand (Fv) 
goes into heating (/2 R) of the wire. This generation of electric current by me- 
chanical energy means that the loop is an electrical generator. Finally, note that 
there are also equal and opposite forces on the upper and lower arms, which tend 
to compress the loop, in agreement with the Lenz's law analysis of Example 12.4. 
See Figure 12.13(a). 

12,6 Mutual Inductance 

Since, by the Biot-Savart law,/~ is proportional to the current Ie in the primary, 
so is OB. Hence it is convenient to write, for the flux through the secondary, 

013 - M I p ,  (flux through secondary, current from p ~ m a ~  

where the proportionality constant M is called the mutual  inductance (mutual 
because one circuit affects the other). (Context will determine whether  M 
refers to mutual  inductance or magnetization.) Inductance is given in units of 
W b / A  = V-s/A = H, called the henry, in honor of Joseph Henry. 

Using (12.12), we can calculate M in a number  of important  cases. The 
mutual  inductance is important  because it can be used to calculate the induced 
emf. Specifically, using (12.12), Equation (12.4) yields for the induced emf 

S = d~13 M d l e  
d t  d t  " 

!! ~!:/i~! �84 / i  i:iii /!ili!~iiiiii~iii:~!iiii~ i!iiiii!i!i ii!iiiii !! ili!~i :~ ili iiiiiil ii!!i! 

(induced emf  via mutual  m d u ~ a n c e ) ~ i } i ~ 3 )  

Note that the mutual  inductance between the primary and the secondary (the 
flux in the secondary, per current in the primary) is the same as between the 
secondary and the primary (the flux in the primary, per current in the secondary). 
M can be of either sign, according to the relative position of the primary and the 
secondary. If M is positive when two identical coils are one on top of another, 
then M is negative when they are side by side. This is because when they are one 
on top of another a clockwise current for the primary makes in the secondary a 
field that is into the page, but  when they are side by side the primary makes in 
the secondary a field that  is out of the page. 
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Figure 12.14 (a) A rectangular loop within a circular 
solenoid. (b) Geometry of the rectangular loop. 

• Loopwithin solenoid a 

Consider a rectangular loop within a solenoid, the loop axis aligned with the 
axis of the solenoid. Let the loop have N turns, area Aloop, and let the solenoid 
have n turns per unit length and carry electric current Ip. See Figure 12.14(a). 
(The final results do not depend either on the shape of the loop or on the 
cross-section of the solenoid, so long as the solenoid completely encloses 
the loop.) (a) Find the mutual inductance M in algebraic form; (b) evaluate 
M for N = 200, n - 6 x 10S/m, and Aloop = 4 x 10 - 4  m2; (c) evaluate the 
induced emf for d l e / d t  - 500 A/s; (d) discuss the direction of the emf and 
the induced forces on the loop. 

Solution: (a) Figure 12.14(b) gives our ds and d,5, = ~ d A  conventions, following 
the circuit-normal right-hand rule. Since the field is uniform within the solenoid, 
and the normal fi to the loop is along the field/], by (12.3) the flux ~B is simply 
BAloop. By (11.40), the solenoid field is B - 4rrkmnle.  Each ofthe N turns picks 
up this flux, so by (12.12) 

M = N ~ B  _ _ NBAloop N(4rrkm)nleAtoop 
= = 4zckmnNAloop. (12.14) 

Ie Ie Ie 

(b) Using N -  200, n - 6 x 10S/m, and Azoop = 4 x 10 -4 m 2, (12.14) gives M -  
0.060 H. (c) If d i e / d t  - 500 A/s (corresponding to an increasing field), then by 
(12.4) and (12.12), the emf has magnitude M d l e / d t  = 30 V. (d) Since the field 
is increasing into the page, the induced field is out of the page, necessitating (by 
Ampere's right-hand rule) a counterclockwise-induced current in the rectangular 
loop. Because the field is uniform, there is no net force on the loop, but there is 
a compressive force, by the motion statement of Lenz's law. 

Food for Thought: How would the mutual  inductance of Example 12.8 
change if the axis of the loop were at an angle 0 to the axis of the solenoid? 

Food for Thought: Qualitatively describe the induced current and the torque, 
if the loop were rotated about the x-axis, so that  the area exposed to the field 
were to decrease. The rotation can be described using a nonzero value of 0. 

If the loop were partly in and partly out of the solenoid, only the part of the 
coil area in the solenoid would contribute to (12.14). Since n varies inversely 
with length and Aloop varies as length squared, M is proportional to length. Like 
capacitances, inductances scale linearly with the length. Note that  the larger the 
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number  of turns in the solenoid (making a larger field) or the coil (making a 
larger effective area), the larger the M. 

~ Mutual Faraday's electromagnet inductance in 
experiment 

Figure 12.4 presents Faraday's electromagnet. The iron toroid has thickness d 
and diameter D >> d. The primary coil (P) has n e turns per unit length, and 
the secondary coil (S) has Ns turns. Each covers about half of the iron toroid. 
Find the mutual inductance M between primary and secondary. 

Solution: From (9.23) or (11.51), the solenoid produces a field within the core 
that is larger than 4rckmnp Ie by a factor of (1 + x), where the magnetic suscep- 
tibility x is a measure of the Amperian current of the iron core relative to the 
current of the solenoid. Thus, instead of B = 4zrkmne Ip, we have 

Bcore = 4zrkm(1 + x)nele ,  (12.15) 

where X "~ 5000 for soft iron. (This enhancement may be thought of as due to 
Amperian currents circulating around the iron.) Because the iron nearly com- 
pletely holds the flux, it doesn't matter how the turns of wire are distributed: 
only the number of turns and the perimeter zr D of the toroid matter. Wrapping 
the wire ofthe primary around halfthe iron toroid hence gives np = Ne/zr D. The 
secondary (S) has area As = zrd2/4 and Ns turns. Thus the mutual inductance is 
obtained by modifying (12.14), replacing N by Ns, n by np = Ne/zrD, Aloop by 
As, and multiplying by (1 + X). Hence 

d 2 
M =  4zrkmnpNsAs(1 + X) = 4zrkm(l + x)NsNp 4D" (12.16) 

Since M varies as d2/D, for fixed numbers of turns, M doubles if all length scales 
double (i.e., d and D double); as noted above, like capacitance, inductance scales 
linearly with length. 

Faraday's description permits an estimate of many of the parameters of his 
electromagnet. The primary consisted of about 72 feet of copper wire wrapped 
around an iron bar with d = 7/8 inches that  had been welded into a ring 
with D =  6 inches, so it had about Np .~ [(72)(12)/zr(0.875)] ~ 314 turns. 
The secondary consisted of about 60 feet of copper wire, so it had about 
Ns ~. [(60)(12)/Jr(0.875)]  ~ 251 turns. Inserting the parameters of Faraday's 

If the magnetism of soft magnets were due to magnetic poles, then, because for the 
toroidal geometry there are no magnetic poles, B would be due only to /3so/of the 
solenoid. Then the factor of 1 + x in (12.16) would be replaced by 1. However, exper- 
iments support the factor of 1 + x. This indicates that the magnetism of soft magnets 
is due to microscopic Amperian currents rather than magnetic poles. Indeed, the op- 
eration of every iron core electrical transformer, throughout the world, is testimony 
that B (due to currents, both macroscopic and microscopic), rather than #0H (due to 
macroscopic currents and microscopic magnetic poles), applies in Faraday's law. 
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circuit into (12.16) gives M = 0.401 H. If d l p / d t -  100 A/s, the  emf  would  
have been, by (12.13), of magni tude  40.1 V. 

Note.  Even if we cannot  compu te  M, we may  be able to measure  it. If Es = 
12 V, and d l p / d t  = 200 A/s, then  (12.16) gives IMI - 0.06 H. 

~ Rectangular loop and a long wire 

Consider a long wire and a rectangular loop of sides a and b, with side a 
parallel to the long wire. See Figure 12.15. They are separated by a dis- 
tance s. (a) Find their mutual inductance M in algebraic form. (b) Evaluate 
M for a = 0.02 m, b = 0.04 m, s = 0.04 m. (c) Evaluate M for 200 turns. 
(d) Evaluate M with a soft iron core and 200 turns. 

Solution: (a) M can be obtained either from the flux due to the long wire acting 
on the loop or from the flux on the long wire (considered to be part of a circuit 
that connects at infinity) due to the loop. It is much easier to calculate the first. 
We use _(12.12) with Bwire  = 2kmI/r, taking the circuit normal ~ into the paper, 
so that B and fi are collinear. With dA = drdz, (12.12) yields 

j l  -~ 1 f s§ foa2km I M - - j 1  op B w i r e  " fidA = -[ ~ s dr r dz 

f s+b dr 
= 2kma - -  = 2kma In 

~ s  ~" 

s + b  
(12.17) 

(b) For the stated values of a, b, and s, (12.17) yields M = 2.89 nil. (c) A 
rectangular loop of N turns has a mutual inductance N times larger than 

Figure 12.15 A long 
current-carrying wire and a 
rectangular loop. 

given by (12.17). For N =  200 turns, the 
mutual inductance M becomes (200)(2.89 
nil) = 577 nil. This is still rather small. (d) 
Including a soft iron core causes M to be mul- 
tiplied by a factor of (1 + x), as in (12.16), 
where for soft iron x ~ 5000. Thus, with soft 
iron core and N = 200 turns of wire, M be- 
comes (5000)(200)(2.89 nH)=2 .89  mH, a 
significant value. This enhancement of the 
mutual inductance explains the presence of 
soft iron in many electrical devices. 

• Loop pulled through a field, time-varying g via 
mutual inductance 

Again consider the rectangular loop moving with constant velocity into the 
region of a uniform magnetic field B, as in Figure 12.13. Find the emf by 
thinking of Faraday's law in terms of a changing mutual  inductance M. 

Solution: As the loop enters the field, with dA = hdA pointing out of the paper, 
as before, we have 

B B 
~3 - - B A =  - B l x  = - - [ l x I  = MI, M - - - [ I x ,  (12.18) 

where B/I  is some constant, independent of the current. (For example, if B were 
due to a solenoid of n turns per unit length, so B = 4rrkmnI, we would have 
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B / I  - 4Jrkmn.) From (12.4) and (12.18), 

E =  dC)B I - - = - I  - l = B l v ,  ( ]2 ]9) 
dt - dt -d-f " 

in agreement with (12.7). This approach, using a time-varying mutual inductance 
M, is sometimes taken by mechanical engineers. Note that M is negative in this 
case, due to our opposite sign conventions for positive currents in the loop and 
in the solenoid. For dA = itdA pointing into the page, M would be positive. 

12.7 Motional  EMF 

In Chapter 1 O, the total force on a charge q moving with velocity ~ in a magnetic 
field B and an electric field/~ was shown to be 

F - q(E + ~ x B), (12.20) 

known as the Lorentz force. It was assumed that E was due to static 
charges, where f E - d s  as shown in Chapter 5. In Section 10.7, we in- 
terpreted ~ x B as a motional electric field: 

/~mot = ~ • B. (motional electric ......... 

Equation (12.20), and the interpretation in ( 12.21), of a motional electric field, 
were not known until some 60 years after the discovery of Faraday's law. This 

. _ }  

section shows how E mot leads to an emf and provides an alternative approach to 
some problems solved_ previously using Faraday's law. 

Integrating q(E + ~ • B) �9 d f  around a loop yields the work W done on q. If 
/~ is purely electrostatic, then the term in/~ gives zero. Dividing the work by q 
yields the emf 

co = W = f ff, mo t .ds - -  J 6  x B d g ' .  (motional e m f ) ~ i } i ~ 2 ]  
q 

Maxwell notes that the equivalence of (12.22) and (12.4) was shown experimentally 
by Felici in 1851, using in the secondary a ballistic galvanometer, which has a slow 
response to current. Felici started with the primary current off, and the secondary 
in a position and orientation where the galvanometer did not respond (even after 
waiting) when the primary current was turned on; this corresponds to M = O. For this 
configuration, he (1) turned on the current, (2) moved the secondary along an arbitrary 
path to its final position and orientation, and (3) turned off the primary. Because of 
its slow response time, the galvanometer could not respond during any relatively fast 
sequence of operations. However, for this particular sequence, it did not respond at all, 
even after a wait. This indicated that the time integral of the induced emf from this 
sequence was zero. Since there was no emf for part (1), and there was no net emf 
for the entire sequence, the motional emf of part (2) was completely canceled by the 
turn-off emf of part (3); hence, the motional emf of (12.22)is equivalent to the emf of 
(12.4) obtained by turning on the primary. 
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By the above equivalence, when applied to actual situations where there is mo- 
tion, (12.22) yields precisely the same results as does (12.4). 

• Loop ~ field, via motional EMF pulled through a 

As in Example 12.7, consider the rectangular loop pulled at a constant velocity 
v by a force Fhand into the region of a uniform magnetic field/3 (Figure 12.13). 
For the part of the loop in the field, there is a motional electric field Emot = 

x/~. It is of magnitude v B and it points along +3). Find the emf for this 
loop using the motional emf approach. Discuss energy conservation. 

Solution: We analyze this in pieces. 

1. When only the right arm is in the field, this motional electric field drives 
current counterclockwise, in agreement with our Lenz's law analysis. The 
emf for the right arm is, by (12.22), with ds circulating counterclockwise, 

l 

g - Jo vBS:. 5:dy = vBl.  (12.23) 

Note that for the upper and lower arms, ~ x B is normal to ds so these arms 
do not contribute to (12.22). (For these arms, ~ x/~ produces a Hall voltage, 
but that is not relevant to the present considerations.) Of course, fix B is zero 
for the left arm, which is not in the field. 

2. When the loop is completely within the field, motional electric fields act on 
each of the right and left arms~along +3? in both cases. These will produce 
canceling emfs, since ds changes direction on going from the right to the left 
a r m .  

3. When the right arm of the loop leaves the field, a motional electric field acts 
on the left arm, of magnitude v B and pointing along +3?- It drives current 
clockwise, in agreement with our Lenz's law analysis. The associated emf is 
vBl.  There is a force on the left arm, of magnitude given by (12.10), pointing 
to the left. Equal and opposite forces act on the upper and lower arms, tending 
to expand the loop, again in agreement with the Lenz's law analysis. 

4. When only the right arm is in the field, the external force provides power 
(II B)v - 12 R to increase the kinetic energy, and the (ponderomotive) force 
I/* x/3 of the magnetic field absorbs equal and opposite power to decrease the 
kinetic energy. On the other hand, the electromotive force provides power 
( vB l ) I  = 12 R to drive current around the circuit, whereas the resistor absorbs 
all this I2R energy. Hence, the power absorbed by the ponderomotive force 
equals the power generated by the electromotive force. This is an example of 
how, in a magnetic field that does not vary in time, the net work done by the 
magnetic field is zero. 

~ Voltage profile around a circuit 

See Figure 12.16(a). Let B = 0.005 T, l = 0.1 m, v = 2 m/s,  and R = O. 1 S2, 
as in Example 12.7. In addition, let the left and right arms have resistance 
Rl = Rr = 0.015 S2. Take the loop to be of uniform cross-section and 
conductivity. Denote by/~ es the electrostatic field. (a) Find the voltage profile 
around the circuit due to/~ es. (b) Find/~ es in each arm of the circuit. 
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Figure 12.16 (a) The circuit of Figure 12.11(a) and 
Figure 12.13(a). (b) Voltage across this circuit. 

Solut ion: (a) For the left arm of the loop in Figure 12.16(a), E mot = O, and 
for the top and bottom arms the component of Emot along the circuit is zero. 
However, for the right arm ]Emot] = vB = 0.01 V/m, tending to drive current 
counterclockwise. By (12.23), this gives a motional emf for the right arm, and an 
emf for the circuit as a whole, of Blv,  driving current counterclockwise. Ohm's law 
for the circuit as a whole then gives a counterclockwise current I = B l v / R ,  as in 
Example 12.7, a n d a g a i n B l v -  1.0 x 10-3 V a n d / -  B l v / R - O . O 1 A .  N o w c o n -  
sider the voltages. The emf for the left arm, taken directly from C to F, can only be 
due to a voltage difference, associated with an electrostatic electric field/~as in that 
arm. Hence, by Ohm's law, Vc - Ve = I Rt - O. 15 x 10 -3 V. Indeed, for the en- 
tire counterclockwise path D-C-F-E, of resistance R - Rr, the only emf is due to a 
voltage difference. Hence, by Ohm's law, VD - Ve = I ( R  - Rr) = 0.85 x 10 -3 Y. 
These values set the scale in Figure 12.16(b), which shows the voltage pro- 
file (e.g., due to electric charge) relative to F if there were a set of many 
leads around the circuit. Compare (and contrast) Figure 12.16(b) to Figure 
7.20(b), where the emf is chemical in nature, and the voltage increase across 
the voltaic cell is not continuous, but (on a scale large compared to atoms) con- 
sists of two jumps, one at each electrode. (b) For the left arm of the circuit, 
IE, es] -- ( V c -  VF)/I  -- 0.0015 Y/m. Because the wire is uniform, for the entire 
path D-C-F-E, including the left arm, I E, esl -- 0.0015 V/m. For the direct path 
D-E, IEesl = (VD -- VE)/ l  -- 0.0085 V/m, opposing Emot, ofmagnitude 0.01V/m. 
The slopes of the voltage profile in Figure 12.16(b) reflect these values of IE, esl. 
In all parts o f  the circuit, in the direction of current flow the component of the 
total field, E - Emot + Ees, has magnitude 0.0015 V/m. 

~ Faraday's disk dynamo 

Faraday's disk dynamo (a generator of electricity), shown in Figure 12.17, 
is particularly easily analyzed from the motional emf viewpoint. It is a 
conducting disk of radius a that rotates about its axis at a rate a) in a collinear 

Figure 12.17 Faraday's disk dynamo. By 
experimentation, Faraday found a 
configuration of contacts that gave an 
induced current. 



12.7 Motional EMF 531 

magnetic field/3. Conducting brushes make contact with the circuit at the 
disk center and at the disk perimeter. Find the emf for Faraday's disk dynamo. 

Solution: Let both/~ and the vector angular velocity g) point to the right. Then a 
point at r from the axis, with velocity ~, has v = ~or, where v - I~l and ~o = I~ �9 
Emot - v •  of (12.21) has magnitude vB and points radially outward. (Hence 
the current I in Figure 12.17 is radially outward.) With d~" = ~'dr, the motional 
emf from axis to perimeter is given by 

f f (vB~'). (~dr)-  fo a ~o a g- -  Emot " d~-  v B d r -  o)rBdr= lcoBa2. (12.24) 

Although this calculation is for a radial path, (12.24) holds for any path from axis 
to perimeter. 

)ptiona~ 

Analyzing Example 12.14 theoretically from the flux change viewpoint is 
not so straightforward. This is mirrored in the fact that, experimentally, Faraday 
tried many different sets of contact points (both fixed and moving) before he 
found one that would give an emf. For B - 0.005 T, ~o - 600 s -~, and a - 2 cm, 
(12.24) gives g - 0.0012 V. This is small but  measureable. (The resistance Rdisk 
can be measured between the contact points in the absence of rotation but  
with a battery to drive the current.) Since I - g / ( R  + Rdisk), where R is the 
resistance of the rest of the circuit, the voltage between the contact points will 
be IRd~,k -- gRd~sk/(R + Rd~sk). For rotation rates high enough that the local drift 
velocity vd of the electrons producing the current is less than the local velocity 

- ~ x ~ of a point ~ on the rotating disk, the current flow pattern becomes 
complex, and Rdisk increases. 

In Faraday's original experiment, the magnetic field acted over only a small 
portion of the disk near the edge. Thus, it was merely a rotated version of the 
case of a magnet above a rotating turntable, as in Figure 12.16. This example is 
important because it shows the possibility of using electromagnetic induction to 
generate constant current. 

• Monopole moving conducting loop toward 

Let us model the situation of Figure 12.8(a) by simplifying the magnet. 
Consider only its north pole, a monopole qm moving toward the loop. See 
Figure 12.18(a). From (9.11), a magnet of magnetization M and area A has 
qm = MA at each pole. (a) Using the motional emf approach, analyze the emf 
ofthis circuit. (b) For qm = 10 A-m, a = 4 cm, v = 5 m/s, and x = 0, evaluate 
the emf; repeat for a coil of 100 turns. (c) For R = 0.1 f2, find the current in 
the loop and the force on the loop. 

Solution: (a) Rather than consider the monopole to move at velocity ~, and the 
circuit to be at rest, for the motional emf approach we consider the monopole to 
be at rest and the circuit to move with velocity Vloop~- -v.  See Figure 12.18(b), 
where the loop moves in the -)~ direction. The field B of the monopole points ra- 
dially outward from the monopole, at an angle 0 to ~, with ]B] - kmqm/r 2. Hence 
E mot -- Vloop X B points tangentially in a clockwise direction as seen by an observer 
to the right (in agreement with our analysis of Figure 12.8(a)), and has magnitude 

dx  kmqm . a 
I Eloop I - I~loop I I/~ I I sin 0 I - d--t r - -T -  sm 0, sin 0 = -'r r - v/a 2 + x 2. 

(12.25) 
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0 / Observer z , j~__~e~er 
qm " 

(a) (b) 

Figure 12.18 Motion of a magnetic pole (representing the N pole of a 
magnet, as in Figure 1 2.8) toward a conducting loop. (b) The same 
situation as seen from the point of view of the magnetic pole, with the 
conducting loop moving toward the pole. 

Integrating around the loop with ds clockwise gives 

IEI - 
- 2zrkmqma 2 dx 

- (2Jra)lEl~176 = (a 2 + x2) 3/2 d--t-" (12.26) 

(b) For a given dx/dt ,  (12.26) is a max imum when x = O. For dx /d t  = - 5  m/s, 
x - -O ,  qm = 10 A-m, and a - - 4  cm, (12.26) gives C - 7.85 x 1 0  - 4  Y. This is 
small but  measurable. It can be enhanced by multiple turns N of wire; for N = 
100, C -  0.0785 V. (c) For R = 0.1 ~2 and C = 0.0785 V, I = E/R  gives I = 
0.785 A. From (10.29), the force on a loop of N turns in the flaring magnetic 
field of the pole is 

a 
F = NI(2zra)BsinO, sin0 - ~ .  (12.27) 

x/a 2 + x 2 

For N -  100, I = 0.785 A, qm - -  10 A-m, a = 4 cm, and x = O, B = k m q m / a  2 = 

1.125 x 10 -4 T and sin 0 - 1, so F = 0.111 N. This is to the right, repelling the 
loop from the increasing magnetic field of the magnet. Correspondingly, there 
must  be a repulsive force on the magnet. 

A monopole falling toward a loop is related to a long thin magnet moving down 
the center of a conducting tube (e.g., of copper). We can think of the magnet as 
having two point poles, and the copper tube as being a superposition of many 
thin independent slices of copper, each of which is like a 90 ~ clockwise version 
of the loop in Figure 12.18. If the magnet is much longer than the inner radius 
of the tube, the poles act independently. If the force on one pole due to the 
induced current can be obtained for one slice, as in (12.27), then an integration 
over the force due to all the thin slices gives the total force on that pole. The 
total force on the magnet is twice the force on one pole. If the magnet is not 

much longer than the inner radius of the tube, then the calculation becomes 
more complicated because the effects of the two poles are not independent. 
Despite that complication, nothing is different in principle. 
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What follows is a historical incident that motivates the remainder of the chapter. 

12~ Michael Faraday Meets Mr. Jenkin 

By 1830, Henry had built powerful electromagnets that could lift up to 
650 pounds. By 1832, with a 100-pound electromagnet, he could lift 3500 
pounds. That same year, when turning off the power to his magnet, he discov- 
ered what we would call self-induction. However, we will pursue the somewhat 
later discovery of self-induction by Faraday because it is such a good story. 

Faraday began his investigation into self-induction in 1834, three years after 
he had already studied mutual induction. At that time a young man named 
Mr. Jenkin related to Faraday some electrical experiments in which Jenkin had felt 
a shock upon disconnecting, with his hands, a battery of voltaic ceils connected 
to an electromagnet. See Figure 12.19. (Faraday wrote that this was the only time 
he had been led into a fruitful scientific direction by an amateur.) Mr. Jenkin was 
shocked because the large current that had been passing through the relatively 
low resistance wire now was passing through him. This can be interpreted in 
terms of a large induced emf. There was no such induced emf on making the 
connection. 

Suppose that the battery provided Co = 10 V, the electromagnet wire had 
resistance Rw - 10 fa, and Mr. Jenkin had resistance Rj - 10 s fa. Then when 
connected a current Iw = E/Rw = 1 A flowed through the electromagnet, and 
the much smaller current Ij = E/Rj = 10 -4 A flowed through Mr. Jenkin. When 
he disconnected the battery, the 1 A current through the electromagnet then 
passed through him. The voltage difference across him was now Iw Rj  - 10 s V 1. 
An equal voltage had to develop across the electromagnet, by the uniqueness of 
the voltage. How could such a large voltage develop across the electromagnet 
without making the current even bigger? In Section 12.9, we will show that the 
electromagnet provides a self-induced emf that opposes this large voltage. 

Faraday began to investigate this phenomenon. He showed that a given length 
of wire, when coiled up, produces a larger shock on breaking the circuit than 
when it is not coiled up. He also showed that shorter wires give much less of an 

Figure 12.19 The experiment of Mr. Jenkin (represented by Rj), where with 
his hands he connected and disconnected an electromagnet (represented by 
Rw and the "electromagnetic inertia," or inductance, L). 
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The iron core in Figure 12.19 is represented in the circuit on the right as a set of parallel 
lines. This is because a set of parallel rods magnetizes just as effectively as a single large 
rod, but the eddy currents (which circulate around the rod axes) are much less for a set 
of parallel rods, and thus less energy is wasted in Joule heating. This principle will be 
discussed again in Chapter 13. 

effect than longer wires. Thus, in some sense the coils and the longer wires have 
a greater tendency to maintain the current flow. The quantitative measure of this 
"electromagnetic inertia," as it was later called by Maxwell, is the self-inductance 
L. We may consider the electromagnet to be a solenoid with a soft iron core. In 
Section 12.10, we show that adding turns to the coil and filling it with soft iron 
increases L, just as Example 12.9 shows that these additions increase M. 

The value I Rj = 105 V of the induced emf is independent of the value 
of L. The emf soon dies down, but the larger the electromagnet~and the 
larger the L ~ t h e  slower the decay~and  thus the longer-lasting the shock. In 
Section 12.11, we consider what happens when the battery is turned on and off. 
The characteristic decay time for a circuit with resistance R and self-inductance 
L is r = L/R. We will show how this time relates to Mr. Jenkin's shock on 
disconnecting the electromagnet. This shock-producing phenomenon is used in 
automobile ignition systems. 

Related to Mr. Jenkin's shock is what happens when a switch is thrown to 
shut off a large current. For a large self-inductance in the circuit, a very large 
but temporary current arc may develop in the gap across the switchblades. Even 
when house lighting is turned off, arcing can occur. 

12o9 Mutual Inductance and Self-Inductance 

Mutual inductance has been introduced in the context of the electromagnet. 
We now present a more general discussion of inductance, where a circuit has 

Observer 

Primary (1) Secondary (2) 

_I 12 

~Near  ~Near  

Figure 12.20 The geometry of a primary 
and a secondary. 

both mutual inductance and self- 
inductance. Often a circuit is iso- 
lated, in which case it has only self- 
inductance. At the end of the section, 
we show how self-inductance explains 
Mr. Jenkin's shock. (These coefficients 
of inductance are to current as the coef- 
ficients of potential~see Section 6 . 8 ~  
are to charge.) 

Let us consider two circuits 1 and 2. 
See Figure 12.20. Faraday's law states 
that the emf in circuit 1 is given by 

E1 -- 
d t  ' 

(12.28) 
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where, by (12.3), the total magnetic flux through circuit 1 is given by 

�9 .dfll +f~2.d;~. (12.29) 

- +  

Here B1 is produced by circuit 1, so by the Biot-Savart law it is proportional to 
11. Similarly,/]2 is produced by circuit 2, and it is proportional to 12. Thus we 
may rewrite (12.29) as 

�9 (B 1) - L~ I1 + M1212, (12.30) 

where L1 and M12 are geometrically determined quantities, independent of cur- 
rent, and are defined by 

f l  B I" dA1 f l  B2 " dfll 
- -  , M 1 2  = . ( 1 2 . 3 1 )  L1 = I1 12 ' 

We call L1 the self-inductance of circuit 1, and M12 the mutual inductance 
between circuits 1 and 2. Similar equations hold for L2 and M21. Note that 

M12 -- M21, (12.32) 

a result whose proof is assigned as a problem. 
Combining (12.28) and (12.30) we obtain, for fixed circuits (so that the 

inductances don't change), 

i iii i iii~iiiii iii i~ i i i i  i~iii~l~ iiiiiiiJ~iii~ ~i il i!iii! ili iilil iiilii iiiii il iliil 

ii ii i i i jiili ii!!il ii iilUi  ai igg aa{iag ilga  aii  i aa aa{iag i i {i ii  i 
ii i{ {i if{ i 

Similarly, 

d~ (2) dI2 dI~ B 
g 2 -  dt = - L 2  d t  M21 d--t-" (12.34) 

(For a loop pulled through a field, as shown by Example 12.11, the mutual 
inductance does change.) It is usually impractical to compute the inductances 
for arbitrary circuits (just as it is often difficult to compute the capacitances for 
arbitrary conductors). However, they can be measured. Thus, by measuring 11 
and 12 as a function of time, as well as the emf's, it is possible to determine the 
quantities L 1, L2, M12, and M21. 

For an ideal battery, with negligible resistance, the chemical emf and the 
terminal voltage are equal in magnitude and tend to drive current in opposite 
directions. Similarly, for an ideal inductor, the self-induced emf and the terminal 
voltage are equal in magnitude and tend to drive current in opposite directions. 
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For Mr. Jenkins, the self-induced emf provided the emf and voltage needed to 
keep the current going in the electromagnet. 

It follows from either (12.33) or (12.34) that, for a circuit in isolation, with 
self-inductance L but  no mutual inductance, 

..... d I 
& . . . .  

If the value of a self-inductance (or a mutual  inductance) is needed, it is often 
preferable to measure it rather than calculate it. 

• Measuring self-inductance 

A 6 V emf is suddenly switched into a circuit with an inductor and a resistor 
in series. Just after the switch is thrown, and before there is any time for 
the current to build up, the current changes at the rate 1200 A/s. (a) Find 
the self-inductance. (b) Find the emf that would cause the initial current to 
change at the rate 400 A/s. 

Solution: (a) By (12.35), and neglecting signs (since L > 0) we have L -  6/ 
1200= 5 mH. (b) Again by (12.35), and neglecting signs, ]g] = L(dI/dt) = 2 V. 

12.10 Calculating Self-Inductance 

Mutual inductance can be calculated for a few of the situations we have already 
considered. The same is true for self-inductance. However, even for a circuit as 
simple as a circular coil, calculation of the self-inductance is extremely difficult. 

Note that  inductance varies as the magnetic flux, which is the product of a 
field B (which, as we know from the field due to a long wire, varies inversely 
as the characteristic length) and an area A (which varies quadratically as the 
characteristic length). Hence, as indicated above, inductance, like capacitance, 
scales linearly with length. 

~ Solenoid 

Consider a long solenoid of n turns per unit length, length l, and cross- 
sectional area A. Neglecting edge effects, it produces a uniform field B -  
4zrk~nI. (a) Determine its self-inductance L. (b) Evaluate L for n -  104 
turns/m and lA - 10 -4 m 3. (c) Discuss the effect of a soft iron core. 

Solution: (a) If each of the N -  nl turns picks up the same magnetic flux BA, 
then by (12.31) its self-inductance is 

L -  -fN / B . NBAI = (nl)(4zrkmnl)Ai - 4zrkmn2lA" (L of solenoid) 

(12.36) 

Note that doubling n at fixed l and A quadruples L; the flux per turn doubles and 
the number ofturns doubles. (b) Forn - -  1 0  4 turns/m andlA = l 0  - 4  m 3, (12.36) 
yields L = 0.0126 H, an appreciable value. Geometically scaling the entire system 
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up by a factor of two, with the number of turns fixed, doubles l (thus halving n) 
and quadruples A, so L doubles, as expected. 

(c) If the solenoid contains a soft iron core with magnetic susceptibility ;(, 
then (as discussed earlier), the field is enhanced by a factor of (1 + x), and so 
is L: 

L - (1 + X)4zrkmn2lA. (L of solenoid with magnetically soft core) (12.37) 

For soft iron, where X ~ 5000, this is pertinent to Mr. Jenkin's experiment. The 
enhancement factor of (1 + x) for soft iron causes the inductance of the solenoid 
described before to become 62.8 H, a large value indeed. 

~ Co-axial cable 

Consider a co-axial cable of length l, with inner current I distributed uni- 
formly within a cylindrical shell of radius a, and return current I distributed 
uniformly over a thin co-axial cylindrical shell of radius b. Take l >> a, b. See 
Figure 12.21. (a) Determine its self-inductance L. (b) Determine its charac- 
teristic inductance per unit  length. 

Solution: (a) By Ampere's law and the symmetry of the situation, for a < r < b, 
B = 2kmI/r and points tangentially if we neglect edge effects. To apply Faraday's 
law, we take as our circuit a strip of length l that runs from r = a to r = b, so 
that it picks up all the magnetic flux produced by the inner shell. (Figure 12.21 
shows a smaller strip, of length w.) For fi pointing tangentially, B �9 ~ - B. Then, 
by (12.31), with dA = drdz, 

l f f3 . ~dA_ l f b fol 2kml dz b L = -[ -[ dr r - 2kml In a " (12.38) 

As expected, this scales linearly with the size of the system. A logarithmic depen- 
dence, as in (12.38), can be expected whenever wires are involved, even when 
they are not straight. (b) Considering the logarithmic factor in (12.38) to be on 
the order of unity, the prefactor in (12.38) indicates that the inductance per unit 
length is on the order of 1 O0 nil /m, or 1 nH/cm. As already noted, it is difficult 
to determine the self-inductance L,ing for a wire of radius a that is bent into a 
ring of radius R >> a, but since R serves both as a measure of length (replace 
l by 2Jr R) and outer radius (replace b by R), L~ing should be proportional to 
kmR ln(R/a). 

() w ~ , 2 a  

X-ray view of w-by-dr strip 

Figure 12.21 A co-axial cable of inner radius a and outer 
radius b, with only a portion of the outer part, and 
including an x-ray view of the region a < r < b. 
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Figure 12.22 Connecting an ideal battery to a circuit 
with resistance and inductance. 

12.11 Self-Inductance and the LR Circuit 

We now turn to a full analysis of what  happens when a chemical emf  is switched 
into and out of an L R circuit. 

12o11+1 Turning On the L R Circuit (Part One) 

Consider a circuit where there is an inductance L (such as a solenoid), a resistor 
R, a battery of emf go, and a switch. See Figure 12.22. 

When  the battery is part of the circuit as a whole, the net emf is given by 

dI  
g - - L ~ - [  + go. (12.39) 

From Ohm's  law applied to the circuit as a whole, with resistance R, we have 

g L d I  go 
I = -- - t . (12.40) 

R R d t  R 

This may be rewritten as 

dI 
I R  + L - ~  - g o .  (12.41) 

Voltage Drop A Vt Across an Inductor 

Before further analyzing (12.41), it is useful to do a voltage analysis for this 
circuit. From Figure 12.22 and the properties of ideal batteries, 1 ~ -  V ~ -  go. 
Moreover, by Ohm's  law, the voltage drop across the resistor in the direction of 
current flow is A VR = Vb -- Vc - I R. From these two results and Figure 12.22, 
we then deduce that  the voltage drop A V~ across the inductor in the direction 
of the current is 

A IlL - V~ - Va - (V~ - ~ )  + (1~ - Va) - - I  R + go. (12.42) 

Combined with (12.41), Equation (12.42) yields the important  result that  

ili i iiiiil ii i!ii!i!iiiiiiii+iiiiiiiiiiiiiiiiiiiii!ii!ii iiiili i  iiii!+iil i i i i  ii i iiii;!iiiiii!iiiiiiiii ................. iiii+iiii iiiiiii 
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For Mr. Jenkin, if L = 1.0 x 10 -2 H and A VL = - A  VR = - 1.0 x 10 s V when he 
disconnected the battery, (12.43) gives d I / d t -  - 1 . 0  x 107 A/s. The negative 
sign means that  the current is decreasing. 

Equation (12.43) is a very general property of ideal (resistanceless) inductors. 
A VL is equal and opposite to the self-induced emf 8seZf = - L d l / d t ;  if the self- 
induced emf tends to drive current one way, then A VL tends to drive current 
the other way. The voltage profile around the L R circuit of Figure 12.22 would 
look somewhat like Figure 12.16(b), except that flat regions associated with the 
resistanceless wires in Figure 12.22 would replace sloped regions associated with 
wires having resistance in Figure 12.16(a). 

In order to produce the voltage A l/~, charges must  rearrange in the circuit, 
just as for a resistor, as discussed in Section 8.10. Just as these charges give an 
extra energy, and thus a parasitic capacitance, to a resistor, so they give a parasitic 
capacitance to an inductor. 

Another way to see that (12.43) applies to an ideal inductor is to use Ohm's  
law to an inductor of resistance RL. Then 
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In the limit as RL-+ 0, for I to be finite, (12.43) must hold. An equiva2 
lent statement is that, within the inductor, for the current density J -  ~E 
to be finite as ~ -+ 0, we must have /~ -+ 0; that  is, an infinitesimal E will 
produce a finite J. Since E is the sum of an electrostatic field E es (which 
produces A VL) and an electromagnetically induced field E ind, this means 
that E es---Eind within the inductor. (If the inductor has a nonzero re- 
sistance, and thus a finite conductivity, then E e s - - E ~ n d  + J / ~  within the 
inductor.) 

Turning On the L R Circuit (Part Two) 

Let us now solve (12.41). Those of you who are adept at recognizing old 
friends ~ even when in disguise, subject to morning disarray, or with a new "do" 
or "stache"--will  notice that Equation (12.41) is very similar to the equation 
describing the charging of a capacitor. There we had the form 

--'~+ R ~ -  - 80, C (12.45) 

with initial condition Q -  0 at t - 0. The solution was 

Q(t) - cc0[1 - exp(- t / rRc)] ,  r R c -  RC, (12.46) 

where rRc is the capacitive time constant. When turning on the emf in the R C 
circuit, after a time rRc the charge has grown to 63% of its final value. 

We wish to solve (12.41) rather than (12.46), with the initial condition that  
I = 0 at t = 0, rather than Q = 0 at t = 0. On replacing the set of symbols 
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t 1 . 0 -  

IR 0 . 9 -  

E0 0 . 8 -  

0 . 7 -  

0 . 6 -  

0 . 5 -  

0 . 4 -  

0 . 3 -  

0 . 2 -  

0 . 1 -  

0 I I I I I I 
0 1 2 3 4 5 6 

t 
L/R 

Figure 12.23 The current on turning on the circuit of 
Figure 12.22, as a function of time. Current is measured in 
units of the initial current I0 = go R, and time is measured 
in units of rLR ---- L/R. 

12o 11,,4 

(Q, I/C, R, go) by (I, R, L, go), we transform our old friend (12.45) and its so- 
lution (12.46) into our new friend (12.41) and its solution" 

s 
l (t) ~ [ 1  exp(--t/rLR) ], 

L 
TLR - -  -'~I 

: �9 ~,/i~il, 5 ~i/i �84 i !ii!~/i!ii !iiiiii~i!ii!iiii!iii!iii!ii~iiii.!!iiii!!i!ili!~i~i!ilil iiii~iiiiii~ii~ii i i iiiiiii~ 

(turning on LR 

where rLR is the inductive time constant. When turning on the emf  in the L R 
circuit, after a t ime rLR the current has grown to 63% of its final value. 

Equation (12.47) gives a current that  starts at zero, rises linearly with slope 
Co~L, and then saturates at the steady-state value Co/R. See Figure 12.23. 
By measuring rLR = L/R, for a known value of R, we can determine L. If 
rLR = L /R  = 1.0 x 10 -s s, and R = 10 f2, then L = 100 #H.  As already noted, 
it is usually difficult to compute  inductances, but  they can be measured, as this 
example makes clear. Multimeters measure inductances by measuring the L/R 
t ime constant for a known, built-in R. 

The self-inductance dominates the resistance at short times, preventing the 
current from building up. Only after a t ime on the order of the inductive t ime 
constant does the current build up to a significant value. (The examples of 
Sections 12.2 to 12.4 correspond to such times.) Initially, the self-inductance 
completely succeeds in opposing the applied change (the sudden turn-on of the 
battery emf), but  as time goes by, it has less influence. 

Turning Off the L R Circuit 

If we consider that  the battery emf g0 is suddenly set to zero (or if we quickly 
throw the switch in Figure 12.22), then (12.41) applies if we set go - 0 and start 
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the current at the steady-state value 

Co 
I0 - - - .  (12.48) 

R 

Thus we must  solve 

dI  
I R + L-z: - O, (12.49) 

a ~  

subject to I - I0 at t - 0. This is very like the problem of the discharge of a 
capacitor, with initial condit ion Q =  Q0 at t - 0. The solution in that  case is 

Q(t) - Qo exp(--t/rRc),  r R c -  RC. (12.50) 

When turning off the emf in the RC circuit, after a time rRc the charge falls to 
37% of its initial value. 

On replacing the set of symbols (Q, 1/C, R, Q0) by (I, R, L, I0), we obtain 
from (12.50) that  

i iiiii iii! iilii iiiii!i il iiili il ii i!!iJii i ~iiJiii;)i!Ji iii!iiiii!i iii iii iiiiiiiiiiii iili ii iiii; iii! 

iiiiiil 

This equat ion gives a current  tha t  starts at I0 and decays exponentially, with 
characteristic decay t ime roe = L/R.  See Figure 12.24. W h e n  turning off the 
emf  in the LR circuit, after a t ime rLe the current  falls to 37% of its initial 
value. 

I 1.0- 
IR 0.9- 
~0 0.8- 

0.7- 

0.6- 

0.5- 

0.4- 

0.3- 

0.2- 

0.1- 

0 
0 

I I I I I I 
1 2 3 4 5 6 

t 
- -  m t l ~  

L/R 

Figure 12.24 The current on turning off the circuit of 
Figure 12.22, as a function of time. Current is measured in 
units of the initial current I0 = EoR, and time is measured 
in units of rLR = L~ R. 
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~ Current for LR circuit decay an 

Let L = 1 mH and R - 1 s Let I0 - 0 . 2 4  A at absolute time 1.86 s. Find 
the time at which I = 0.043 A. 

Solution: From (l 2.5 l), rLR -- 10 -3 s. Now use (l 2.5 l) to find t relative to 
1.86 s. From (12.51), exp (--t/rLR) = I(t)/Io, so --t/rLR = In I(t)/Io, or t/rr.R = 
in Io/I(t). Plugging in rLR, I0, and I yields t = (0.001 s)(1.72) = 0.00172 s as the 
time it takes for the current to decay from 0.24 A to 0.043 A. Hence I = 0.043 
at absolute time 1.86 + 0.00172 = 1.86172 s. 

12~11.5 Back to the Shocked Mr. Jenkin 

To compare with the result of Mr. Jenkin, it is relevant to determine how much 
charge has flowed. Integrating (12.51) from t - 0 to t - oo yields 

L 
OO 

Q(t) - I0 exp (--t /rLR)dt -- --I0rLR exp (--t/rl.R)i~ = I0rlR -- 
IoL 

R 

(12.52) 

Since the iron core gives a self-inductance that is larger by a factor of (1 + x) ~ 
5000, having an electromagnet in the circuit means that a charge some 5000 
times larger will flow, corresponding to a relaxation time r that is larger by that 
same factor: the current lasts that much longer. This explains why the shock is 
greater if the self-inductance is greater. In general, turning off a switch is more 
likely to lead to a spark than turning it on. 

In Mr. Jenkin's experiment, the circuit has three arms. One arm has the 
battery and its resistance, one arm has the electromagnet and its resistance, and 
one arm (Mr. Jenkin) has only resistance. See Figure 12.19. When the connection 
to the battery arm is broken, the much larger current of the coil gets rerouted 
through Mr. Jenkin. This is I0, which we had estimated to be 1 A. In fact, Mr. 
Jenkin has a small self-inductance himself. That will determine the very small 
time during which his current changes from a very small value (1.0 x 10 -4 A) 
to 1 A, which then decays with the time rLR -- L /R  determined by the L of the 
electromagnet and the resistance Rj of Mr. Jenkin. For L -  1.0 x 10 -2 H and 
Rj - 1.0 x 105 ~Z, r L R -  L / R -  1.0 x 10 -7 s. By (12.51), for the current to fall 
to the safer value of 0.1 mA (corresponding to 10 V) takes a time t - rLR ln(104), 
o r t - - 9 . 2  x l 0  -6s.  

12,12 Magnetic Energy 

We now study magnetic energy by applying the principle of conservation of 
energy to an L R circuit driven by a battery, as in the previous section. The rate 
8 0 / a t  which the battery emf 80 discharges its chemical energy is, by (12.41), 

dI  d I  
8 0 / -  I2R  & L--c-I - I2R  + L I  

d-7" a t  
(]2.53) 
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The first term on the right-hand side is the rate of Joule heating. The second 
term must be the rate dUc/dt  at which energy is put into the inductor. Thus 

dUE dI 
= L I ~  (12.54) 

dt dt" 

Integrating this from zero current gives the energy stored in the inductor: 

Let us apply this to a long solenoid of n turns per unit length, length l, and 
area A, for which L is given by (12.36) and the volume is V = AI. Then the 
magnetic field is uniform, and the magnetic energy per unit volume u~ is given 
by 

i 

where we have used B = 4rrkmnI = #oi for the solenoid. Although (12.56) 
was obtained only for the case of a solenoid, it is true quite generally. Energy is 
stored in the magnetic field. For B = 1 T, a large but achievable value, by (12.56) 
uB - 79.6 x 104 J/m 3. For soft iron in not too large a field, (12.56) is replaced 
by 

I UB 
U B = ~ .  # r = l + x  

# r  

For a field within the iron of B = 0.2 T and # r  = 5 0 0 0 ,  (12.56) gives u B -  
1.59 x 1 0  4 J/m 3, but the actual energy density is u ~ -  3.18 J/m 3. By (9.23), 
B = 0.2 T corresponds to an applied field of only 0.2/5000 = 0.4 x 10 .4 T, 
which is comparable to the earth's magnetic field. 

The magnetic energy density is analogous to the electrical energy density 
derived in Chapter 6: 

60 E 2 
L/E --  -=-E 2 - -  

- 8zrk" (12.57) Z 

For E -  3 x 106 N/C, the dielectric strength Ed of air, (12.57) gives UE = 
79.8 J/m 3. Clearly, it is easier to store energy in the magnetic field (inductors) 
than in the electric field (capacitors). Note, however, that in many materials the 
dielectric strength Ed can be much larger than in air. Moreover, when the dielec- 
tric properties of a material are included, (12.57) gets multiplied by the dielectric 
constant K, which typically exceeds unity by a factor of two or three. For SrTiO3, 
K = 330 and Ed = 8 x 106 V/m,  by (12.57) giving u~ = 7.0 x 1 0  4 J/m 3. 

For a lead-acid cell, the energy density can be as large as 280 x 106 J/m 3. This 
explains why lead-acid cells have been used to store excess energy from electric 
power plants. 
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~ Inductance of co-axial cable a 

Calculate self-inductance of a co-axial cable with a hollow core, shown in 
Figure 12.21. 

Solution: We first use (12.56) to compute the total magnetic energy 

UB = f uBdV. (12.58) 

Then we use (12.55) to determine L from UB = UL. 
By (11.38), B - 2kMI/r  for r < a, and by (11.36), B = 2kmlr /a  2 for r > a. 

Then, with d V  = l(2rrr)dr, (12.58) yields 

1 l (2zrr)dr = kmI21 dr = kmll 2 ln-.b (12.59) 
LIB = 8zrk~ r a 

Comparison of (12.55) with (12.59) gives 

L = 2kml In -.b (12.60) 
a 

This agrees with (12.37). The energy density approach is particularly helpful in 
computing the self-inductance when the current is continuously distributed, such 
as a co-axial cable with a solid core. 

12.13 
[eJ ~l JDl i  ~ l  | 

EMF and Electric Field Induced by a Solenoid 

After (12.4) we noted that, when there is an induced emf in a circuit, there 
usually is not merely an induced electric field/~ina, but  also an electric field E es 
due to electric charge. This is needed to produce the same current in all parts of 
the circuit. Example 12.13 illustrated this point. The first two circuits dis- 

cussed in the present section have 
no E es, but  they  are symmetric 
enough that  E~na can be calculated 
along these circuits. This informa- 
tion will be used to analyzea third 
circuit, where there is an Ees. 

Consider a solenoid of radius 
a, n turns per unit length, and cur- 
rent l ,  whose axis is normal to the 
paper. We seek the emf  for three 
types of circuits: one within, one 
outside, and one partially within 
the solenoid. See Figure 12.25. 
These circuits need not be real. 

Figure 12.25 Cross-section of a circular Let the current increase in a coun- solenoid. The three imaginary circuits 
correspond to one that is concentric and inside terclockwise direction so that  the 
(1), one that is concentric and outside (2), rate of change in the field d B / d t  
and one that is partially inside and partially is out of the page (Q). By Lenz's 
outside (3). law, the induced emf is clockwise. 
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Let us see this from the mathematics. We neglect the self-inductance of the 
circuits. 

Take d A -  izdA into the page (| so that ds and ~ circulate clockwise. To 
make the emf 8 - f /~ �9 ds clockwise, the induced electric field/~ must circulate 
with d~': clockwise. From (12.4), the induced emf is given by 

8 - f  E , . d s  d~Bdt = -  -d-t " h d A . . . .  d t " h A flux ' 
..+ 

(uniform B, h is | (12.61) 

where Aflux is the area that actually picks up the magnetic flux. As we obtained 
without the mathematics, the emf corresponds to a clockwise circulation. Let us 
now apply (12.61). 

For two cases of interest, the circuits are circles concentric with the solenoid 
so that the electric field is tangential and uniform. Then 

s = f E .  d s  E.~(2Jrr),  (concentric circle) (12.62) 

so that (12.61) and (12.62) combine to give 

- +  

2rrr d--7" h Aflux. (concentric circle, $ is clockwise) (12.63) 

1 .  For circuit 1, a concentric circle of radius r < a ,  the area picking up the flux 
is given by Aflux - 2 r r  2 ,  s o  Aflux/2Zcr - r / 2 .  Then (12.63) becomes 

- +  

E.  ~ - - ~  d--}-" h. (r < a) (12.64) 

If the circuit corresponds to a uniform conducting wire, then this induced 
electric field is also the total electric field. 

2. For circuit 2, a concentric circuit of radius r > a, the area picking up the flux 
is given by Aflux - zca 2, so Aflux/2Zcr - a2/2r. Then (12.63) becomes 

a 2 d/~ --+ 

E.  ~ - -2--7 d--7" ~z. (r > a) (12.65) 

If the circuit corresponds to a uniformly conducting wire, then this induced 
electric field is also the total electric field. 

For a = r  = 0.05 m and d B / d t  = 104 A/s, (12.64) and (12.65) give 
E = 250 V/m,  an appreciable value. Equation (12.65) appears to hold even 
for r -+ ~ ,  thus implying that a localized change in magnetic field can pro- 
duce a distant change in the electric field. However, implicit in this discussion 
was the assumption that everything occurs instantaneously. Had we included 
the fact that the signal takes a finite amount of time to propagate, we would 



546 Chapter 12 ~ Faraday's Law of Electromagnetic Induction 

have found that the magnetic field also is nonzero outside the solenoid. Not 
until Chapter 15 are such effects considered. 

3. For circuit 3, consider a planar circuit of arbitrary shape, of length l and of 
flux-gathering area within the solenoid Aflux. By the local form of Ohm's law 
(J - er E), E �9 ~, the component of the to tal  electric field E along the physical 
circuit direction ~, must satisfy/~ �9 ~ - J/or. For a circuit of uniform cross- 
section and conductivity, J and ~ are uniform throughout the circuit, and so 
is E. Thus (12.61) becomes 

dB 
C - E .  $ l  - - d--7" f~ Aflux, (12.66) 

SO 

# .  ~ _ _ Aflux d B  . ft. (12.67) 
l d t  

In general, /~ is the vector sum of both the induced electric field #ind and the 
electrostatic field s To make the current flow along the wire, charge must 
go to the surface of the wire to produce Ees, in addition to Eind. In computing 
(12.67), #ind is given by (12.64) for points within the solenoid, where r < a, and 
by (12.65) for points outside the circuit, where r > a. Of course, f Ees" d s  O, 
but f Eind. dg" # 0. 

12.14 Mr. Jenkin with Self-Inductance 

Now consider what would happen if Mr. Jenkin had inductance, or was in series 
with an inductor, when he connected and disconnected himself from the battery. 
See Figure 12.26(a). 

EO E0 
~___/4NN~ witch 

L2 R2 [ 

L~ R~ 

(a) (b) 

Figure 12.26 (a) Circuit where an ideal voltaic cell E0 drives 
current through two arms that are in parallel, each arm having 
both resistance and inductance. (b) Opening the circuit of part (a). 



Problems 547 

After disconnection, the two arms of the circuit develop a common current I, 
as in Figure 12.26(b). Take I to be positive when it is in the same direction as the 
initial current 11 through the electromagnet, with inductance and resistance L1 
and R1. Take the initial current through the second arm (containing Mr. Jenkin) 
to be 12, with inductance and resistance L2 and R2. 

How do we determine I? We use Lenz's law in the following form: If an 
external magnetic field is changed slowly enough that eddy currents can be set up, 
then until the eddy currents start to die down a good conductor can nearly completely 
prevent changes in magnetic flux. The response of the circuit for very short times, 
during which 11 -~ I and 12 -~ - I ,  is complicated, involving nonuniform cur- 
rents and temporary charge buildup in the wires. However, during that time the 
magnetic flux through the circuit defined by the electromagnet and Mr. Jenkin 
should be conserved. 

This action involving inductors resembles what happens on connecting two 
charged capacitors. There, the final state had a common but unknown voltage 
drop across each capacitor, and was subject to charge conservation. We did not 
worry about the details of how it reached that state. Not until Chapter 15 will 
we touch upon problems that involve details of what is happening along the 
connecting wires themselves. 

In Figure 12.26(b), the common current I circulates counterclockwise. Since 
the initial current through arm 2, as in Figure 12.26(a), circulates oppositely, 
the initial magnetic flux is taken to be ~0 = L111 - L212. (Note that the flux 
f B �9 dA  doesnt depend on which way the solenoids have been wound. This is 
because the directions of both/3 and dA change on winding clockwise instead 
of counterclockwise.) By flux conservation, the final value of the magnetic flux 
is �9 = (L1 + L2)I. Hence flux conservation yields 

LlI1 - L212 = (L1 + L2)I. (12.68) 

Since 11 = Co/R~ and 12 = Eo/R2, (12.68) implies that it is not inductance L 
alone, but rather the inductive time constant L~ R that determines which arm of 
the circuit dominates in determining l. Hence, if L1 = 10L2, but R1 = 100R2, 
arm 2 dominates over arm 1 in determining I. 

You can verify (as a problem) that the magnetic energy computed from 
(12.55) with common current l is less than the initial magnetic energy with 
11 and 12. The loss of energy is attributed to local currents along the wires that 
provide no net magnetic flux and that decay quickly. Once the adjustment to l 
has occurred, decay of I (and of magnetic flux) takes place as for a circuit with 
inductance L = L1 + L2 and resistance R = R1 + R2. 

Problems 

12-3.1 Consider Figure 12.2(a). (a) Explain why 
Faraday used calico in this experiment. (b) Explain 
why Faraday had to employ 1 O0 copper-zinc cells 
to cause a deflection of the galvanometer. (c) If the 
galvanometer deflected clockwise on connecting the 

battery, indicate how the galvanometer deflected on 
disconnecting the battery. 

12-3.2 Consider Figure 12.2(b). (a) Explain what 
role the magnetic needle played. (b) If the needle 
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magnetized to the left on connecting the battery, in- 
dicate how the needle magnetized on disconnecting 
the battery. 

12-3 .3  Consider Figure 12.3. (a) If the galvanom- 
eter deflected clockwise on moving the wire W's 
together, indicate how the galvanometer deflected 
on separating the wire W's. (b) Explain why 
Faraday moved the wire W's at the resonance fre- 
quency of the galvanometer needle. 

1 2 - 3 . 4  Consider Figure 12.4(a). (a) Would the 
galvanometer deflection be larger or smaller if the 
iron ring were replaced by a copper ring? (b) If 
the galvanometer deflected counterclockwise on 
connecting the battery, indicate how the gal- 
vanometer deflected on disconnecting the battery. 

1 2 - 3 . 5  Consider Figure 12.4(b). (a) Would the 
galvanometer deflection be larger or smaller if the 
iron rod were replaced by a copper rod? (b) If 
the galvanometer deflected counterclockwise on 
connecting the battery, indicate how the galvanom- 
eter deflected on disconnecting the battery. 

1 2 - 3 . 6  Consider Figure 12.5(a). (a) Explain what 
role the permanent magnets play. (b) If the gal- 
vanometer deflected clockwise on bringing the mag- 
nets together, indicate how the galvanometer de- 
flected on taking the magnets apart. 

1 2 - 3 . 7  Consider Figure 12.5(b). (a) Explain what 
role the permanent magnet plays. (b) If the gal- 
vanometer deflected clockwise on bringing the mag- 
net in, indicate how the galvanometer deflected on 
pulling the magnet out. 

12-4 .1  For y < 0, there is a uniform magnetic 
field B pointing along z (out of the page). For y > 0, 
the field is zero. A rectangular conducting loop, its 
normal along z, moves with velocity ~ into the field 
region. See Figure 12.27. Describe, as the loop en- 
ters the field region: (a) the change in the magnetic 

y = 0  
\ 

B-Q (i) (3 (3 

| % , 0  | 
Figure 12,27 Problem 12-4.1. 

field due to the motion, (b) the direction of the mag- 
netic field induced in response, (c) the direction of 
circulation of the induced emf, (d) the direction of 
circulation of the induced current, (e) the direction 
of the magnetic force acting on the loop, (f) the 
tendency of the loop to compress or expand, 
(g) the tendency of the loop to rotate. 

12-4 .2  A string hangs from the ceiling, connected 
to an aluminum ring. Describe a noncontact method 
to bring the ring into motion, using a cylindrical bar 
magnet that can fit within the ring. 

12 -4 .3  A two-winding coil produces a clockwise 
current l when subjected to a time-varying mag- 
netic field. If one of the windings were wound clock- 
wise and the other counterclockwise, how would 
the current change, and why? 

1 2 - 4 . 4  A coil consists of two turns in series: a 
turn of copper wire wound one way and a turn of 
iron wire wound the other way. It surrounds an iron 
core solenoid. (a) When the solenoid is powered up, 
there is a 2 V emf in the copper wire. Find the in- 
duced emf in the iron wire, and overall. (b) Repeat 
if both turns are made of copper. (c) Repeat if both 
turns are wound the same way. 

1 2 - 4 . 5  Two coils are co-axial along x, so their 
planes are normal to the page. See Figure 12.28, 
drawn in perspective. For coil B, a battery drives cur- 
rent clockwise as seen from the left. Coil A is not 
connected to a battery. Let the variable resistance 
R increase. Describe (a) the change in the magnetic 
field through coil A due to the change in R, (b) the 
direction of the magnetic field induced in coil A, 
(c) the direction of circulation of the emf induced 
in coil A, (d) the direction of circulation of the cur- 
rent induced in coil A, and (e) the direction of the 
magnetic force acting on coil A. (f) How do your 
answers change if R is decreased? 

A 

Near 

B 

Observer 

Figure 12.28 Problem 12-4.5. 

12-4.6 Two non-co-axial coils rest on the page, 
their normals along z. See Figure 12.29. For coil 
B, a battery drives current counterclockwise. Let 
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the variable resistance R increase. Describe (a) the 
change in the magnetic field through coil A due to 
the change in R, (b) the direction of the magnetic 
field induced in coil A, (c) the direction of circula- 
tion of the emf induced in coil A, (d) the direction 
of circulation of the current induced in coil A, and 
(e) the direction of the magnetic force acting on 
the loop. (f) How do your answers change if R is 
decreased? 

12-4 .8  A copper plate is thrown between the 
poles of a powerful horseshoe magnet. Neglect grav- 
ity. See Figure 12.31. (a) How is the the motion of 
the plate affected by the presence of the magnet? 
(b) How would the magnet move if it were not held 
in place? (c) How could this principle be used for 
magnetic braking of a train wheel? 

Figure 12.29 Problem 12-4.6. 

12-4 .7  A uniform magnetic field is directed out 
of the page. A rectangular circuit lies in the plane 
of the page. Three sides are rigid, but the right 
arm is a movable conducting rod. See Figure 12.30. 
If the right arm slides rightward, for the closed 
circuit that includes the movable arm describe 
(a) the change in the magnetic field through the 
circuit, due to the motion, (b) the direction of the 
magnetic field induced in response, (c) the direc- 
tion of circulation of the induced emf, (d) the di- 
rection of circulation of the induced currents, and 
(e) the direction of the magnetic force acting on 
the loop. (f) How do your answers change qualita- 
tively if this is repeated in a reversed field? (g) How 
do your answers change qualitatively if this is 
repeated in an equal field that is tilted relative to the 
circuit? 
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Figure 12.30 Problem 12-4.7. 

Figure 12.31 Problem 12-4.8. 

12-4.9 A sheet of aluminum foil lies on a table. 
A coil is held in place above, and parallel to, the 
foil. Suddenly the coil is given a clockwise current, 
as seen from above the coil. (a) Indicate how the 
eddy currents in the foil circulate, and explain your 
reasoning. (b) Indicate the direction of the force on 
the foil, and explain your reasoning. 

For each of the next five problems, indicate your 
viewpoint as observer, and then give, in a table sim- 
ilar to those in the text: (a) the direction ofdBext/dt; 
(b) the direction of Bind; (c) the direction of circula- 
tion of Cind; (d) the direction of circulation of the in- 
duced current; (e) the direction of the net magnetic 
force Fnet (or magnetic torque, as appropriate) act- 
ing on each of the electrically conducting circuits; 
and (f) the tendency of the circuit to compress or 
expand. 

1 2 - 4 . 1 0  A magnet, its N pole pointing down- 
ward, is held above a co-axial conducting loop lying 
on a table. The magnet is then released. 

12-4.11 A square conducting loop lies in the 
plane of the page. A magnetic field points out of 
the page. The loop is twisted about y, its right arm 
coming out ofthe page and its left arm going into the 
page. 

12 -4 .12  A magnet, its N pole pointing down- 
ward, is held fixed above a conducting loop. 

12-4.13 Two co-axial loops have their normal 
along the vertical. With zero currents, they are held 
fixed in position. A battery is switched on for the 
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lower loop, giving it a clockwise current as seen from 
above. See Figure 12.32. 
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Figure 12.32 Problem 12-4.13. 

12-4.14 A current loop in the plane of the page 
is partially in a uniform magnetic field pointing 
out of the page. It is pulled out of the field. See 
Figure 12.33. 
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Figure 12.33 Problem 12-4.14. 

12-5.1 (a) Characterize/~, B, emf, magnetic flux, 
and the time derivative of magnetic flux, as vec- 
tors or scalars. (Think of B as due to moving charge 
carriers.) (b) Characterize how they change when 
t ~ - t  (don't forget that velocity ~=dF/dt 
reverses when t reverses). (c) Which are related 
by Faraday's law? 

12-5.2 A square circuit of side 2 cm sits on a 
table, and at t -- 0 is subject to a uniform magnetic 
field that points into the table. Let I BI = 4t + 8t 2, 
where ]/3] is in 10 -3 T for t in ms. (a) At t - 2 ms, 
find the magnetic flux. (b) At t = 2 ms, find the rate 
of change of the magnetic flux. (c) At t = 2 ms, find 
the magnitude and sense of the emf. (d) If the cir- 
cuit has resistance 5 f~, at t = 2 ms find the force 
per unit length on the circuit, including direction. 

(e) Relate part (d) to the motion statement of 
Lenz's law. 

1 2 - 5 . 3  In the previous problem, let one arm be 
just outside the field region, and let the circuit be 
tethered in place by a string that can support 5.7 
N. As a function of time, find (a) the magnetic flux, 
(b) the rate of change of magnetic flux, (c) the mag- 
nitude and sense of the emf, (d) the net force on the 
circuit. (e) Find the time at which the string will 
break. 

1 2 - 5 . 4  A 4-cm-by-4-cm loop of resistance 50 
sits on a tabletop, in a uniform magnetic field of 
0.2 T that points at 70 ~ from the upward normal. 
The field starts changing at the rate o f -  5 T/s. Find 
(a) the magnetic flux; (b) the rate of change of the 
magnetic flux; (c) the induced emf, including its di- 
rection of circulation; (d) the induced current, in- 
cluding its direction of circulation; (e) the force on 
each arm; (f) the torque on the loop. 

1 2 - 5 . 5  A circular UHF antenna for a portable 
television has a 15 cm diameter. The magnetic field 
is oriented at 15 ~ to the antenna's normal and is 
changing at the rate 0.14 T/s. (a) Find the an- 
tenna's emf (which drives current to the amplifier). 
(b) By what factor would the signal increase if the 
antenna were at optimal orientation? (c) In part (a), 
if R = 3.7 ~, find the current I. 

1 2 - 5 . 6  Dr. Evil has implanted electrodes into you 
(take Ryou - 104 ~) and connected them to a rigid 
100-turn circuit of dimension 4 m by 2 m, 3 m by 
2 m ofwhich is in (and normal to) a 10 T field. [The 
situation is not unlike that of Figure 12.13(a), ex- 
cept that you are part of the left arm of the circuit. ] 
(a) If a continuous current of 2 mA is the greatest 
you can stand, how fast can you move out of the 
field region? (b) How large a force then opposes 
your motion? 

1 2 - 5 . 7  A 4-cm-by-12-cm loop of resistance 25 
sits on a tabletop, 4 cm by 5 cm of it sitting in a uni- 
form magnetic field of 4 T that points at 60 ~ from 
the upward normal. The field starts changing at 
the rate o f - 8  T/s. Neglect the self-inductance 
of the loop. Just after the field starts changing, find 
(a) the induced emf, including its direction of cir- 
culation; (b) the induced current, including its di- 
rection of circulation; (c) the net force on the loop; 
(d) the torque on the loop. 

12-5.8 A square loop with Rloop = 0.025 ~ has 30 
turns and is 0.3 cm on a side. It is within a solenoid 
with 250 turns, 5 cm long, and of radius 0.4 cm. The 
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normal to the loop makes an angle of 25 ~ to the axis 
of the solenoid. (a) Find the field within the solenoid 
when it carries a clockwise current Iso l = 6 A. (b) If 
dlsol/dt = 210 A/s, give the magnitude and direc- 
tion of the emf induced in the loop. (c) Find the in- 
duced current Iloop in the loop. (d) Find the force on 
one arm of the loop, at the instant when Iso l = 6 A 
and dIsol/dt = 210 A/s, and state whether the force 
tends to expand or compress. (e) Find the torque 
on the loop. 

1 2 - 5 . 9  Consider a long solenoid of square cross- 
section, with side d = 5 cm, sitting on a table. A 
rectangular circuit, with R = 40 f2, has sides of 
length l - 2 cm and b = 6 cm, parallel to those of 
the square, with 3 cm of its long side slipped be- 
tween two turns of the left arm of the solenoid. 
When Iso I = 4 A, the field within the solenoid is 
0.024 T. (a) If Iso l = 16 A clockwise, find the mag- 
nitude of the field within the solenoid. (b) If Iso l 
starts to decrease at the rate dIsol/dt = - 4 0 0  A/s, 
find the rate of change of magnetic flux through the 
rectangular circuit. (c) If the circuit has resistance 
40 S2, find the current induced in the circuit, in- 
cluding direction (as viewed from above the table). 
(d) Find the direction and magnitude of the net 
force on the rectangular circuit, for the Iso l of 
part (a). 

1 2 - 5 . 1 0  Consider the monopole moving toward 
the ring, as in Figure 12.18. Consider an imagi- 
nary spherical cap centered at qm and of radius r, 
enclosing the physical loop, of radius a, so that 
r = ~/a 2 -4- x 2 . (a) Show that the magnetic flux is the 
product of the monopole field Bqm --kmqm/r 2 and 
the cap area Acap = r2S2 - 4Jr(1 - cos0) = 2zr[1 - 

(x/~/a 2 + x2)]. (b) Show that the emf is given by 

g = f E .  d s  - d ~ B / d t  

= 2Jrk~qma2(dx/dt) /(a ~ + x2) 3/2. 

12-5 .11  The flip coil was invented by Faraday 
in 1851 to show the fundamental relationship be- 
tween changes in magnetic flux and induced emf. 
(a) If a coil of area A and N turns is in an unknown 
field/~, of magnitude B, find the integrated emf on 
flipping the coil (sitting on an experimental bench) 
by 180 ~ (b) If the coil is part of a circuit with re- 
sistance R, show that the time-integrated current 
f I dt (which can be measured with a ballistic gal- 
vanometer) has magnitude Q = 2 N B  A~ R. 

1 2 - 5 . 1 2  In a uniform perpendicular/3, consider 
a rectangular circuit with three arms of iron and 
a slide-wire of copper, as in Figure 12.30. Deter- 

mine the emf at the instant when each iron arm has 
resistance R1, and the copper arm has resistance R2, 
for the following cases: (a) the copper moves to the 
right with velocity v; (b) the circuit moves to the 
right with velocity v; (c) both move to the right 
with velocity v. 

12-5 .13  A loop of radius r and resistance R lies 
in the plane of the page. The loop is compressed at 
a rate dr /d t  in a uniform field B that points into 
the page. See Figure 12.34. (a) Find the induced 
emf g and induced current I. (b) Find the force per 
unit length d F / d l  opposing compression. (c) Eval- 
uate this for B --- 2 T, R = 0.35 S2, r = 2 cm, and 
dr /d t  = 100 m/s. 
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Figure 12.34 Problem 12-5.13. 

12-6.1 An emf gl = 0.36 V is induced in coil 1 
when the current in coil 2 increases at the rate 
dI2/d t  = 1.8 A/s for dI1/d t  = 0 .  (a) Find the 
mutual inductance M. (b) If the emf in coil 2 is 
g2 = 5.4 V, find dI1/d t  if d h / d t  = O. 

1 2 - 6 . 2  A conducting loop of area 4.5 cm 2 is 
within and co-axial with a solenoid having n = 8200 
turns/cm. (a) Find the mutual inductance between 
the loop and the solenoid. (b) IfdIcoil/dt = 435 A/s, 
find the induced emf in the solenoid. (c) If the coil 
is rotated so that its normal makes a 65 ~ angle to 
the solenoid axis, find the mutual inductance. 

1 2 - 6 . 3  Two loops have a mutual inductance of 
5.4 mH. If the current in coil 1 is / = - 1 2  + 6t + 
3t 2, where t in seconds gives I in amps, find the emf 
in coil 2 at time t. 

1 2 - 6 . 4  Two identical coils of 3 cm radius are co- 
axial, with 2 cm separation. (a) Qualitatively, how 
does their mutual inductance change if their separa- 
tion decreases to 1 cm? (b) If one of them is rotated 
by 90 ~ ? 

1 2 - 6 . 5  Two torii are concentric, the larger one, 
of N1 turns, enclosing the smaller one, of N2 
turns. They both have rectangular cross-sections, 
but the smaller has a very small cross-section of area 
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A1 = ha, corresponding to an approximate radial 
distance p and radial thickness a. See Figure 12.35. 
(a) Compute the mutual inductance of 1 on 2. 
(b) Compute the mutual inductance of 2 on 1. (The 
two results should be the same. The result should 
not depend on details of the larger torus.) 

a 

Figure 12.35 Problem 12-6.5. 

1 2 - 6 . 6  Two single-turn coils of radii a and b 
are concentric and lie on the plane of the page. 
(a) If a ((  b, show that the mutual inductance is 
approximately given by M =  27r2k~a2/b. (b) For 
a = 0.5 cm and b = 6 cm, evaluate M numerically. 
(c) If dla/dt = 275 A/s, find ~'b. 

1 2 - 6 . 7  Two single-turn coils of radii a and b are 
co-axial and separated by a large distance R. (a) Find 
their mutual inductance. (b) If a -- b = 2.4 cm and 
R -  16 cm, evaluate M. 

1 2 - 6 . 8  Two single-turn coils of radii a and b are 
separated by a large distance R. They are not co- 
axial, and their normals hi and h2 make arbitrary 
angles to the vector R =/~2 -/~1 separating them. 
Determine their mutual inductance. 

1 2 - 6 . 9  A coil of N turns and radius b surrounds 
a solenoid of Ns turns, length l, and radius a < b. 
Both are normal to the page. Let clockwise currents 
lc and Is be taken as positive. (a) For h pointing 
into the page, determine an algebraic expression for 
the magnetic flux f B.  hdA through the coil due 
to the solenoid. Take Is > 0. (b) If dls/dt  > O, de- 
termine the direction of circulation of the induced 
emf in the coil. (c) Compute the rate of change of 
the magnetic flux through the coil, and the magni- 
tude of the emf. (d) Compute the mutual induc- 

1 tance M = ~ f B �9 hdA, first algebraically and then 
numerically, with N = 20, Ns = 800, l = 20 cm, 
a = 2 cm, b = 4 cm. 

1 2 - 6 . 1 0  Repeat the previous problem for the coil 
within the solenoid, so a > b. Take N = 20, Ns = 
800, l = 20 cm, a = 2 cm, b = 1 cm. 

12-7 .1  A conducting rod of length 0.4 m is in the 
xy-plane, at a 35 ~ counterclockwise angle to the 

x-axis. It is moving along the x-axis with velocity 
0.2 m/s. There is a uniform 0.4 T magnetic field 
along z. See Figure 12.36. (a) Find the motional E 
field acting on the rod. (b) After any transients have 
died down, which end of the rod is at the higher 
voltage, and by how much? 
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Figure 12.36 Problem 12-7.1. 

12-7 .2  Consider Example 12.13. (a) In Figure 
12.16(a), if all the resistance were in the left arm, 
what would be the value of A V =- f F. as" ds across 
the right arm? (b) Across the left arm? (c) Across 
the top arm? 

12-7 .3  Consider Example 12.13. (a) In Figure 
12.16(a), if all the resistance were in the right 
arm, what would be the value of A V = f E es" ds 
across the right arm? (b) Across the left arm? 
(c) Across the top arm? 

1 2 - 7 . 4  A conducting rod of length b is normal to a 
long wire carrying current l, with nearest distance s. 
The rod moves along the axis of the wire at velocity 
v. See Figure 12.37. Find the voltage difference be- 
tween the ends of the rod, and specify which end 
has the higher voltage. 

$ 

Figure 12.37 Problem 12-7.4. 

1 2 - 7 . 5  At a location where the earth's magnetic 
field has a vertical component of 2 x 10 -s T and 
a southward component of 3 x 10 -s T, an airplane 
flies northward at 900 km/h. If the plane's wingtip- 
to-wingtip length is 27 m, find the emf induced 
across the wings, and indicate which wingtip is at 
the higher voltage. 
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12-7.6 A ring of radius R lies on the xy-plane, cen- 
tered at the origin. The ring has conductivity ~ and 
a rectangular cross-section with height h and radial 
thickness d, where d, h << R. A monopole qm falls 
with velocity v along the axis of the ring, at initial 
height z. (The geometry is similar to a 90 ~ clockwise 
version of Figure 12.18.) (a) Find the flux through 
the wire. (b) Find the emf induced in the wire. 
(c) Find the current in the wire. (d) Find the field 
due to the wire, at the position of the monopole. 
(e) Find the force on the monopole. 

12-7.7 A narrow magnet of length 14 cm and 
magnetic moment  2.8 A-m 2 is co-axial with a loop 
of radius 1.7 cm. The loop is moved toward the 
magnet with a velocity 2.5 cm/s. See Figure 12.38. 
Find the induced emf in the loop when the loop is 
3.6 cm from the N pole. 
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Figure 12.38 Problem 12-7.7. 

1 2 - 7 . 8  A long wire carries current I along y. A 
uniform rectangular loop of sides a and b lies a dis- 
tance s to the right of the wire in the xy-plane, 
with a side of length a parallel to the wire. See 
Figure 12.39. The current in the wire is I. (a) If 
the loop moves rightward at velocity v, find an alge- 
braic expression for the induced emf in the circuit. 
(b) Let a = 6 cm, b --- 8 cm, and the circuit resis- 
tance R = 0.56 ~2. At a given moment  of time, let 
s = 4 cm, v = 14 cm/s, and I = 6 A. Find the emf 
and the current in the circuit. 

t I -  v 
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Figure 12.39 Problem 12-7.8. 

12-7.9 Consider a uniform disk of conductivity 
or, radius a, and thickness d, rotating about its axis 
at angular velocity co. There is a field B within a 

small rectangular region of sides b, c << a, where 
b is nearly radial and c is nearly tangential. See 
Figure 12.40. (a) Determine the motional emf 
within this region, and indicate how the current 
flows. (b) Estimate the appropriate electrical resis- 
tance (neglect the resistance of the larger area that 
provides return currents). (c) Determine the force 
and torque acting on this region. (d) Verify that this 
force and torque serve to oppose the rotation (i.e., 
a magnetic brake). 

Figure 12.40 Problem 12-7.9. 

12-8.1 Consider the circuit in Figure 12.19. 
(a) Which circuit arm represents Mr. Jenkins's 
body? Explain why. Now consider that Mr. Jenk- 
ins is replaced by a real resistor, and take go = 24 V, 
Rj = 500 f2, Rw = 20 S2, L = 0.4 mH. (b) What  is 
the current through each arm before the emf is dis- 
connected? (c) Just after the disconnection, what 
is the current through each arm of the circuit? (d) 
Find the voltage drops across Rw, Rj, and L, just af- 
ter the disconnection, including the direction they 
tend to drive current. (e) Sketch, as a function of 
time, the rate of decay of the current through Rj. 

12-8.2 Repeat the preceding problem for go = 
24 V, Rj = 5 x 107 ~2, Rw = 20 ~2, L = 0.4 mH. 

12-9.1 When a battery of 2 V is suddenly 
switched on for a circuit containing only a coil, 
dI/dt has magnitude 740 A/s. Find the self- 
inductance of the coil. 

1 2 - 9 . 2  The self-inductance of a coil is 0.46 mH. 
(a) Find dI/dt when a 42 V emf is switched on. 
(b) Find g when dI/dt = 142 A/s. 

1 2 - 9 . 3  The self-inductance of coil 1 is 0.46 mH, 
and its mutual inductance with coil 2 is 240/zH.  
The coils are co-axial. If the emf in coil 1 is 14.3 V 
when dI1/dt = 890 A/s, find dI2/dt. What is the 
significance of the sign of dI2/dt? 

1 2 - 9 . 4  For a current loop made of a perfect dia- 
magnet, ~B =constant  for the flux through its 
cross-section. Let circuit 1 be a perfect diamag- 
net, and take L1 = 0.64 mH, L2 = 0.45 mH, and 
M = 0.18 mH. If 11 = 2 A and 12 = 0 at t = 0, and 
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then 12 becomes 0.4 A at t = 0.034 s, find I1 at 
t = 0.034 s. 

12-9.5 A metal ring of negligible resistance and 
self-inductance L has mutual inductance M with 
a long solenoid connected to 120 V, 60 Hz ac 
power. See Figure 12.41. The ring, if not held in 
place, would jump up. (a) What  does this fact say 
about the relative instantantaneous directions of the 
equivalent magnets of the ring and the solenoid? 
(b) What  does this say about the relative instanta- 
ntaneous directions of circulation of the currents in 
the ring and in the solenoid? (c) Explain how your 
answer to part (b) follows from (12.34). 

1 2 - 1 0 . 1  A solenoid of radius a = 1.2 cm and 
length 24 cm has L = 12.4 #H. (a) Find how many 
turns it has. (b) If dI/dt = 125 A/s, find the self- 
induced emf. 

1 2 - 1 0 . 2  A co-axial cable is 75 m long, with inner 
and outer radii of 0.35 mm and 0.44 mm. (a) Find 
its self-inductance. (b) If dI/dt - 287 A/s, find the 
self-induced emf. 

1 2 - 1 0 . 3  The self-inductance of a single coil is L. 
(a) Find the self-inductance of a coil of the same 
shape but N turns. (b) If L = 2.4 nH for a single 
turn, evaluate the self-inductance for 240 turns. 

1 2 - 1 0 . 4  A toroid with a soft iron core has a cir- 
cular cross-sectional area 2.8 cm 2, radius 14 cm, 
and 780 turns wrapped around it. (a) Estimate its 
self-inductance. (b) If dI/dt = 45 A/s, find the self- 
induced emf. 

1 2 - 1 0 . 5  Consider a toroid with square cross- 
section of side a, inner radius b, and outer radius 
a + b. It has N turns. Compute  its self-inductance. 

1 2 - 1 0 . 6  Consider a long rectangular circuit with 
sides a and b, where b >> a. Let the wire radius 
R << a << b. Neglecting the short ends, find the in- 
ductance per unit length. Neglect the field within 
the wires of the circuit. 

Figure 12.41 Problem 12-9.5. 

12-9.6 A current loop of negligible resistance and 
self-inductance L is in the plane of the page, par- 
tially in a uniform but ac magnetic field normal to 
the page. See Figure 12.42. The loop feels a net 
force tending to push it out of the field region. 
(a) What  does this fact say about the relative instan- 
tantaneous direction of circulation of the current in 
the loop and the instantantaneous direction of the 
ac magnetic field? (b) If the field is due to a solenoid, 
as in Figure 12.11 (b), explain how your answer to 
part (a) follows from (12.34). 
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Figure 12.42 Problem 12-9.6. 

1 2 - 1 1 . 1  A series circuit has L = 6.5 #H, R = 
0.23 ~, and an ideal battery C0 = 2.4 V. (a) If 
I = 4.2 A, find d I/dt and the voltages across the 
resistor and inductor. (b) If the voltage across the in- 
ductor is 0.9 V, find I, dI/dt, and the voltage across 
the resistor. 

1 2 - 1 1 . 2  A series circuit has L = 3.8 #H, R = 
0.44 ~, and an ideal battery Co = 4.5 V. (a) If 
dI/dt = 1.1 x 103 A, find I and the voltages across 
the resistor and inductor. (b) If the voltage across 
the resistor is 2.9 V, find dI/dt, I, and the voltage 
across the inductor. 

12-11.3 A real inductor has L = 8 #H and RL = 
5 ~ (treat them in series). It is connected in series 
to a resistor R = 200 f2. A switch then connects the 
circuit to an ideal 12 V battery. (a) If after a time t, 
I = 36 mA, find dI/dt and the voltage across the 
inductor. (b) Find t. 

1 2 - 1 1 . 4  A circuit has an unknown inductance L 
and a resistance R = 6.4 s in series. At t = 0, an emf 
Co = 3.2 V is switched on in series with them, and 
a measurement yields dI/dt = 580 A/s. (a) Find L. 
(b) Find rLR. (c) Find I after 0.45 ms. 
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12-11.5 A series circuit has an unknown induc- 
tance L, a resistance R = 16.4 S2, an emf go = 1.4 V, 
and a steady current. At t = 0, the emf is switched 
to zero, and a measurement  at t = 0 + yields dI/dt  = 
- 2 0 8  A/s. (a) Find L. (b) Find rLi. (c) Find I after 
0.6 ms. 

1 2 - 1 1 . 6  A series circuit has an unknown induc- 
tance L, a resistance R = 22 S2, an emf go = 1.4 V, 
and a steady current. At t = 0, the emf is switched 
to 2.4 V, and a measurement  at t = 0 + yields 
dI/dt = 280 A/s. (a) Find L. (b) Find rLR. (c) Find 
I after 1.2 ms. 

1 2 - 1 1 . 7  An inductor has L = 8 # H  and RI. = 5 f2 
(treat them in series). It is connected in series to a 
resistor R = 200 S2. At t = 0, a switch is thrown 
connecting the circuit to an ideal 12 V battery. 
(a) Find the voltage drop across the inductor at 
t = 0  + and a t t = 2 5 # s .  (b) A t t = 0  + and a t t =  
25 #s, sketch the voltage profiles around the circuit, 
treating the inductor as having a finite length, and 
neglecting the resistance of the connecting wires. 
(c) At t = 0 + and at t = 25 #s, what fraction of 
the electric field in the inductor is electrostatic, and 
what fraction is electromagnetically induced? 

1 2 - 1 1 . 8  Consider a circuit like that of Mr. Jenkin 
(Figure 12.19). Let there be a real inductor in one 
arm, with L - 2.5 # H  and RL = 30 f2, and let there 
be a resistor R = 60 f2 in the other arm. Let the emf 
g = 24 V, with negligible internal resistance. The 
current is steady. (a) Find the currents through L 
and R just before and just after c a is switched out of 
the circuit at t = 0. (b) Find the current in the cir- 
cuit and the voltage across the inductor at t = 40 #s. 

12-12.1 Consider an inductor of 1.6 mH. (a) Find 
the magnetic energy when I = 14 A. (b) If the in- 
ductor has a volume 0.68 mm 3, find the magnetic 
energy density. (c) Find the magnetic field. 

1 2 - 1 2 . 2  A solenoid of length 6 cm and area 
0.84 cm 2 produces a field of 0.0043 T for a 12 A cur- 
rent. (a) Find the magnetic energy density. (b) Find 
the magnetic energy. (c) Find the self-inductance. 
(d) Find the number  of turns. 

1 2 - 1 2 . 3  Evaluate the self-inductance per unit 
length for a co-axial cable of outer radius 3.6 mm 
and inner radius 0.45 mm. 

12-12.4 (a) Using the energy method, and includ- 
ing the field energy within the core, find the self- 
inductance per unit length of a co-axial cable of in- 
ner radius a and outer radius b. It will differ slightly 

from (12.38) because the core is included. (Take a 
uniform current density in the core.) (b) Evaluate 
the self-inductance per unit length for outer radius 
3.6 m m  and inner radius 0.45 mm. 

12-12.5 A series circuit has L - 4 mH and R = 
0.5 S2. (a) Find the time constant for the circuit. 
(b) A switch now connects the circuit to an ideal 
12 V battery. Sketch I (t). (c) Find the values of I 
and dI/dt at t = 0, t = 0.002 s, and t = ee. For each 
of these times, find (d) the rate at which the battery 
discharges its chemical energy, (e) the rate at which 
heat is dissipated, (f) the rate at which magnetic 
energy is stored, (g) the rate at which electrical en- 
ergy is stored, and (h) compare the rate of energy 
provided by the battery to the sum of the other 
rates. 

12-12.6 Show that  M12 = M21, by using energy 
considerations (turn on the currents in different 
orders). Work by analogy to the calculation using 
the coefficients of potential in Chapter 6. 

12-13.1 Consider a solenoid of radius 2 cm. 
Let IdB/dtl = 440 T/s within the solenoid. (a) At 
0.5 cm from the center, find the magnitude of the 
induced electric field. (b) At 5 cm from the center, 
find the magnitude of the induced electric field. 

1 2 - 1 3 . 2  Consider a circuit like 3 in Figure 12.25, 
made of copper, of length 5.6 cm and radius 0.47 
mm, and with 0.6 cm 2 of it in the field of the 
solenoid, with a = 4 cm. If the induced current den- 
sity in the copper wire is found to be 520 A/cm 2, es- 
t imate the rate at which the field is changing within 
the solenoid. 

1 2 - 1 3 . 3  Equation (12.64) gives the tangential 
field component  Eo for a ring within a large 
solenoid. It also gives the tangential field of a re- 
sistanceless solenoid S' that extends normal to the 
page, within the larger solenoid. For S' there is also 
an electric field component  Ez along the solenoid 
axis. (a) For a long solenoid of length I and ra- 
dius a, with N turns, show that  ]Ez/Eo] = 2rrNa/l. 
(b) Evaluate this for a = 4 cm, l = 20 cm, and N = 
200. (c) If the larger solenoid S has 4200 turns/m, 
and dls/dt = 312 A/s, find Eo and Ez. (d) Is Eo elec- 
tromagnetically induced or electrostatic? (e) Repeat 
for Ez. 

.......... !~+i.+~ 1 2 - 1 3 . 4  A circuit with three vertical arms 
having, from left to right, resistances R1, R2, 

and R3, encloses two loops. Time-varying solenoid 
currents give clockwise emfs gl and gr to the loops. 
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See Figure 12.43. (a) Find the current through 
each resistor, in algebraic form. (b) For R1 = 2 s 
R2 = 8 f2, R3 = 4 S2, gt = 3 V, car = 5 V, evaluate 
these currents numerically. (c) Can the voltage ev- 
erywhere along the circuit be determined from this 
information? [Hint: Consider two different config- 
urations (i.e., differently shaped resistors) with the 
same resistances and emfs.] 

El  E r 

| | 

2 

Figure 12.43 Problem 12-13.4. 

..... .... 12-13.5 A circuit has three vertical arms, 
i with resistance Rt in the left arm, Rm in the 

middle arm, and Rr in the right arm. The right part 
of this circuit (which includes Rm and Rr) also sur- 
rounds a solenoid of area A, length l, and num- 
ber of turns per unit length n. See Figure 12.44. 
(a) A voltmeter sits to the right of the circuit. The 
solenoid current Is changes with time, giving clock- 
wise emf car. Give the voltmeter reading, in algebraic 
form, if its leads are connected a c r o s s  Rr. (b) The 
voltmeter now is moved to the left of the circuit. 
Give the voltmeter reading, in algebraic form, if its 
leads are connected across Rt. (c) Let Rl = 2 S2, 
R ~ = 8  S2, R r = 4  ~2, A = 3 . 6  cm 2, / = 4 2  cm, 
and n = 1200/m. If dI,/dt = 1450 A/s, numeri- 
cally evaluate the voltmeter readings of parts (a) 
and (b). 
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Figure 12.44 Problem 12-13.5. 

12-13.6 Consider a square circuit of side 
2a that surrounds and is concentric with a 

right-circular solenoid. See Figure 12.45. (a) Show 
that, along any arm of the square circuit, the in- 
duced electric field varies as cos 2 O/a, where 0 is 
measured from the distance of closest approach, 

which is a. (b) Find how the electrostatic field varies. 
(c) Show that for a concentric square circuit that is 
inside a right-circular solenoid, the induced electric 
field along the circuit is uniform, so the electostatic 
field is zero. 

01 

Figure 12.45 Problem 12-13.6. 

...... ii~iii~ill ...... 12-13.7 Consider a square circuit with a 
~< long circular solenoid at its center, producing 

a clockwise emf c a = 12 V. Let the top and bot tom 
arms have negligible resistance, and let the right and 
left arms have resistances Rr = 1 S2 and Rl = 2 S2. 
(a) Find the current. (b) Find the reading of a volt- 
meter  placed across Rt and all the other arms, going 
clockwise. (c) If the bottom-left corner has voltage 
VD = 0 (e.g., truly due to electric charge), find the 
voltages (i.e., due to the electrostatic field alone) at 
all the other corners A, B, and C, going clockwise. 
(d) Find the voltage difference a c r o s s  Rr and all the 
other arms, going clockwise. 

...... ~i~,~i::ii~;ii~,; .......... 12-13.8 Repeat the previous problem 
...... ~::~:; where the radius of the solenoid is very small 

compared to the side of each circuit, and move it 
to just within the lower-right corner of the circuit 
(point C of the previous problem). 

12-14.1 Two inductors with the same resistance 
of 2 s2 and L1 = 5 mH, L2 = 9 mH are placed in 
parallel with a 12 V emf of negligible resistance. 
(a) Find their steady currents. (b) If the emf is taken 
out of the circuit, find their initial currents and the 
current through L1 after 2 ms. 

1 2 - 1 4 . 2  Two inductors are connected in paral- 
lel with a 12 V battery. They have L1 = 8 mH, 
R~ = 0.4 f2 and L2 = 3 /~H, R2 = 2 S2. (a) Find 
the currents through each arm before the battery 
is disconnected, including their directions. (b) Just 
after the disconnection, find the current through 
each arm, including their directions. (c) Find how 
long it takes for the current to decrease by a factor 
of 8. 

12-14.3 Consider a circuit like that of Mr. Jenkin, 
but now let Mr. Jenkin have both inductance and 
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resistance. Take L1 = 5 mH and R1 = 22 S2, and 
L2 = 2 mH and R2 = 80 s2, and let the two be 
connected to an ideal 12 V battery. (a) Find the 
currents through each element when Mr. Jenkin is 
holding the leads to the electromagnet, but before 
the battery is connected to the circuit. (b) Find the 
currents through each element just after the bat- 
tery is connected to the circuit. (c) Find the cur- 
rents through each element a few seconds later. (d) 
Repeat just after the battery is disconnected from 
the circuit. (e) Find the time constant of the cir- 
cuit, and find the current 40 #s after the battery is 
disconnected. 

12-14.4 (a) Explain why itwas safe for Mr. Jenkin 
to connect the battery, but hazardous for him to dis- 
connect the battery. (lo) Explain why electric arcs 
occur when large electromagnets (and motors) are 
turned off, but not when they are turned on. 

12-G. 1 A rectangular bar of mass M, resistance R, 
self-inductance L, and width w is pulled at constant 
velocity v by an external force through a uniform 
field/~ that makes an angle 0 to the normal of the 
circuit (of negligible resistance). See Figure 12.46. 
(a) By Lenz's law, there will be a magnetic force on 
the bar. How will it point, and how will the current 
circulate? (lo) Determine the emffor the circuit, due 
to the motion of the bar. (c) Determine the current 
I induced in the circuit. (d) Determine the mag- 
netic force on the circuit. (e) Do you expect the 
results to be as simple for nonconstant R ? 

0 

V 

Figure 12.46 Problem 12-G. l. 

12-G.2 A wire of mass M, length a, and resis- 
tance R can slide without friction on parallel re- 
sistanceless rails sitting on a table, closing a circuit 
containing a constant emf go. A uniform magnetic 
field/~ points into the plane of the circuit. The wire 
starts from rest. See Figure 12.47. (a) Indicate the 
direction in which the current will circulate, due 
to the battery. (b) Compute the magnitude and 
direction of the magnetic force on the slide wire, 
and use it in Newton's law of motion. (Force is a 
vector; don't mix scalars and vectors in your equa- 
tions.) (c) Compute the motional # field on this 

arm, and determine the total motional emf ~/~ �9 d~" 
over the circuit, taking ds to circulate counterclock- 
wise. In what sense does this emf tend to make cur- 
rent circulate? (d) Use Ohm's law to find the equa- 
tion for the current through the circuit. Include all 
important emfs (but neglect the self-inductance). 
(e) Eliminate the current from Ohm's law to find 
an equation for the velocity. (f) Solve for the 
velocity. 
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Figure 12.47 Problem 12-G.2. 

12-G.3 A superconducting loop of width l, 
!!ili;iii!i~ ;if!if:: .............. height h, mass M, and self-inductance L is 

pulled downward by the earth's gravity into a re- 
gion of uniform magnetic field B that is normal to 
the loop. See Figure 12.27. The loop starts from rest 
just outside the field region. (a) Neglecting R (a su- 
perconductor), set up the two equations (one for 
emf, one force) that describe the motion and cur- 
rent of the loop. (b) Show that the position satis- 
fies a harmonic oscillator equation. (c) Taking mass 
M = 5 0  g, L = 8  mH, h = 5  cm, I = 3  cm, and 
B = 1.6 T, find the characteristic frequency of the 
motion. 

1 2 - G . 4  (a) Explain what a motor does. (b) Ex- 
plain what a generator does. 

1 2 - G . 5  Explain why eddy currents are to be 
avoided in motors and generators. 

1 2 - G . 6  (a) Use the Biot-Savart law to show that 
the magnetic field varies inversely with the spatial 
scale of the circuit producing the F. (b) Show that 
the self-flux of a circuit varies linearly with the spa- 
tial scale of the circuit. 

1 2 - G . 7  A monopole qm falls vertically with ve- 
locity v along the axis of a cylindrical tube of 
conductivity ~, radius R, and radial thickness d, 
where d << R. Consider the tube to be a superpo- 
sition of rings. Using the result of Problem 12-7.6 
for a monopole falling toward a ring, integrate over 
the rings to obtain the force on the monopole due 
to the tube. 
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.......... !!~!iii~iii~;i!!!!!!!~ ~ 12-G.8 Repeat the previous problem with 
..... ::i!!!i'i :. ........... the monopole replaced by a dipole of mo- 

ment/~. This is similar to the situation depicted in 
Figure 12.18. First find the force due to a ring of 
radius R, height h, and radial thickness d, then find 
the force due to an infinite cylinder. 

....... :~:iiiii'!: .... 12-G.9 A rectangular superconducting 
~: loop of width w along x and length I along 

y has mass m and self-inductance L. It lies on a 
frictionless tabletop in the xy-plane. To its right 
(along the x-axis) is a stripe of width b > l run- 
ning parallel to y, within which a uniform magnetic 
field B points vertically upward along z. The loop 
slides with constant velocity v0 as it enters the field 
region. [The geometry is similar to that in Figure 
12.11 (a).] (a) Obtain the equations for the motion 
and the current. (b) Eliminate the current to show 
that the motion satisfies an equation with the same 
structure as a harmonic oscillator. (c) Show that, if 
the initial velocity is not too large, the loop bounces 
back out of the magnetic field region. (d) Find the 
minimum velocity for the loop to pass through the 
magnetic field region. 

1 2 - G . 1 0  It is possible to deduce Faraday's 
law by using conservation of energy. Consider 

a magnetic monopole qm (i.e., the N pole of a very 
long, narrow magnet) that is constrained to move 
within a circular tube that is concentric with a wire 
carrying current I. See Figure 12.48. (a) Show that, 
on making a single pass around the wire, during time 
T, the monopole gains energy qm f /3"  d~ = qmM, 
where ~4 - f B. d~"-= FB is known as the magne- 
tomotive force, or mmf. (b) Show that, by energy 
conservation, the charge Q -  I T transported along 
the wire must have been acted on by an emf c a, 
with q~AA + Qca = 0. (c) Show that due to the 
motion of q~ the flux change associated with the 
long wire, considered to be part of a long, rect- 
angular circuit closed at infinity, is A~B =/~0q~. 
(d) Show that ca = - A ~ B / T. In the limit as T - ,  0, 

q 

Figure 12.48 Problem 12-G.10. 

this gives Faraday's law. (By considering a ring with 
a high density of magnetic charge, and moving dqm 
around in a time dt, we can replace T by dt and 
A~B by d ~ ,  thus obtaining the time derivative 
explicitly.) 

12-G. 11 An electric charge q is fixed at the origin 
and a monopole qm moves away from it along the 
y-axis. Show that the total electric field due to both 
q and qm has both circulation and flux. 

....... ~!~i~i~i~iii ....... 1 2 - G . 1 2  A moving charge q can be shown 
~::ii ...... to produce both an electric field and a (time- 

varying) magnetic field. (a) Use the Biot-Savart law, 
as if it were true for a single charge (Id~ -~ q~), to 
find/~. (b) From the time variation of B due to the 
motion show that the magnetic flux gives an electric 
field whose circulation is nonzero. 

12-G.13 (a) Compute the magnetic energy as- 
sociated with Figure 12.26(a). (b) Compute the 
magnetic energy associated with Figure 12.26(b). 
(c) Using (12.68), show that the initial mag- 
netic energy is greater than the final magnetic 
energy. 

1 2 - G . 1 4  Show that the property of perfect dia- 
magnetism (i.e., flux expulsion) is a stronger state- 
ment about magnetic flux exclusion than the prop- 
erty of exclusion of changes in magnetic flux. (Hint: 
Consider a solid conductor through which a mag- 
netic field passes, and imagine that its conductiv- 
ity continuously grows to infinity. Does it expel the 
magnetic field that is already there? What  would a 
perfect diamagnet do?) 

1 2 - G . 1 5  Consider a configuration of two coils 
that has zero mutual inductance. How might this 
be used to detect the presence of conducting ore? 

12-G.  16  Analyze the Hall effect (Section 10.7) in 
terms of motional emf. Compare and contrast with 
the analysis of that section. 

1 2 - G . 1 7  In Figure 12.44, let the voltmeter be 
moved to the left of the circuit, still making con- 
tact across Rr. Recalling that a voltmeter measures 
f /~  �9 ds through its own internal circuit, will it read 
the same value after it is moved? Discuss. 

1 2 - G . 1 8  In problem 12-4.4a, find the voltage 
difference across each coil. Repeat for parts (b) 
and (c). 



"At an industrial exhibition in Vienna, in 1873, a number of Gramme machines 
[dynamos, or generators] were being placed in position . . . .  In making the electrical con- 
nections to one of these machines which had not as yet been belted to the engine-shaft 
[driven by a steam-engine], a careless workman attached to it by mistake a pair of wires 
which were already connected with another dynamo-machine which was in rapid motion. 
To the amazement of this worthy artisan the second machine commenced to revolve with 
great rapidity in a reverse direction .... " 

"Gramme. . .  at once perceived that the second machine was performing the function 
of a motor, and that what was taking place was an actual transference of mechanical 
power through the medium of electricity.... [Up to that time] almost the only practical use 
to which the electric motor had been applied was in the operation of dental apparatus .... " 

~F. L. Pope, 
Past President of the American Institute of Electrical Engineers, Electricity in Daily Life (1890) 

Chapter 13 

Mechanical Implications 
of Faraday's Law: Motors 
and Generators 

Chapter Overview 

The previous chapter repeatedly considered the steady-state motion of a loop pulled 
into a region of magnetic field, finding that such motion produces in the loop an emf 
and an electric current. Section 13.1 discusses how such emfs and currents became a 
part of modern civilization's daily life. Section 13.2 discusses the breakthroughs that 
allowed motor and generator efficiency to become sufficiently high that electromag- 
netic induction could be taken seriously as a practical source of power, rather than 
as a mere novelty. Section 13.3 presents some general considerations about motors 
(which convert electrical energy into mechanical energy) and about generators (which 
convert mechanical energy into electrical energy). Both of these are called electric 
machines. To be specific, Section 13.3 introduces a simple model of a linear machine, 
which is the subject of analysis through Section 13.7. The linear machine, which can 
serve either as a motor or as a generator, is an example of the use and generation of 
dc~direct current~electricity. (By the use of modern power electronics it is possible to 
drive ac~alternating current~motors with dc electricity, and to drive dc motors with 
ac electricity.) Section 13.4 derives the equations that describe the electrical behavior 
(Ohm's law) and the mechanical behavior (Newton's law of motion) for this system. 
Section 13.5 solves these equations for the initial and the steady-state response. For 
the linear generator a back force develops (for a rotational generator a back torque 
develops). For a motor a back emf develops. Section 13.6 discusses the different types 
of mechanical and electrical loads to which a motor or generator can be subjected. 
The discussion of motors and generators closes with Section 13.7, which considers 

559 
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the transients that occur when a circuit is first turned on or off. Section 13.8 considers 
a situation where eddy currents, so unwanted in the case of motors and generators, 
are useful--magnetic levitation and magnetic drag. m 

13.1 
~nt iona l  

How Electricity Became Part of Daily Life 

The possibilities for using the motive power of electricity (hence motor) were 
realized early on. In 1821, Faraday developed two simple motors using a magnet 

and a current-carrying wire in a 
pool of mercury. (Mercury is a 
good electrical conductor; here 
it provides a path for electric cur- 
rent.) See Figure 13.1. Electrical 
energy from a source of emf (not 
shown) is used to sustain mo- 
tion (against viscous drag) in the 
two motors. On the left, a mag- 
net in a bath of liquid mercury 
turns about the axis of the elec- 
tric current, which is vertical. 
In other words, the N magnetic 
pole turns in the direction of 
the magnetic field. On the right, 

Figure 13.1 Faraday's two types of motors. In the wire turns about the axis 
the motor on the left, the magnet moves about of the magnet, which is also ver- 
the axis of the current. In the motor on the tical. (You are invited to verify 
right, the current moves about the axis of the that the sense of rotation is cor- 
magnet, rect in each case.) Despite their 

common current, these motors 
are independent of each other. 

Building on Barlow's 1826 invention of the electromagnet~Arago's earlier 
magnetizing of a magnetic needle with a helical wire did not include the idea of 
an electromagnet~Henry improved the lifting strength from 9 to 2300 pounds. 
Henry then used such an electromagnet to build a motor in 1831. These motors 

It has been surmised that Faraday developed mercury poisoning from his use of mercury. 
Even in 1821, at the age of 30, Faraday complained about his fading memory. In 1828, 
he remarked upon "nervous headaches and weakness." From 1839 to 1844, he was 
plagued by almost constant and severe headaches. Somehow, he managed to do his 
studies with what we now call the Faraday ice-pail during 1843. Despite the headaches, 
he remained in robust physical health, hiking some 30 miles a day even in his mid-5Os. 
By 1845, the giddiness and malaise were gone, but he continued to suffer from a 
permanent decrease in his powers of memory. By 1855, he was nearly unable to perform 
research, and in 1861 he had to discontinue his famous Christmas Lectures for children. 
He died in 1867. 
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Figure 13.2 (a) Oscillating voltage. (b) Rectified oscillating voltage. 

required that the current be produced by a battery, which was very expensive 
(zinc-copper batteries were used, in which the zinc was consumed): in the 1840s, 
Joule showed that, for the same amount of energy production, zinc cost 120 times 
as much as coal. 

With Faraday's 1831 discovery of electromagnetic induction, it became pos- 
sible to think in terms of an alternative source of electrical power for motors. 
In what may have been the first use of the commutator (i.e., the slip ring), 
at Arnpere's suggestion, Pixii in 1832 rectified current produced by Faraday's 
law: a handle turned a U-shaped magnet, whose poles passed beneath copper 
solenoids filled with iron core. The current induced in the solenoids went through 
a commutator and was rectified. Figure 13.2(a) shows the unrectified signal, and 
Figure 13.2(b) shows the rectified signal. These early generators of electricity, 
driven by mechanical power, were called dynamos. 

Two major forces driving the use of electric power were public lighting 
and electric trains, both of which used batteries for their electricity. In 1808, 
Humphrey Davy discovered the carbon arc lamp (driven by a large battery of 
voltaic cells), which became used in public facilities to provide lighting at night. 
Around 1851, it was found that electric power could be transmitted effectively 
through train rails so that a locomotive using an electric motor did not have to 
carry its own batteries. 

The first practical electrical generator of the Pixii type was used in 1858 
to power a carbon arc lamp in a lighthouse. (Presumably, the generator was 
driven by a coal-powered steam engine.) As indicated in the quotation at the 
chapter head, by 1873 there was considerable interest in electrical generators, 
primarily for arc lighting, but it seems to have been forgotten that the electricity 
they generated could also power motors, until the fortuitous rediscovery by a 
"worthy artisan." (As early as 1842, it was realized that motors and generators 
were inverse to one another.) 

Nevertheless, the generators were not very good. An 1876 study for the 
Franklin Institute, by then high school teacher Elihu Thomson~later  inventor 
of the wattmeter and of the jumping ring that will be discussed in the next 
chapter--showed that the Brush company's generator, at only 38%, was the most 
efficient then available. The low efficiency was largely due to losses within these 
devices: as discussed in the next section, unwanted eddy currents were induced 
because of the high conductivity of iron, and magnetic energy losses were caused 
while cycling the iron magnetization back and forth. Once recognized, the eddy 
current problem was quickly solved, and efficiencies rose to nearly 80%. By 
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1878, arc lamps had begun to appear on the streets of both Philadelphia and 
Boston. The hysteresis problems took somewhat longer to solve, but by 1890 
motors and generators were operating near 90% efficiency. Modern motors and 
generators aren't much better than this, but they are much lighter, cheaper, and 
more reliable. 

In the mid-19th century, industrial machines were driven by the turning 
power of steam engines or nearby rivers. However, by the early 1880s, it became 
possible for smaller companies to operate electrical motors with electricity pur- 
chased from a power company. Electricity-powered streetcars (with overhead 
lines for electric power produced by generators driven by coal-powered steam 
engines) became practical: indeed, they cost only one-tenth as much as horse- 
drawn streetcars. There was a rapid conversion to electrical power of streetcars 
and elevated trains, with a resultant skyrocketing in the rate of equine unem- 
ployment. 

It was quickly realized that electric power could be transported over large 
distances, so that power from the Niagara Falls could be sent to New York (or 
power from the Columbia River could be sent to Seattle). Again, from the same 
source as the quotation at the chapter head: 

Electricity, in its important applications to machinery.., is merely a convenient 
and easily manageable agency.., by which mechanical power may be transferred 
from an ordinary prime motor, as a steam engine or a water wheel, to a secondary 
motor--it may be at a great distance--which is employed to do the work. 

Once electrical power became more commonly available, new electrical de- 
vices, such as the carbon filament lamp, developed around 1880, made the world 
a different place. The electric power transformation, which included labor-saving 
devices such as the washing machine, was more noticeable than even the com- 
puter transformation occurring today. The following two chapters touch upon its 
effect in the area of communications: signal generation, transmission, detection, 
and manipulation. The present chapter concentrates on electric power. 

13 2 Breakthroughs in Efficiency of Motors 
and Generators 

It is of interest to indicate how the inefficient pre-1870's motors and genera- 
tors evolved into the efficient~albeit bulky~ancestors of modern motors and 
generators. As indicated earlier, there were two major advances. 

1. Elimination of eddy current losses. The original motor and generator designs 
had large amounts of conductor in their metal casing (for structural strength) 
and in their iron cores (to confine the magnetic field). When subjected to 
time-varying magnetic fields, these conducting materials had emfs induced 
in them, by Faraday's law. Hence, by Ohm's law, currents were induced. 
Such currents were not needed in the casing and the core, so the resulting 
Joule heating constituted a huge waste of energy. By the late 1870s, engi- 
neers were aware of this problem, and improved designs minimized it. The 
most obvious solution was to use less solid metal in the casing, leading to a 
"squirrel-cage" frame. See Figure 13.3(a). Such eddy currents, following 
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Figure 13.3 (a) Squirrel-cage frame for motor casing. Being mostly hollow, the 
induced currents and Joule heating losses are small compared to a solid frame. 
(b) Laminated transformer core. The induced currents circulate in the same 
direction as the current in the primary; the laminating gives the induced 
currents a high-resistance path and thus a small amplitude. 

Lenz's law, circulated about the direction of the magnetic field. In the iron 
core, by using laminations or a packed set of much thinner iron rings, the path 
of the eddy currents could be given a much smaller cross-sectional area, thus 
increasing the electrical resistance and decreasing the rate of Joule heating. 
See Figure 13.3(b). 

Figure 13.4 illustrates a square, before and after it has been cut in four, 
and the associated eddy currents due to magnetic field change normal to the 
page. Before cutting, let the effective resistance be Ro, and let the emf due to 
a time-varying magnetic field normal to the page be Co. The total rate of eddy 
current heating is then C g /R0. Figure 13.4(b) shows that the shape ofthe eddy 
current path is the same after cutting as it was before. Each quarter square 
is subject to an emf E0/4 and has resistance R = R0. (Although R = pl /A of 
Chapter 7 does not hold here, it captures the correct ideas. For each quarter 
square the eddy current length in the plane decreases by a factor of two 
relative to the original length, as does the length in the plane associated with 
the current-carrying area. However, the current-carrying direction normal to 
the page does not change. Hence, effectively, both 1 and A halve, so the eddy 
current resistance is the same for both the big square of Figure 13.4a and the 
quarter squares of Figure 13.4b.) The total heating rate of all four quarter 
squares is 4C 2 / R - E 2/4 R0, one-fourth of the original rate. 

2. Hysteresis losses. In ac motors and generators, the iron in the electromagnet 
caused unnecessary heating because the applied magnetic field cycled the 

Eddy currents C)C) 
C)0 

(a) (b) 

Figure 13.4 (a) Eddy currents for a square. (b) Eddy 
currents for a square that has been broken up into 
subsquares. 
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iron in a very lossy fashion, known as hysteresis. (This word has its origins 
in a Greek word meaning "to lag," because the energy loss is due to the 
magnetization lagging behind the applied field.) Considerable energy was 
lost in demagnetizing, and it was not recovered on remagnetizing. This effect 
was first studied and named by Ewing in 1881, and much useful work in 
this area was done by Steinmetz. Reducing hysteresis losses was a materials 
problem. In the early 1900s, grain-oriented steel was found to be much less 
lossy than ordinary iron. 

A mechanical example of hysteresis. In old-fashioned windup clocks, en- 
ergy is extracted from a spring as the clock mechanism goes through a period 
of its motion. In addition to energy that is extracted by choice (useful en- 
ergy), there is energy wasted because the mechanism has friction (energy loss 
to heat) or is noisy (energy loss to sound). For example, it would take more 
force F to stretch a clock-spring from .09 mm to.  10 m m  than to relax it from 
�9 10 mm to .09 mm. The energy wasted during a cycle of the clock mecha- 
nism would be called a hysteresis loss. The magnetic analogy would be that it 
would take a greater applied magnetic field B to increase a magnet's magne- 
tization M from 900 A/m to 1000 A/m than to decrease M from 1000 A/m 
to 900 A/m. 

Let us now turn to a simple model that will serve to explain the behavior of both 
dc motors and generators. The next chapter discusses ac motors and generators. 

13,3 Simple Model for DC Motor  and Generator--  
The Linear Machine 

Consider a circuit as in Figure 13.5, where a conducting bar of mass m can slide 
along a fixed conducting rail at the velocity v. (We present a top view of the 
circuit.) A uniform magnetic field B points into the page. The bar's position 
can be limited to a desirable range by the use of microswitches, which cause 
the direction of the current to reverse, and thus cause the direction of the force 
on the bar to reverse. We include an external emf go, and let an external force 
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Figure 13.5 Simple model for a dc motor and generator. 
A conducting rod can slide along a fixed conducting rail, 
to which a constant emf is attached. 
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F0 act on the bar. For simplicity, we neglect the self-inductance of the circuit. 
However, we include the resistance R of the circuit, and a frictional resistance 
force of the bar against the rail, which for simplicity we assume to take the 
form - m f i / r f  (just as in Chapter 7, for electrons in a wire). The time Tf represents 
a frictional relaxation time. The shorter the rf ,  the greater the friction. A motor 
that slides to rest in less time has more friction; oiling that motor decreases the 
friction and lets it slide for a longer time. r~ -1, the inverse of rf,  has the units of 
s -1 and is a relaxation rate. (A constant sliding frictional force could be written 
as Fsl~d~ -- --~2Fslide, with a direction - ~  that opposes the velocity ~, but we will 
not consider this case.) 

O p e r a t i o n  as a M o t o r  

In running this linear machine as a motor, we will consider that the external 
power source, or input, is the constant go. The output is a mechanical load force. 
There are a number of possible motor applications, and thus different types of 
mechanical load forces: 

1. In lifting a weight W, the load is 1~0 and is due to W. The mass M -  W / g  of 
the object also must be included, along with the mass m of the bar. 

2. In pulling a boat through water, addition of the boat increases the mass m 
and increases the frictional resistance (so that Tf decreases). Such a velocity- 
dependent drag force leads to a load force that is not constant. F0 = 0 
here. 

3. In compressing a spring (for energy storage), the load force F0 is proportional 
to the displacement x: F0 = - K x .  Again, the load force is not constant. 

~3~3~2 O p e r a t i o n  as a G e n e r a t o r  

In running this linear machine as a generator, we take the external power source, 
or input, to be the force/~0. As for the motor, for the generator there are a 
number of applications and load emfs. 

1. If a battery of emf go and internal resistance r is to be recharged, the electri- 
cal load is both an increase in the electrical resistance by r and a constant 
emf g0. 

2. If a lightbulb of resistance RL is to be operated, the electrical load is a resis- 
tance Rr~, with s = 0. 

3. The electrical load also could be a capacitor that is being charged, or an 
inductor that is given a current. 

For both the generator and the motor, there are even more complex possibili- 
ties, but their detailed study properly belongs to a specialized course, not to an 
introduction. 
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13.4 Equations Describing the Linear Machine 

Our task is to solve for both the motion of (i.e., the position x ) ,  and the current 
I through, the bar. The equations we employ are (1) Newton's law for motion, 
subject to the load force and the magnetic force on the current-carrying bar; 
and (2) Ohm's law, with emfs produced by both the dc source g0 and by the 
motional emf due to the bar. This yields two equations for the two unknowns, 
the current l through the circuit, and the position x of the bar. If it is true, as 
the great inventor Edison is said to have stated in court, that Ohm's law is the 
basis of electrical engineering, then surely it is just as true that Newton's second 
law of motion is the basis of mechanical engineering. 

Newton's Law: The Basis of  Mechanical Engineering 

Mechanical engineering is associated with the motion of machinery, described 
by Newton's second law of motion. What changes from problem to problem is 
the nature of the forces that cause the motion. 

Let us first consider the magnetic force. In Figure 13.5, the magnetic field 
points into the paper, and the battery discharges (l > 0) when its current flows 
clockwise. Thus, for the bar a positive current flows downward. The magnetic 
force on the bar is given by 

F B -  II  x B.  (13.1) 

With [ pointing along $ (i.ea, -3)), and ~ pointing along | [ x B points to the 
right, and is ofmagnitude IFB] - I l l  x BI - I I B  s i n 9 0  ~  I l B .  Hence 

_.} 

FB -- IlBYc. (13.2) 

In addition, let there be an applied (or load) force/~L opposing this motion, 
with 

FL -- - FoYc. (13.3) 

Finally, we will include a frictional force Ff proportional to the velocity, that 
opposes the motion, in the form 

-. _ _ _  d x  
Ff  - mV  yc, v - . (13.4) 

V f  d t  

This drag force is like that of (7.39). 
The net effect is that, including each of the forces (13.2), (13.3), and (13.4), 

Newton's second law of motion along )~ becomes 

du my 
~ o  m-d-  [ = ( F x ) n e  t = l i b -  Fo r f  (13.5) 

If we think of F0 as the (leftward) applied force, then I I  B may be thought of 
as a back  force because it opposes the applied force. 
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I3~4o2 Ohm's Law: The Basis of  Electrical Engineering 

Electrical engineering is associated with the motion of electric current, described 
by Ohm's  law. What  changes from problem to problem is the nature of the emfs 
that cause the motion. Let us now consider the emfs that act in the present case. 

In Figure 13.5, the battery emf tends to drive current clockwise. Furthermore, 
there is an induced emf. By Lenz's law, if the bar moves to the right, it gains flux 
into the paper. Hence the induced emf must produce a flux that is out of the 
paper, so the induced emf must  be counterclockwise. Let us compute it explicitly. 
Consider the motional emf 

Emot -- f fi X B. d-~, (13.6) 

where d~ circulates in a clockwise sense to produce a positive emf. This is nonzero 
only for the part of the circuit that includes the bar. Since it moves to the 
right, and the field is into the paper, 5 x B points along 3). This corresponds to a 
counterclockwise circulation, as obtained by Lenz's law. Moreover, since 5 and 
B are normal to each other, I~ x BI - vB.  With d~ - dye,  (13.6) becomes 

f o fo 
Emo~ - -  v B S ,  . d y ~  - v B d y  = - v B l .  (13.7) 

In agreement with our qualitative discussion, the motional emf tends to drive 
current counterclockwise to oppose the increase of flux from the rightward 
motion. 

With both the battery g0 and the motional emf, Ohm's  law becomes 

g. go - vBl  
I = - = . ( 1 3 . 8 )  

R R 

If self-inductance were included, then - L d I / d t  would be added to the numer- 
ator of (13.8). 

If we think of g as the (clockwise) applied emf, then vBl  may be thought of 
as a back emf because it opposes the applied emf. 

~ Back emf theory 

Find the back emf for v - 1 m/s, B - 0.1 T, and l -- O. 1 m. 

Solution: Equation (13.7) gives v Bl - 0.01 V. 

E ~ ~ ~  Back emf measurement 

Often the back emf can be measured. Let a rotational motor have a 6 A current 
pass through it when a dc emf of 12 V is switched on, but only a 2 A current 
passes through it when it is in steady operation. Consider that L / R  is so 
short that the current immediately reaches the dc value before the motor can 
start to turn. Find the resistance and back emf. 
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Solution: At t = 0 + there is no motion, so there is no back ems Then I = C0/R 
yields R = 12 V/6 A = 2 fa. When the motor is in steady operation, use of I = 
(go - Eback)/R gives Eback = gO -- I R = 12 V - (2 A)(2 S2) = 8 V. 

13.5 Solving the Equations 

Our goal now is to solve (13.5) and (13.8) simultaneously for v and I. Substi- 
tuting (13.8) into (13.5) yields 

( ) ( 1 B212 ) 
dv  Blgo Fo - rnv + . (13.9) 

m--d-[ - R ; f  m R  

We define the net relaxation time r and the magnetic relaxation t ime rB via the 
inverse of the net relaxation rate 

1 1 1 mR 
= ~ , rB = (13 10) 

r r f  rB B2l 2' " 

and the effective force F4f via 

Blgo 
Feff - R Fo. (13.1]) 

Clearly the net relaxation rate of (13.1 O) is the sum of a mechanical relaxation 
rate and an electromechanical relaxation rate. Likewise, the total force consists 
of the applied force F0 and the magnetic back force, in this case given by BlCo/R.  

• Magnetic relaxation time and magnetic back force 

For m = 0.0l kg, R = l0 -2 S2, B = 0.l T, a n d / =  0.l m, find rs and the 
magnetic back force. 

Solution: Equation (13.10) gives rB = 1 s. Thus magnetic drag can be dominant 
over mechanical drag because, for a low-friction surface, rf can be hundreds of 
seconds. For go = 10 V, by (13.11) the magnetic back force is BICo/R = 10 N. 

By (13.11), the constant part of the current, induced by the constant emf, pro- 
duces a constant rightward magnetic force of BIs  Using (13.10) and (13.11), 
Equation (13.9) can be written in the more compact  form 

dz) mT) 
- - - - .  (]3.]2) m-d[ Feff T 

Once (13.12) is solved for v, (13.8) will yield l. 
We first consider the initial response of the motor, and then its steady state. 

Section 13.6 considers how it attains that  steady-state behavior. 
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13~5,1 

13q:~ 

Initial Response of Motor 

Initially, the current I and velocity v are taken to be zero. However, in the 
absence of self-inductance, which is a measure of the magnetic field "inertia" 
(and therefore of the current, to which the magnetic field is proportional), the 
current can build up very quickly. On the other hand, the bar's mass inertia will 
prevent the velocity from building up immediately. Hence (13.8) and (13.2) 
yield an initial current and magnetic force 

80 Eol B 
Io -  --~, FB(t - O ) -  IolB - ----R--" (13.13) 

This can be a large current and a large force. For startup, a large force is often 
desirable. However, a large current cannot be sustained for a long time because 
the Joule heating (12 R) can cause the insulation on the windings to melt. On the 
other hand, the larger the current, the larger the startup force, and the shorter 
the time it takes for the motor to start operating. 

Steady State of Motor 

After a long time, the velocity reaches its maximum value, the terminal velocity 
v~, where dv/dt - O. Equation (13.12), with its left-hand side set to zero, yields 
v~ - F4fr/m. Equation (13.11) then yields 

v o ~ - F ~ f f r - (  BIC~ Fo) r 
- m - R m (13.14) 

In (13.14), increasing all types of load tends to decrease vo~: for a more massive 
load, the mass m in the denominator increases; a larger load force F0 is subtracted; 
and for a larger drag force, the relaxation time r in the numerator decreases. 
Equation (13.14) also has some interesting consequences as a function of F0: 

1. If the load F0 increases, the velocity v and the back emf, in this case given 
by vBl, decrease. Then, by Ohm's law, as in (13.8), the current increases. 
When we fix v = 0, meaning that the motor is held in place, the full startup 
current will pass through the motor, causing permanently large I2R heating. 
This explains why, when motors "freeze up," they stop working: too much 
heat is produced, so the insulation on the coils melts or burns up, and the 
motor shorts out. 

2. By (13.14), if the load force F0 > BICo/R, the motor will run backwards 1. 
(In other words, it will run as a generator.) 

Equations (13.14) and (l 3.8) yield the current I~ at long times. Using (13.10) 
for rB, we obtain 

I ~ -  8 ~  - - R ( BISOR F~ r R 

+ ~ ~ ~ + 

R -mR R rf  + TB 

BIT 
m-~ Fo. (13.15) 
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Clearly, the larger the load Fo, the greater the current that must flow. In addition, 
the smaller the frictional time r f,  the greater the current. 

13,6 

!3,6.I 

!3~6~2 

Efficiency and Load 

A given device, either electrical or mechanical, provides power to a load. There 
are numerous types of load. 

Motors: Types of Load 

For a motor, the input energy is provided by the emf Co, and the electrical power 
input is the rate of discharge of that emf: 

~)input -- ~0 I ~ .  (motor input) (13.16) 

In pulling a boat through water, the load is the drag force mv~/'rf, s o  we may 
set F0 = 0. Then the useful mechanical power is 

~usef~l m v ~  m y  2 - -  ~ v~ = ~ .  (drag load) (13.17) 
rf Tf 

The efficiency is given by (13.17) divided by (13.16). 
For a lifting device, the load may be taken to be F0 ~ 0. In that case, the 

useful mechanical power is 

~sef~l = FOV~. (lifting load) (13.18) 

The efficiency is given by (13.18) divided by (13.16). 

Generators: Types of Load 

For a generator, the input energy is provided by the force Fo, and the mechanical 
power input is the rate of work by that force: 

~)input ~ Fov~.  (generator input) (13.19) 

We often consider generators for the case when the power source causes 
steady motion. In that case, (13.15) provides the current. We then interpret F0 
as coming from the power source, and Co as being due to a battery that is being 
recharged. 

For a generator used to recharge an emf, the useful electrical power is 

~useful -- ~0 I ~ ,  (recharging emf) (13.20) 

and the efficiency is given by (13.20) divided by (13.19). Here the recharging 
emf is the load. 

For a generator used to light a bulb, the useful electrical power is 

72~seful - 12 R, (powering lightbulb) (13.21 ) 

and the efficiency is given by (13.21) divided by (13.19). Here the resistor is 
the load. 
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Figure 13.6 Genecon generator. Turning the handle 
produces a voltage difference across the leads. Likewise, 
connecting the leads to an applied voltage difference 
causes the handle to turn. 

One implication of the relaxation time TB can be seen if we "short out" a 
generator (E0 - 0) by connecting its external leads to each other. Then the re- 
sistance is due only to its own wires and is relatively small. By (13.10), this 
leads to a very short time TB, so T ~ TB, and the back force is approximately 
given by mv/TB,  which can be surprisingly large. A rotational analog can be seen 
in the inexpensive and commonly used Genecon generator. See Figure 13.6. 
Comparison between the effort needed to turn the handle when it is discon- 
nected (R = ~ ) ,  when it is connected to a flashlight bulb (moderate R), and 
when it is shorted (small R) reveals that the last case requires by far the largest 
effort. 

By connecting one Genecon to another, we can turn the handle on one (so it 
is a generator), and that causes the handle on the other to turn (so it is a motor). 
This is just what the workman did in the quotation at the chapter head. 

~ Force to a generator drive linear 

A linear generator is used to provide the 2 A current required to run a lightbulb 
with a resistance of 20 ~. Assuming that the generator is perfectly efficient, 
what force must be provided to the generator if v~ = 15 m/s? 

Solution: By (13.21), 7"~useful = I ~ R - ( 2 ) 2 ( 2 0 ) =  80 W. Since all the power 
input to the generator is converted to useful power, 72useful -- 72input. By (13.19), 
72input = Fov~, so F0 = 72input/V~ = 80/15 = 5.3 N. Note that for a rotational 
generator to generate this power at angular velocity 2 turns/s, or co = 12.56 
radians/s, the torque r would be given by ~input = rOco~, which leads to a torque 
of 80/12.56 = 6.37 N-m. 

13o7 Transients 

When an electrical or mechanical device starts up or shuts down, or when there 
is a power surge, the system is subject to transients.  

Motor Startup 

On startup, or on a change in the load, the system must adjust. We consider the 
case where there is a load Fo, and we start up the motor. Thus we must solve 
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(13.12), which can be rewritten as 

du 
dt 

= a - - ,  ( 1 3 . 2 2 )  

where 

a - ~ ,  (13.23) 
m 

and Feff is given in (13.11) and r is given in (13.10). 
Equation (13.22) is very like our old friend, the charge-up of the capacitor in 

an RC circuit with an emf g. Chapter  8 showed that the charge Q on a capacitor 
satisfies the equation 

dQ g Q 
dt = R RC" (13.24) 

When  started from Q - 0  at t -  O, the solution was found to be given by 

Q -  cc [1  - exp(-t/rRc)], r R c -  RC. (13.25) 

With (Q, C/R, RC) of (13.24) -+ (v, a, r) of (13.22), and noting that  CE - 
(C/R)(RC), so CE -+ a t ,  the solution to (13.24) with v - 0 at t - 0 is 

v -- ar[1  - e x p ( - t / r ) ] .  (13.26) 

Note that  a r  is the same asv~  of (13.14). See Figure 13.7 for a sketch of (13.26). 
From (13.26) and (13.8), we can find I if desired. Thus the characteristic relax- 
ation t ime is r of (13.10), a combination of the frictional t ime rf associated with 
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Figure 13.7 Velocity versus time for the linear motor of 
Figure 13.5, with the constant force Feff of (13.11). 
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the bar or load, and the magnetic relaxation time rB associated with dissipation 
of induced currents in the resistance. The shorter of these times dominates r. An 
efficient motor will have rB << Tf SO that there is relatively little frictional drag. 

�9 I 3.  ::7.2 Generator Disconnection 

In this case, there is no emf, so go = 0, and there is no constant force, so F0 = 0. 
By (13.11), we then have F~ff = 0. The motion can be found by solving (13.12) 
with Feff = O. 

This is similar to the equation for the discharge of an R C circuit: 

d Q  A V - Q / C  d Q  1 
l -  dt = R = R ' or dt = R C  Q" (13.27) 

The solution of this equation, with the initial condition Q -  Q0 at t -  0, is 

Q- Q o e x p ( - t / r R c ) ,  r R c -  RC. (13.28) 

With (Q, Q0, RC) of (13.28) -~ (v, v0, r) of (13.27), the solution to (13.27) 
for F 4 f -  O, with the initial condition v - v0 at t - 0, is 

v - v o e x p ( - t / r ) .  (13.29) 

Rotational machines. Most commercial motors involve rotation. Therefore, in- 
stead of F = ma, r = 27~ applies, where 27 is the moment of inertia and ~ is the 
angular acceleration. For such machines, there is a moving structure and a fixed 
structure. The stator (from static) is fixed in place, usually to the outer frame; 
the rotor (from rotate) is free to rotate. Independently of these structures, there 
are also electrical windings. The winding in which voltage is induced is called the 
armature winding, and the winding in which the field is produced is called the 
field winding. (Sometimes permanent magnets are used instead of field windings.) 
The detailed study of electrical machinery is a vast field. 

1'3.8 Eddy Currents and MAGLEV 

As discussed earlier, eddy currents often are a nuisance. But not always. In some 
cases, they are used for braking purposes (this is analogous to the drag effect 
discussed before, when a generator was disconnected). In other cases, they are 
used for magnetic levitation, or MAGLEV. In general, it is not easy to determine 
the eddy current distribution, although it can be determined when a monopo le~  
one end of a long magnet~falls down the center of a long conducting tube (see 
Problem 12-G.7). 

1 3 . 8 . I  General Results 

When a magnet moves parallel to the surface of a fixed conductor, it generates 
induced currents in the conductor, and it feels a force due to them. There is a drag 
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component and a lift component. (For the loop pulled through the field (13.9) 
with Co = 0, F0 = 0 and no mechanical drag yields a magnetic drag force that 
is proportional to the velocity.) The drag component tries to bring the magnet 
to rest; the lift component tries to push the magnet away. Both of these serve 
to decrease the rate of change of the magnetic flux seen by the conductor, in 
agreement with Lenz's law. 

There is a very simple way to think of the effect of moving a magnet. Since any 
magnet can be thought of as a linear combination of monopoles, for simplicity 
let us consider the magnet to be a monopole. After understanding a monopole, 
we can consider more general types of magnet. Let us also restrict ourselves to 
the case of a conductor with a flat surface. 

First consider the response on the sudden creation of a monopole above the 
conductor, as appears to happen when the monopole is moving very quickly. 
(First the monopole is not above a given point on the surface, and then all 
of a sudden, it is there.) In that case, eddy currents are set up in the con- 
ductor, and these succeed in opposing the change in magnetic flux due to the 
monopole. To an observer above the conductor, it is as if there were an image 
monopole beneath the conductor. See Figure 13.8(a) for the image monopole and 
Figure 13.8(b) for the eddy currents. This is precisely the situation discussed 
in Section 11.11, where Figure 11.25(a) depicts a monopole above a perfect 
diamagnet, and Figure 11.27(a) depicts the corresponding surface currents. (In 
Section 11.11, however, the surface currents do not die off with time because 
perfect diamagnets are superconductors.) The force on the monopole due to its 
image is 

El km(qm)2 
- ~ .  (conductor with flat surface) (13.30) 

(2s) 2 

Thus, in the limit of high velocity v (where "high" is relative to a velocity v0 
to be defined shortly), the force on the monopole is a lift force Fr, and 

lim Fc = FI. (conductor with flat surface) (13.31) 
V/72 0 ~ OO 

Let us now give more careful consideration to what happens when the 
monopole moves. As noted by Maxwell, motion of a monopole from A to B 
can be thought of as the simultaneous superposition of an anti-monopole at A 
(thus canceling the existing monopole at A) and a new monopole at B. (This is 

Figure 13.8 (a) Image and source. (b) Monopole appearing above a 
perfect diamagnet, where above the perfect diamagnet the field can be 
described as being due to the source and image of part (a). 
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13o8~2 

Figure 13.9 Surface currents caused by 
moving a monopole to the right. The 
change is equivalent to creating a 
monopole-antimonopole pair, the 
monopole at the new position and the 
anti-monopole (in dark) at the old position. 

very much like the "teleportation" that occurs in the television show Star 
Trek~prompting Captain Kirk's immortal words "Beam me up, Scotty!") The 

eddy current response to this motion 
is obtained by superposing the eddy 
current response to the field change 
from adding both the anti-monopole 
at A and the monopole at B. See 
Figure 13.9. This gives a qualitative 
sense of the nature of the eddy cur- 
rents that will be set up. Eddy cur- 
rents set up at a previous time, of 
course, die down, so the most recent 
eddy currents dominate. 

Maxwell's Receding Image Construction 

We are now going to write down a remarkable result. As Maxwell did in his first 
paper on the subject, we will present it without proof. This is not the preferred 
approach in physics courses, which tend to derive everything from first principles. 
However, because the result is so simple, and the proof is so complex, Maxwell 
did not follow normal procedure when he first published the result, and neither 
shall we. [For details, see the American Journal ofPhysics, Vol. 60, p. 693 (1992).] 

The result is true only for thin, flat sheets of nonmagnetic conductor (like 
aluminum or copper, but not iron). Here thin means that the distance of the 
magnet from the sheet is much greater than the thickness d of the sheet, which 
is taken to have conductivity ~. Here is the result. 

The eddy currents set up by the image poles create magnetic fields whose 
future behavior is the same as the magnetic fields set up by image poles that 
move away from the sheet with what we call the Maxwell recession velocity 

1 
v 0 -  2Jrkmcrd" (13.32) 

Thus, if a monopole suddenly appears, so does an image monopole, with the 
image monopole moving away at velocity v0. See Figure 13.10(a) for the situation 
as viewed from above, and Figure 13.10(b) for the situation as viewed from 
below. (Note that the conductor is now a thin sheet, as opposed to the more 
general case depicted in the previous figures.) We call the theory based upon 
(13.32) Maxwell's receding image construction. 

It is a pity that such an interesting literary device as teleportation violates some of 
the most fundamental laws of physics. When an object dematerializes in the telepor- 
tation device, the energy associated with that object cannot suddenly disappear, but 
must smoothly get transported from the interior of the spaceship to the desired place. 
How such a huge amount of energy can pass through the hull of the spaceship is not 
addressed. 
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Figure 13.10 Maxwell's receding image construction on the sudden 
appearance of a monopole above the conducting sheet: (a) as seen from 
above, (b) as seen from below. 

When the source monopole moves at velocity v parallel to the conductor's 
surface, as in Figure 13.9 the change at each step may be thought of as creation 
of a monopole at the new position of the source monopole, and as creation of 
an antimonopole at the old position of the source monopole. In this way, the 
new situation is a superposition of the original situation and the change. The 
response of the conducting sheet to the change is thus to produce a monopole 
and an antirnonopole beneath the conducting sheet, with a horizontal separation 
that is proportional to v. 

As the velocity v grows, the most recent image becomes more domi- 
nant because the horizontal separation between images increases. Compare 
Figures 13.11 (a) and 13.11 (b). From Figure 13.11 (b), it should be clear that 
for high velocities (i.e., v >> v0), the force on the monopole is repulsive, with 
magnitude given by the image force of (13.30); it is thus a lift force. 

In fact, (13.31) applies to any magnet moving at velocity v parallel to the 
sheet, with the appropriate image force. Of course, the image force depends on 
the magnet, and for a monopole only is given by (13.30). In this limit, the self- 
inductance of the sheet, which wants to oppose all changes in flux, dominates. 

At low velocities, self-inductance is less important than resistance. Consider 
a related example. If in (13.9) we set d v / d t  = O, E0 - O, and 1/rf  = O, then the 
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F i g u r e  13.11 Maxwell's receding image construction for a monopole above 
the conducting sheet, moving rightward. The monopoles and antimonopoles 
(in dark) move downward at velocity v0. (a) A slowly moving monopole. 
(b) A quickly moving monopole. 
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magnetic force FB cancels the applied force Fo. This situation corresponds to the 
hand providing power, so it is a generator. Explicitly, the magnetic force is then 
given by (B212/R)v, which is the same as obtained in the previous chapter for a 
circuit pulled across a magnetic field. This is a drag force, and for thin sheets the 
proportionality to v holds in general at low velocities. Since F1 and vo are the 
natural units of force and velocity, at low velocities we thus expect that 

V 
lim FD - otFi--, (l 3.33) 

V/vo~O VO 

where ~ is some constant that depends upon the details of the magnet. 

13o8,~3 Lift-Drag Relationship 

We now derive a result, based on the receding image construction, that will 
enable us to relate the lift force FL and the drag force FD when a magnet moves 
at any given velocity parallel to the sheet. Then, from our knowledge of the high 
velocity limit of FL~given by (13.31 ) ~ w e  can determine the high velocity limit 
of FD. Moreover, from our knowledge of the low velocity limit of FD~given by 
(13.33)~we can determine the low velocity limit of FL. This will permit us to 
extrapolate the behavior of both FL and FD for all velocities, and thus give us a 
feeling for the behavior of eddy current MAGLEV systems. 

First, note that for a magnet to move at a constant velocity parallel to the 
sheet, it must be subject to zero net force. Hence, in addition to the lift and drag 
forces, some equal and opposite forces must be acting. Let them be provided 
by your hand. The rate at which your hand does work against the drag force is 
given by 

"]-')hand ~--- FDV. (13.34) 

By energy conservation, this must equal the power that goes into eddy currents 
in the conducting sheet, which in turn must be the same as the power going into 
pushing the image charges away from the surface. Since the image charges all 
move with velocity vo, and since, by action and reaction, the total force on them 
must be equal and opposite to the lift force, we obtain 

T~images-- ~] i (F ivo) - - (~] iF i )vo-  FLvO. (]3.35) 

Equating (13.35) and (13.34) yields the important result that 

Fov = FL vo. (13.36) 

13.8.4 Theory of Eddy Current MAGLEV 

Combining (13.36) and (13.31) (for high velocity) yields 

V0 
lim F D -  F ; ~ .  (I3.37) 

v / v o ~  V 
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Figure 13.12 Force versus velocity for a magnet 
moving along a conducting sheet. Force is in units of 
the image force FI, and velocity is in units of the 
Maxwell recession velocity v0 of (13.32). 

Hence the drag force decreases as v 
(13.33) (for low velocity) yields 

- 1 at high velocities. Combining (13.36) and 

lim FD -- ~FI , (13.38) 
v/vo--*O 

so that  the lift force varies as v 2 at low velocities. 
Figure 13.12 sketches the behavior of the lift force Fr as a function of velocity 

v. A constant force W (for the weight of a train) is given. At low velocities, the 
lift force Fr is inadequate to support  W, but  at higher velocities, FL can support  
W, and lift-off can occur. At even higher velocities, the drag starts to decrease, 
and the lift saturates at the image force. (When lift-off occurs, the lift force 
will tend to decrease, due to the increasing separation, so this figure, based on a 
constant separation, is a bit misleading. Once lift-off occurs, the height adjusts 
until W = Ft.)  You are now an expert  in eddy current MAGLEV. 

And so the chapter ends. The next chapter will work out more of the im- 
plications of the laws of electromagnetism. Besides studying ac generators and 
transformers, and ac power, it also considers how eddy currents are produced 
when a uniform magnetic field oscillates with its direction in the plane of an 
infinite sheet of conductor. In this way, we will learn how eddy currents lead 
to electromagnetic shielding. (We will use the terminology electrostatic screening 
for the static screening of electric fields within a conductor, and electromagnetic 
shielding for the dynamic screening of both electric and magnetic fields within a 
conductor.) 

Problems 

13-1.1 Verify from the magnetic fields and the 
magnetic forces that Figure 13.1 gives the cor- 
rect direction for the motion of the magnet of the 
motor on the left and for the wire of the motor on 
the right. 

13-1.2 For both ofthe motors in Figure 13.1, the 
velocity is proportional to the force acting on them, 
and their acceleration is negligible. This is similar 

to what happens for electrons carrying current in a 
wire. (a) Discuss why the velocity is proportional 
to the force. (b) What role, besides being a good 
electrical conductor, does the liquid mercury play? 

13-2.1 Which would make the best transformer 
core and why: solid plastic, plastic rods, solid iron, 
iron rods? 
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13-2.2 (a) Explain why the eddy current heating 
for Figure 13.4(1:)) should be one-fourth that for 
Figure 13.4(a). (b) If the loop of Figure 13.4(a) 
initially has an eddy current heating rate of 0.45 W 
and it is now broken into nine equivalent subloops, 
what is the new eddy current heating rate? 

13 -3 .1  If a motor charges up a generator, what 
is considered to be the external power source, and 
what is considered to utilize the power? 

13-3.2 If a generator drives a motor, what is con- 
sidered to be the external power source, and what 
is considered to utilize the power? 

13-4.1 During startup of a motor, at 120 V emf, 
the current is 12 A. Once the motor gets moving, 
the current is a steady 2 A. Find (a) the resistance 
and (b) the back emf. 

1 3 - 4 . 2  For a linear motor with B = 0.035 T and 
l =  24 cm, the back force is 0.84 N. Find the 
current. 

13-4.3 A linear motor with mass 0.58 kg, length 
14 cm, and resistance 0.65 ~, in a field of mag- 
nitude 0.46 T, is driven by a 60 V emf. In 
steady-state operation, it has velocity 2.3 m/s. 
(a) Determine its initial current. (b) Determine 
the initial magnetic force and the corresponding 
acceleration. (c) Determine the back emf when 
it is operating. (d) Determine the current when 
it is operating. (e) Determine T f. (Neglect the 
force F0.) 

13-4.4 A linear generator with mass 0.58 kg, 
length 14 cm, and resistance 0.65 ~2, in a field of 
magnitude 0.46 T, is driven by a 24 N force. There 
is no constant emf E0. In steady-state operation, it 
has a current of magnitude 36 A. (a) Determine its 
steady-state velocity. (b) Determine T f. 

13 -5 .1  Consider a circuit with a moving arm of 
mass 46 g and length 12 cm, in a field of magnitude 
0.08 T. (a) If the resistance is 0.86 ~2, determine the 
magnetic relaxation time. (b) If a 6.3 V battery is 
added to the circuit, find the initial current and the 
initial magnetic force. 

13-5.2 Consider a circuit with a moving arm of 
mass 125 g and length 16 cm, in a field of mag- 
nitude 0.08 T. (a) If the resistance is 2.4 ~a, deter- 
mine the magnetic relaxation time. (b) If it is driven 
by a 4.6 V emf, and there is no driving force, find 

its steady-state velocity for z'f - - "  120 s. (c) Find its 
steady-state current. 

1 3 - 5 . 3  Consider a circuit with a moving arm of 
mass 68 g and length 14 cm, in a field of magni- 
tude 0.08 T. (a) If the resistance is 0.42 ~, deter- 
mine the magnetic relaxation time. (b) If it is driven 
by a 25 N force, and there is no driving emf, find 
its steady-state velocity for T f " -  120 s. (c) Find its 
steady-state current. 

13-5.4 Consider a conducting rod of mass m and 
length l, initially at rest, but free to slide down two 
guide wires making an angle ~) to the horizontal. 
The guide wires are connected at the bottom, so 
the rod and the guide wires form a complete cir- 
cuit. There is a vertical field/~. See Figure 13.13. 
In the limit where self-inductance dominates over 
resistance (i.e., retain LdI/dt but neglect I R in the 
emf equation), derive the equation of motion for 
the position z along the guide wires and for the cur- 
rent. Solve for the position and current as a function 
of time, assuming that the position and current ini- 
tially are zero. Take L to be constant. 

> 
Figure 13.13 Problem 13-6.4. 

13-6.1 A blender motor driven by a 120 V emf 
uses a 12 A current. If it operates at 60% efficiency, 
with a moment  of inertia 27 = 0.0042 Kg-m 2, at 
14.5 Hz, determine the rotational drag time rf. 

1 3 - 6 . 2  A lifting motor driven by a 250 V emfuses 
a 16 A current. If it operates at 80% efficiency, and 
lifts a weight of 417 N, at what velocity does it lift 
the weight? 

1 3 - 6 . 3  A linear motion generator is driven by a 
12 N force at velocity 2.3 m/s. It provides a current 
of 3.6 A at 6.8 V. Find the efficiency. 

13-6.4  A rotational motion generator is driven by 
a 2 N-m torque at angular velocity 4.5 s -1 . If it is 
70% efficient, find the current it provides at output 
voltage 5.6 V. 
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13-7.1 A circuit with a moving arm of mass 
48 g and length 15 cm is in a field of magni- 
tude 0.12 T. The resistance is 0.54 ~. (a) Deter- 
mine the magnetic relaxation time. (b) If there 
is a 2.4 V emf in the circuit, determine the ini- 
tial force and acceleration. (c) If r f = 86 s, de- 
termine the steady-state velocity and the velocity 
after 1.2 s. 

13-7 .2  A circuit with a moving arm of mass 212 g 
and length 24 cm, is in a field of magnitude 0.086 T. 
The resistance is 0.94 ~. Let rf = 78 s, and let there 
be a 4.5 V emf in the circuit. Determine (a) the 
magnetic relaxation time, (b) the steady-state ve- 
locity, (c) the velocity 3.4 s after the emf has been 
removed. 

13-8 .1  Compute v0 of (13.32) for Cu with d = 
l 0 nm, 100 nm, 100/lm, and 1 mm. 

13-8.2 The lift and drag forces at a velocity of 
0.5 m/s are 2.4 N and 15.8 N. The lift force at a ve- 
locity of 45 m/s is 38 N. Find v0 and the drag force 
at velocity 45 m/s. 

1 3 - 8 . 3  Using Figure 13.11(a), appropriate for 
v ((  v0, show that FD ~ v for v ( (  Vo. (Hint: There 
is no drag force for the nearest image, but for all 
pairs of images at the same horizontal position, par- 
tial cancellation of the force along the surface oc- 
curs. Show that for each pair this leads to a force 
proportional to v.) 

1 3 - 8 . 4  Determine the current density K gener- 
ated if a monopole suddenly materializes at a height 
h above any  flat conductor. (b) For a thin conduct- 
ing sheet, use the receding image construction to 
determine how K varies with time. Hint: Refer to 
Section 11.11. 

1 3 - 8 . 5  Treat a conducting sheet as if it were a 
perfect diamagnet. Use Oersted's right-hand rule in 
what follows. (a) If a current-carrying wire is paral- 
lel to the sheet, how should the image current flow? 
See Figure 13.14. (b) If wire carries current into the 

sheet, perpendicularly, how should the image cur- 
rent flow? 

Figure 13.14 Problem 13-9.5. 

13-G.1  Consider a box containing a fluid. It has 
two holes cut in it through which the fluid can 
empty. (a) Is the rate of relaxation bigger when both 
are open than when only one is open? (b) Should 
the relaxation rates be added, or should the relax- 
ation times be added? 

13-G.2 (N. Gauthier.) Consider a cylinder of ra- 
dius a and length l >> a. It is coated with a fixed 
charge density a on its round outside and has mo- 
ment of inertia 27. Wrapped around its outside is a 
massless string, one end attached to the outer sur- 
face of the cylinder, and the other end attached to 
a mass M. See Figure 13.15. (a) Find the accelera- 
tion of the mass for a - 0. (b) Find the acceleration 
of the mass for finite a.  Hint:  A time-varying rota- 
tion of the charged cylinder causes a time-varying 
magnetic field along the axis. 

Figure 13.15 Problem 13-G.2. 

13-G.3 Using electronic switches, capacitors are 
often added in parallel to motor circuits during 
startup, but are shortly removed. Explain in quali- 
tative terms why they are added, why they are re- 
moved, and how they operate. 



"I know not, but I wager that one day your government will tax it." 
--Michael Faraday, 

on the British prime minister's inquiring of the use of Faraday's dynamo (generator) (1831) 

"No great taw in Natural Philosophy has ever been discovered for its practical appli- 
cations, but the instances are innumerable of investigations apparently quite useless in 
this narrow sense of the word which have led to the most valuable results." 

--William Thomson, Lord Kelvin (1858) 

Chapter 14 

Alternati ng Cu rrent 
Phenomena: Signals 
and Power 

Chapter Overview 

Section 14.1 provides an introduction to, and motivation for, this chapter. Section 14.2 
discusses the LC circuit, which has a natural resonance frequency. Section 14.3 studies 
the effect that a resistor R has on the transient, or temporary, response of such a 
circuit. Section 14.4 discusses an ac generator, and Section 14.5 discusses the effect 
of ac voltage on the individual circuit elements R, L, and C. With this as background, 
we consider the ac response of various circuits: RC and LR in Section 14.6 (with 
applications to signal filtering in Section 14.7), and RLC in Section 14.8. Section 14.9 
discusses the principles of amplification, and Section 14.10 discusses the power factor, 
which is a measure of how efficiently power is used. Section 14.11 discusses an 
idealized version of the ac transformer, and the dramatic example of a Tesla coil, 
which employs two sets of transformers. Section 14.12 shows how ac power can be 
used to cause dc motion, and how ac power relates to 60-cycle and 120-cycle hum. 
Section 14.13 closes the chapter with a discussion of electromagnetic shielding by 
electrical conductors, m 

14.1 Introduction 

Your local electric company~which, unless it is municipally owned, pays taxes~  
sells its customers an electrical signal at an oscillating, or alternating voltage. In 
the United States, the frequency of oscillation f is, to a few parts in 104, 60 cycles 
per second (cps), or 60 Hz (or Hertz). Related to the frequency f in Hz is the 
frequency in radians per second ~o, where 

581 
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The period of the oscillation T is given by 

.... T =  1 _  2 ,  @ e r i o d ) ~ i ~ 2 ~  
7 - -  o9 �9 

For power at f = 60 Hz, (14.1) gives co = 376.99 ~ 377 s -~, and (14.2) gives 
T = 1/60 = 0.01667 s. 

The voltage difference across the terminals of an electrical outlet in a house 
or in a factory oscillates with time. It may be represented in the form 

. . . . . . . . . . . . . . . . . . . .  

AV--Vmsino)t, (oscillating vottage) i i ~ 1 3 )  

where Vm is the maximum value of the voltage. Voltage is usually specified in 
terms of the root mean square, or rms, voltage Vrms. To obtain Vr~s from Vm, first 
square the voltage. Second, time average the square over a period. (For a time- 
varying function g, we will write its time average over a period of the oscillation 
as ~.) Third, take the square root. 

We time average the square of (14.3) by noting that, over a period, sin 2 cot - 
cos 2 cot, because sin 2 cot and cos 2 cot are simply shifted versions of each other. 
Since sin 2 cot + cos 2 cot = 1, we also have sin 2 cot + cos 2 cot = 1. Hence sin 2 cot = 
cos 2 cot - �89 Thus 

- o)t (rms ac v o t f a g e ) [ i 4 ; 4 ~  

In the United States, power is usually provided at about Vrms = 120 V, which 
corresponds to Vm = ff2Vrms = 169.7 ~ 170 V. Although the electric company 
provides power that is specified in terms of an oscillating, or alternating voltage, 
it is conventional to use the term alternating current, or ac, to describe this power. 
With these details established, let's get to the big picture. 

There are at least two practical reasons we study ac phenomena. First, power 
is transmitted as ac, and it is therefore important  to know how this power is pro- 
duced, transmitted, transformed, and utilized. Second, our communications are 
based upon modulations of signals at much higher frequencies, and it is there- 
fore of importance to know how such signals are manipulated and amplified. 
Indeed, there is a fundamental  mathematical theorem, discovered in 1807 by 
Fourier during his classic studies of heat flow, that any t ime-dependent  quan- 
tity can be written as a linear combination of sinusoidal oscillations if enough 
oscillation frequencies are included. (Actually, Fourier discussed how to repre- 
sent a spatially varying quant i ty- - the  temperature--as  a linear combination of 
waves if enough wavelengths are included.) In the next chapter, we will finally 
discuss the means by which such communications take place: electromagnetic 
radiation. 

This chapter primarily considers oscillating voltages, either when turning on 
or off a circuit that  has a natural period of oscillation or when subjecting another 
circuit to an oscillating voltage. We consider only frequencies sufficiently low that  
the response of the circuit is essentially instantaneous. The next chapter will show 
that  electromagnetic signals propagate at the speed of light c ~ 3.0 x 108 m/s. 
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Because of this finite velocity, the circuit~of characteristic dimension d ~  
mustn't  be so large that the time delay across the circuit is comparable to the 
period T = f-1.  (Otherwise, it would be like having a chorus in a large room, 
where even a choir director can't prevent the time delays that make sounds from 
distant singers arrive at different times.) Specifically, 

d 1 
- < <  T -  - ( 1 4 . 5 )  
c f" 

A course in electricity and magnetism is a means to learn how radios and 
televisions work. The present chapter deals with how to tune a signal once it has 
been received by an antenna, how to manipulate that signal (treble and bass), 
and how to amplify it. It also discusses how to decipher the acoustic signal from 
the much higher frequency that is sent by the radio transmitter; this deciphering 
is different for AM and FM. Chapter 15 discusses how radio waves are generated 
by a radio station, how they are propagated through space, and how they are 
received by a receiving antenna. Recall that Chapter 10 indicated how to take an 
electrical signal from a tuner and use its interaction with a magnet to drive a 
speaker cone. In this way, it produces sound, the ultimate end product of the 
radio station's activities. 

Although the circuit elements we study are simple--much simpler than the 
complicated electronics devices used in many high-tech applications~they illus- 
trate certain fundamental principles. Today, vacuum tube diodes are passe, but 
there was a time when they were the most advanced nonlinear devices. Similarly, 
today's MOSFETS (metal oxide semiconductor field effect transistors) will give 
way to faster nonlinear devices. However, resistors, inductors, and capacitors, 
which are linear devices (double the input and you double the output), have not 
been replaced, and are unlikely to be replaced. Moreover, a hundred years from 
now, the technology will have changed, but the principles will remain the same. 

14o2 LC R e s o n a n c e  

A circuit consisting only of an inductance L and a capacitance C has no resistance, 
and thus cannot dissipate energy. Hence the total energy E, which is shared by 
both capacitor and inductor, must be a constant. Thus 

1 O2 1 
+ LI 2 E = 2 C 2 - const. (14.6) 

The behavior of a circuit with a capacitance C and inductance L was first treated 
theoretically by W. Thomson (Lord Kelvin) in 1853. If time travel were possible, I would 
ask Maxwell why he didn't include the LC circuit in his great Treatise of 1873. The answer 
would probably have been that the technology of the time was not yet capable of 
measuring the relatively high resonance frequency of a typical L C circuit. Nevertheless, 
it was with an L C circuit that electromagnetic radiation--a major new prediction by 
Maxwell himself--was first detected by Hertz, in 1888. 
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c 

L R 

-~ Inductor  

Figure 14.1 Circuit with capacitor C and inductor, 
modeled by inductance L in series with resistor R. 

To obtain the circuit equation in this case, first assume that the inductor has a 
finite resistance R. That gives us an RL C circuit, to be considered in Section 14.3. 
We will then take the limit where R -~ 0. See Figure 14.1. 

Since there is zero net voltage change around the circuit, from Figure 14.1 
we have 

AVE + A Vc - O, (14.7) 

where A VL -- ~ - Va and AVc - V~ - �89 We have taken the high-voltage side 
of the inductor to drive current to the low-voltage side. For the inductor, Ohm's 
law takes the form 

g + AVL g -  AVc - L d I / d t -  Q / C  
I - = = . (14.8) 

R R R 

Note that if d I / d t  > O, the induced emf tends to drive the current opposite to 
the direction of positive current. For finite I in Equation (14.8), as the numerator 
R ~ 0, the denominator must also approach zero. In the limit, 

dl  Q 0 (14.9) 
L Z  + - d - . 

With I - dQ_/dt, (14.9) becomes 

L d 2 Q =  Q (14.10) 
dt 2 C" 

Review of  the Harmonic Oscillator 

Those who have become adept at recognizing old friends will remember that 
(14.10) is like the equation describing a harmonic oscillator. There a mass M 
(units of kg) is constrained to move only along one axis (i.e., the x-axis). It 
is attached to a spring, of spring constant K (units of N/m), with equilibrium 
position x - 0. When x =/: O, Fx - - K x ,  so that if the spring is to the left, then 
the force is to the right, thus tending to return the mass to the origin. Using Fx 
in Newton's law of motion yields 

2 
X 

Mddt2 - -  - -  Kx. (14.11) 
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This is a second-order differential equation (second derivative is the highest that ap- 
pears). It has two initial conditions, and two undetermined constants are needed 
to match these initial conditions. You may have solved (14.11 ) in your mechanics 
course by a rotating circle construction. Let's now solve it by another method. 
Since the motion is expected to be oscillatory (but of unknown frequency coo), 
let's try the form 

x 
x - A cos(coot + qSo), so cos(coot + ~bo) - ~ .  (14.12) 

Here A and ~bo are constants determined by the initial conditions, and coo has 
yet to be determined. (By convention, we take A > 0.) Placing (14.12) for x into 
(14.11), and using 

d 2 cos(mot + ~bo) 
dt 2 

we find that K / M -  0) 2, so 

= -o002 cos(mot 4- 050), 

too -- g /M . (14.13) 

Note that the stiffer the spring (larger K ) ,  the higher the coo; and the lighter the 
mass (smaller M), the higher the coo, as expected. 

From x of (14.12), the velocity v is given by 

dx 
v -- dt  = -Acoo sin(coot + ~bo), so sin(mot + q5o) - cooA" (14.14) 

Here's how to obtain A and ~b0. Let the initial (t - 0) values of position and 
velocity be xo and v0. Using (14.12) and (14.14), the trig identity 1 - cos2(o)0t + 
~b0) + sin2(co0t + ~bo) becomes 

x 2 V 2 

1 - ~ + A~6a)'-----7~. (14.15) 

Evaluating (14.15) at t - 0 then gives 

(v0 A 2 - x 2 + . (14.16) 

Again using (14.12) and (14.14), the trig identity tan(m0t + ~b0) - sin(mot + ~bo)/ 
cos(mot + ~b0) becomes 

V 
tan(mot + ~b0) - - ~ .  (14.17) 

o)0x 

Evaluating (14.17) at t - 0 then gives 

tan ~bo = 
V0 

O)0X0 
(14.18) 
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Note that the inverse tangent function always yields a ~b0 in either the first or 
fourth quadrant. With A > 0, such a ~b0 always yields x0 > 0. To accommodate 
x0 < 0, a phase of zr rad = 180 ~ must be added by hand to the inverse tangent 
of (14.18). Hence, if x o -  - 3  cm, vo - 2 cm/s, and coo = 0.5 s -], then A -  
5 cm/s and ~bo - (0.927 + zr) rad - 4.07 rad - (53 + 180) ~ = 233 ~ which is in 
the third quadrant. Then (14.12) gives xo = - 3  cm, and (14.14) gives vo = 
2 cm/s, as desired. 

14.2.2 Return to the L C Circuit 

By analogy to the harmonic oscillator, replace (x, M, I0  by (Q, L, l /C),  to obtain 
the solution for the L C circuit equation of (14.10) as 

Q = A cos(coot + ~ibo), 
- -  V L C "  ) i  

The current is given by 

dQ_ 
l - dt  - - o ) o A  sin(mot + ~o). (14.20) 

Here coo is the frequency of oscillation, and A (in units of coulombs) and ~b0 
(in units of radians or degrees) are constants determined by the initial values of 
the charge (Q0) and the current (I0). By analogy to (14.16) and (14.18), 

10) l0 
A 2 -  Q~ + ~o ' tan~bo - -~oo----~o" (14.21) 

Equations (14.19) and (14.20) show that when the capacitor is fully charged 
(and correspondingly, when a spring is at maximum expansion or compression), 
the inductor carries no current (correspondingly, the mass has zero velocity). 
Moreover, when the inductor carries its maximum current (and correspond- 
ingly, when the mass has its maximum velocity), the capacitor has zero charge 
(correspondingly, the spring has zero displacement). Pursuing the analogy fur- 
ther, the potential energy of the spring corresponds to the energy stored by the 
capacitor's electric field, and the kinetic energy of the mass corresponds to the 
energy stored in the magnetic field of the inductor. 

~ Finding the amplitude and phase 

(a) If the initial conditions are that Q = Qo and I - 0 ,  then find ~bo and A. 
(lo) Repeat for initial conditions Q -  0 and I - Io. 

Solution: (a) If the initial conditions are Q = Q o  and I = 0, then (14.19) and 
(14.20) are satisfied by ~b = 0 and A = Q0. (b) If the initial conditions are that 
Q = 0 and I = Io, then (14.19) and (14.20) are satisfied by ~b0 -- -zr/2 and A=  
Io/coo. This can be seen by performing the substitution. 
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• Properties of L C circuit an 

Let L = 5 mH and C =  2/zF. Find (a) a)o; (lo) fo = ~oo/2zr; (c) To = fo  1", 
(d) how many oscillations occur within 0.15 s. 

Solution: (a) By (14.19), ~oo = 104 s-l; (b) fo = 1592 Hz; (c) To = 6.283 x 
10 -4 s; (d) 0.15/To = 239 oscillations. 

On substituting (14.19) and (14.20) into (14.6), we find that  the total energy 
is indeed constant. Explicitly, with ~ - ~o0t + ~b0 and ~o0 - (L C) -~/2, 

1 2 L A2O)o2 E - ~ - ~ A  cos 2~b+ sin 2 

A 2 A 2 
= 2 ~ (c~ ~b + sin 2 4)) -- 2 C" (14.22) 

In the case of the harmonic oscillator, the energy is alternately stored as potential 
or kinetic energy; in the case of the L C circuit, the energy is alternately stored 
as electrical or magnetic energy. 

The L C circuit is the heart  of the tuning circuit for radio or TV. Turning a 
dial (or, in these digital days, pushing a button) adjusts either L or C until the 
desired station, with its own ~o0, is picked up. 

14o3 

14.3,1 

RLC C i r c u i t  T r a n s i e n t s  

O v e r v i e w  

When  a resistance R is added to a resonating L C circuit, the oscillations will 
eventually die out. See Figure 14.1, which illustrates the voltage A V = I R across 
the resistor. Assume that  a constant emf  is switched on at t ime t = 0. 

Small R. If the resistance R is small, we expect that  the current and voltage 
should look something like that  in Figure 14.2(a), with many oscillations that  
slowly decay in amplitude. 

Large R. If the resistance R is large, there will be an initial transient, with 
short characteristic t ime 

L 
r L R  - -  - ~ ,  (14.23) 

Just as electric charge on the surface of a resistor produces the voltage drop across the 
resistor (see Section 8.10), so too does electric charge on the surface of an inductor 
produce the voltage drop across the inductor (see Section 12.11.2). This means that, 
just as a resistor has a parasitic capacitance in parallel, so too does an inductor have a 
parasitic capacitance in parallel. Hence an inductor can be expected to self-resonate; 
indeed, this is a well-known laboratory phenomenon. 
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Underdamped 
V V 

t - . -~  

Overdamped  

t ----~ 

(a) (b) 

Figure 14.2 RLC circuit transients: (a) voltage across resistor R for low resistance 
(underdamping); (b) voltage across resistor R for high resistance (overdamping). 

due to L R buildup of the current. It will be followed by a much longer decay, 
with characteristic time 

rRc - RC, (14.24) 

due to RC decay of the current flow. See Figure 14.2(b). In this case, there is no 
oscillation at all. 

By considering the case of small resistance, and increasing it, it is possible to 
obtain a qualitative understanding of what happens for intermediate values of the 
resistance. In addition to the decrease in amplitude depicted in Figure 14.2(a), 
increasing the resistance increases the period T of each oscillation. This is be- 
cause there is a resistive drag that tends to oppose the current, thereby slowing 
its motion. If a circuit oscillates with a slow decay, it is called underdamped. Thus 
the frequency of the motion should decrease with increasing R, until a critical 
resistance Rc is reached at which the frequency goes to zero. For larger resis- 
tances, there are no oscillations, only a rise and then a fall in the current, as in 
Figure 14.2(b). If the circuit doesn't oscillate at all, the circuit is called 
overdamped. 

There is a simple way to estimate the dependence of Re on C and L: we 
equate the two relaxation times r/.R = L / R  of (14.23) and rRc = R C o f  (14.24). 
Then 

Rc "~ ~ .  (14.25) 

For R << Rc the circuit is underdamped; for R >> Rc the circuit is overdamped. 
Having described the physics of the situation, we must  now extract it from 

the mathematics. With I = dQ/dt ,  differentiating (14.8) with respect to t yields 

dI L d2I 1 
= - ~ I ,  (14.26) 

dt R dt 2 RC 

where we have used I - d Q / d t .  This may be rewritten as 

d2l R d I  1 
d t - -T  + -L -d7 + ~ I - O . (14.27) 
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14.3.2 M a t h e m a t i c a l  Deta i ls  

Rather than bore you with algebraic manipulations, we simply present the final 
results. The details can be done as problems. The general results will be given, 
which will allow any initial conditions. First, the critical resistance is given by 

Rc - 2 ~ .  (14.28) 

This has precisely the form indicated in (14.25), the proportionality constant 
taking the specific value 2. 

~ Type of RLC circuit 

Let L -  5 mH and C = 2 #F, as specified in the previous example. Also 
take R - 10 ohms. (a) Find Rc; (b) determine the qualitative behavior of the 
circuit. 

Solution: (a) Equation (14.28) gives Rc = 100 ohms. (b) Since R << R~, this is 
an underdamped circuit. 

Small R. For R < Re, the charge is given by 

Q -  Q ~  + A cos (fit + 0o) exp [ - ~  
t] 

2L/R ' (14.29) 

where Q ~  is the charge after a long time (given by Q ~ -  CE0 if there is a 
constant emf go), and 

(14.30) 

The current is given by I = dQ/dt.  The form of (14.29) corresponds to 
Figure 14.2(a). The quantities A (in units of coulombs) and 00 (in radians) are de- 
termined by the two initial conditions, which are the values of Q and I = d Q/d t  
at t = 0. We say that this is the underdamped case. For R = 0 and g0 = 0, (14.29) 
and (14.30) reduce to (14.19). Problem 14-3.3 asks you to show that (14.29) 
and (14.30) satisfy (14.27). 

The Ouality Factor 0 Measures How Long a Circuit Will "Ring" A dimension- 
less measure of how long the circuit will oscillate is the number of radians of 
oscillation that occur during the exponential decay time L~ R. This is called the 
quality factor Q. The higher the Q, the more the circuit will "ring"; for R << Rc, 
the circuit oscillates many times before the capacitor completely discharges. If 
R < �89 Rc, then ~ of (14.30) approximately equals coo of (14.19). Then, with 
(14.28), Q is given by 

Q - number of radians of oscillation - 
flL w0L 1 L Re 

~ ~ ~ , 

R R vFL--CR 2R (14.31) 
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~ T h e  quantity factor 
Consider the previous example, where L = 5 mH, C = 2 #F, and Rc = 
100 ohms. (a) If R = 10 ohms, find Q; (b) estimate the number of cycles 
of oscillation. 

Solution: (a) Equation (14.31) gives (2 ~ 5. (b) This corresponds to 5/2rr = 
0.796 of a full cycle of oscillation. 

Another way to express the "quality" of an RL C circuit is to determine the 
ratio of the total energy E stored in the circuit, given by (14.22), to the energy 
loss per cycle, given by f f  12 Rdt.  In the limit where R << Rc, we may use (14.20) 
for I. The period is given by (14.2) with o) = ~o0. Then, since the time average 
of sin 2 mot over a period is 1/2, 

jo T 1 2rr A2oo2 R _ rt A2cooR" (14.32) 12 Rdt  - 2 coo 

Then, using (14.22), (14.32), co0 - (LC)  -'h, (14.2S), and (14.31), 

energy stored 

energy loss per cycle 

_ E _ A 2 / 2 C  _ ~  ] _ 1 R c _  Q 

- f o  I2Rd t  - rrA2~~176 - 2rrR - Jr 4 R  - 2zr" 

(14.33) 

Large R. For R > Re, the current is given by 

l A + e x p ( ~ . )  ( t )  - - + A_ exp - ~  , 
r _  

(14.34) 

where 

;() 1 R R 2 l R 1 +  1 -  

Z = 2-Z + c c  = 2L 

;() [ ; 1 _ R R 2 1 R 1 -  1 -  

- 2L 2-s L C = 2L 
(14.35) 

and the quantities A+ and A_ are constants with units of amperes that are 
determined by the initial conditions. The form of (14.34) corresponds to 
Figure 14.2(b). Note that for R >> Rc the shorter time r+ nearly equals rLe, 
and that for R (< Rc the longer time r_ nearly equals rec. We say that this is the 
overdamped case. When R - R~, we have the case of critical damping. There are 
many mechanical analogs of the RL C circuit, such as a swinging door or a mass 
on a spring. Problem 14-3.4 asks you to show that  (14.33) and (14.34) satisfy 
(14.27). 
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The purpose of displaying the solutions is to show that our initial qualitative 
discussion was correct. You are encouraged to remember only the qualitative 
introductory discussion associated with Figure 14.2. 

14.4 AC Generator -Rotate  Loop in Uniform B Field 

We begin by discussing how it is that the electric company can generate ac power. 
The principle is as follows. 

14.4ol The EMF o f  an A C G e n e r a t o r  

Consider a planar coil of area A and N turns, with normal fi, in a uniform/~ field. 
That could be due to a large magnet or solenoid. See Figure 14.3. The magnetic 
flux for all N turns is given by 

�9 - N f  f i d A -  NBAcosO,  (14.36) 

where 0 is the angle between ~ and/~. If/~ and ~ point in the same direction at 
t = 0, and ifthe coil (or the field) is rotating atthe uniform rate ~o, then 0 = o)t, so 

B = NB A cos cot. (14.3 7) 

Now apply Faraday's law, with positive emf along the direction of circulation of 
d~ (which is counterclockwise to the observer in Figure 14.3, on applying the 
circuit-normal right-hand rule with the thumb along fi). Then the generator 
emf is given by 

~ ~~~~~~~5~~~~~~~~~~~~~~~~~ ~~~ ~~~~~~ ~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~ ~i~iiiii~ii~~iiiiiiiiiiiiiiii ! 

i iiiiiiiiiiiiiiiiiii iiiiiiiiiiiii iiiiiiiiiiiiiiiiii iiiiiiiiiiiiiiiiiiiiiii i!ii iliiiiiiiiiiiiiiiiiiiiiii iiiii !i 

Figure 14.3 A simple ac generator: a rotating 
rectangular loop in a uniform magnetic field. 

In practice, the electric com- 
pany employs hydroelectric and 
steam turbine generators. There, 
what is called the rotor (contain- 
ing either the coils or the magnet) 
turns relative to the stator (contain- 
ing either the magnet or the coils), 
thus producing an emf, by (14.38). 
The frequency is determined by the 
turning rate of the rotor, which is 
kept nearly constant at 60 Hz. It 
cannot be kept exactly constant 
because of variations in the rate 
at which water or steam flows 
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past the turbine. Furthermore, the larger the cur ren t / ,  the larger the magnetic 
momen t  fi (lfil - NI A) and the larger the back torque fi x B that  tends to slow 
down the turbine. 

Equation (14.38) shows that  a generator provides a t ime-dependent  source 
of ac emf  

Eg - Cm sin o)t, (14.39) 

where E m -  (.oNBA for our particular generator, gg peaks at a t ime t given by 
a quarter period, or T/4, since o)T - 2zr and o)T/4 - zr/2. Another  interpreta- 
tion of how this emf  comes about is that  it arises from a time-varying mutual  
inductance M that  is proportional to cos 0 - cos cot. We can also interpret Cg as 

_ ,  - - ,  

a motional emf, via g - f E �9 d~" with E - ~ x B. 

14.4,2 The Voltage Drop across an A C Generator 

Now apply a generator to an arbitrary unknown circuit; the latter may be thought  
of as a "black box." See Figure 14.4. We choose positive current to flow in the 
direction of positive generator emf gg, and we choose positive terminal voltage 
A Vg = �89 - Va to oppose the generator emf. This follows the convention applied 
earlier to a battery, where the terminal voltage opposes the battery emf. Then 
Ohm's  law applied to the generator resistance Rg yields 

l - G - A Vg. (14.40) 

In the limit Rg ~ 0 of an ideal generator, for finite I, (14.40) yields 

By (14.39) and (14.41), 

AVg -- gg. (14.41) 

AVg -- gg - gm sin ~ot. (14.42) 

14.5 Response to AC Power of Circuit Elements--  
Impedance and Phase 

The next few sections work out the consequences, for various circuits, of using 
an ac generator, with emf as in (14.39), rather than a dc battery, to drive 

O 

I 
Unknown circuit 
("black box") 

I 

Figure 14.4 A generator of emf gg and 
resistance Re, driving current I through 
an unknown circuit ("black box"). An 
ideal generator is obtained in the limit 
where Rg --~ 0. 
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current around a circuit. We cannot solve for all circuits at once: our ap- 
proach will be to solve for individual circuit elements, and then build up 
more complex circuits from these individual circuit elements (the black box of 
Figure 14.4). 

As early as 1879, the voltage and current of ac circuits (i.e., circuits driven 
by ac power) were analyzed mathematically using complex numbers, with mea- 
sureable quantities obtained by taking the real part. An equivalent but more 
graphical viewpoint was developed in 1893 by Steinmetz, an electrical engineer 

e m sin(a) t)  

I m sin(a) t - q~) 

tavg ~o 

AV e leads I by  q~ 

Figure 14.5 Phasor diagram. 
Instantaneous values of the voltage 
and current for a device are given 
by the y-components of the 
counterclockwise rotating vectors 
AV e and I. Respectively, they have 
amplitudes gm and Ira, and phase 
angles relative to the x-axis of cot and 
cot -~b. If co, t, and Im are considered 
to be known, then gm and ~b must be 
determined. 

well trained in mathematics and physics. 
It is called the method of phasors and is 
related to the rotating circle construction 
to describe the harmonic oscillator. Favor- 
ably received then by a large audience 
of practicing electrical engineers, it is still 
used today. 

The idea of a phasor is that in an ac cir- 
cuit the voltage or current for any device 
can be represented as the y-component 
of a vector (called the phasor) that rotates 
at frequency co. For example, the genera- 
tor voltage of (14.42) can be represented 
by a voltage phasor AVg of length g~, 
which rotates counterclockwise at the fre- 
quency co, and coincides with the x-axis at 
t = 0. We denote phasors by boldface. See 
Figure 14.5, where g m  sin ~ot of (14.42) 
is the y-component of AVg. (Some au- 
thors choose to use the x-component of 
phasors; either choice will work, as long 
as that choice is made consistently.) AV e 
peaks at time t'~ ax = T/4. 

For a given input emf, the time-dependent current I constitutes the response 
of the system. It can be written in the general form 

~i:ii~:ii:i:iii:ii:ili~:ii:i~ii~:iiii~:i!ii;ili;i!:;i~iiiiii:i~ii i~ii~ii~i;i~i~ili~ii; ~i~i~ii~;i~i~;~i~i~ii~!~;~ii;i~;i~ii~ii~i~iii~i~ii~i~i~ii!i~ii~;i~i!iii~i!~i~iii~i~i~i~i~i~iii~i~i~i~iii~ii~i~ii~i~ii~ii~;i~ii~ii~!~;~ii~;i~i~i~ii~;i~ii~i~ii~;i~i~i;iiii~ii~i;i~;~iii~i~i!~i~ii;;~i~ii~i~iiii~ii~i!iiii~ii 
iiii ilii i!iii iiiiiiiiill !ii!iiii!i !iiii!i i iil !i ii!ii!  ii!iii i!iil i! ii iiii i!iiiiii iiili ii !!iiiiiiiiiiiiiiiiii!i!i iiii i iii! iiii!iiiii !! i!! iii ii ii ii iii!ii iiiiiiii 

where the presently unknown angle ~b is called the phase shift, and the presently 
unknown quantity Z, with dimensions of ohms, is called the impedance. I peaks 
at t? ~x = (T/4) + (~/w). If the current peaks before (after) the emf, then ~b < 0 
(~b > 0). For ~b = 0 ~ current and voltage are completely in phase, and for ~b = 
180 ~ current and voltage are completely out of phase. 

For a given circuit, to obtain the actual current at any time, we must thus 
determine both ~b and Z. Figure 14.5 also represents the current phasor 1, where 
Im sin(cot- ~b) is the y-component of I. Note that for Figure 14.5 the voltage 
across the generator peaks before the current through the circuit so that in this 
case ~b > 0. 
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The remainder of this chapter considers currents of the form (14.43) and 
emfs of the form (14.39). Hence, in all phasor diagrams, the phase angle for I is 
cot - ~. Section 14.10 shows that  power-absorbing circuits have ~ in either the 
first or fourth quadrant, and that  power-providing circuits have ~ in either the 
second or third quadrants. 

• Determining the and shift impedance phase 

Consider a circuit for which g~ - 20 V and co = 50 s -1 . A measurement 
yields Im = 0.1 A, and that the time interval At = t ' ~  x - t ~  x between the 
maxima in g and I is -0 .004  s, corresponding to the current peaking later. 
Find Z and ~b. 

So lu t ion :  Equation (14.43) immediately yields Z -  20/0.1 = 200 s2. Since the 
current peaks later, ~b > 0. Now note that I A t l / T  -- l~l/2Jr. Since At and ~b have 
opposite signs, A t / T  = -~b/2zr. Then ~b = - ( 2 z r / T ) A t  = - - m A t .  This gives ~b = 
0.2 rad, or ~b = 11.46 ~ Mtematively, At = t~ ~ax - t'~ "x = T / 4  - ( T / 4  + 4)/o)) = 
-~b/o), so ~b = -coAt  again. 

In what  follows, we successively represent the voltage across circuits consisting 
of a resistor R,  an inductor L,  and a capacitor C, in terms of the current through 
the circuit. For more complex series circuits, we add the voltages of each circuit 
e lement  to obtain the net voltage. From this the current (and thus the impedance 
Z and the phase ~) can be determined. The more complex circuits will be R C ,  

L R,  and RL C. The first two can be used for filtering out unwanted signals, and 
the last can be used for tuning to desired frequencies. 

Since current and voltage have different units, in the figures (e.g., Figure 14.5), 
the relative lengths of current and vohage phasors are not relevant. The phase 
angle ~b between AVg and I is defined in a local (rotating) coordinate system x ' y ' .  

With the x'-axis fixed on the rotating current phasor I, and A Vx, and A Vy, the 
components  of AVg along x '  and y ' ,  we define 

AF , 
tan ~ = ~ .  (14.43') 

AVe, 

1 4 , 5 . 1  Resistor Voltage 

Consider a resistor, as in Figure 14.6(a). The current I across a resistor R with 
voltage drop A VR -- ~ - V~ is, by Ohm's  law, given by 

A�89 
I - ~ .  (14.44) 

R 

On representing the current as in (14.43), Equation (14.44) yields 

A VR = I R -- I~Rsin  (tot - ~ !  (ac voltage across resisto~ .......... 

A VR is represented as a phasor AVR by a rotating vector that  points along the 
current, with length I m R .  See Figure 14.6(b). We say that  the voltage across the 
resistor is in phase with the current. 
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- ~ AVie " - - - ' - ~ +  /m R sin(o) t - ~b) 

R b /m sin(o) t -- q~) 

O - -  
t - ~  

A V  R and I in-phase 

(a) (b) 

Figure 14.6 Current I and voltage drop A VR across a resistor R. (a) Circuit 
diagram. (b) Phasor diagram. For a resistor, I and A VR are in phase. 

Now consider a circuit containing only a resistor and a generator. That  is 
equivalent to the black box of Figure 14.4 containing only a resistor. How do we 
find ~ and Z of (14.43)? The resistor is subject to the full voltage drop across 
the generator, so A Vg - A VR. Then, by (l 4.4 l), A VR -- A Vg - gg - gm sin cot. 
Hence, using Im = gm/Z,  (14.45) is satisfied by phase ~b = 0 and impedance 
Z = R. Thus the resistance R is the impedance of a resistor alone. 

i4~5o2 Inductor Voltage 

Now apply Ohm's  law to find the voltage A VL across an inductor L of resistance 
RL -+ O. As usual, I enters the high-voltage side. See Figure 14.7 (a). With A VL -- 
G - G representing the voltage across the inductor, we write 

I _ S L  + AVL ] ( _ L  d I  ) 
RL = Rc ~ -  + A Vc . (14.46) 

In the limit as RL ~ O, (14.46) gives A Vr, - L d l / d t .  Then (14.43) yields 

dI  
A VL -- L-d[ - lmcoL cos (cot - 4)) - lmcoL sin (cot - ~ + rr/2), (14.47) 

"i Im(o)L)sin(o) t  - 0 + ; r / 2 ) ~ - - - - ]  o)t - q~ + zr/2 -~ a VL ~- + 

L 
I m sin(o) t - q~) 

dI  

-Ldt-- ~ A V  L leads I by 90 ~ 
8 

(a) (b) 

Figure 14.7 Current I and voltage drop A I/~ across an inductor L. (a) Circuit 
diagram. (b) Phasor diagram. For an inductor, A Vc - Ld I /d t  "sees the future" 
of I, and thus "leads" I by 90 ~ 
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where with 0 -  ~ot-~b we used the trigonometric identity c o s 0 -  
sin (0 + rr/2). 

Equation (14.47) may be rewritten as 

= i . x , .  s i .  . . . . . . . . . . . . . . . . . . . . . . . .  

: : (ac voltage a~oss  ~ d u c ~ r )  : f I ~ i ~  

where XL is called the inductive reactance. It has the same units as resistance, 
or ohms. Observe that  XL is small at low frequencies, but  large at high fre- 
quencies. 

A VL is represented as a phasor AVL by a rotating vector of length ImcoL = 
Im XL, with a phase angle 90 ~ greater than that  of the current. See Figure 14.7 (b). 
We say that  the voltage across the inductor leads the current (by 90~ 
Since A VL = LdI /d t ,  the inductor voltage "sees" the future (the slope) of the 
current. 

Now consider a circuit containing only an inductor and a generator. That  is 
equivalent to the black box of Figure 14.4 containing only an inductor. How do 
we find 4b and Z of (14.43)? The inductor is subject to the full voltage drop across 
the generator, so A Vg = a VL. Then, by (14.41), A VL = A Vg = s = s sin cot. 
Hence, with Im -- Cm/Z, we reproduce (14.48) for phase 4b -- st/2 and impedance 
Z = coL. Thus the inductive reactance XL = coL is the impedance of an inductor 
alone. 

~ Inductive reactance 
For L = 5 mH, find XL at c o -  102 s -1 and co = 108 s -1 . 

Solution: Equation (14.48) gives XL = 0.5 ohm at co = 102 s -1, and XL = 5 x 
107 ohms at o0 = 108 s -1 . Note how XL increases with increasing frequency co. 

14.5.3 Capacitor Voltage 

For a capacitor C with charge Q, the voltage drop A V c -  V b -  G across a ca- 
pacitor is given by 

A Vc - Q.  (14.49) 

See Figure 14.8(a), where the convention I - d Q / d t  is used, so that  Q -  f I 
(t)dt. 

With 0 - cot - ~b and the trigonometric identity cos 0 - - s i n  (0 - Jr~2), for I 
given by (14.43) we have that  

Q - f  l (t)dt - Im f sin (cot - ~)dt - 
'm 'm ( 

cos (cot - ~b) -- - -  sin c o t - ~ b - ~  . 
co co 

(14.50) 
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- ~ AV C ~ +  

C 
/ 

0 -" '~ 

l m sin@ t-q~) I (Im/~O C) sin@ t-~b - x / 2 )  

AVc 

AV C lags I by 90 ~ 

(a) (b) 

Figure 14.8 Current I and voltage drop A Vc across a capacitor C. (a) Circuit 
diagram. (b) Phasor diagram. For a capacitor, AVc = Q / C  "sees the past" of I 
( Q  = f Idt), and thus "lags" I by 90 ~ 

Hence the voltage drop across the capacitor is given by 

Q Im 
ZXVc=--d= o C sin (cot - ~b - 2 ) .  (14.51) 

This may be rewritten as 

; i i il i il i~iiiiiii i i ii ii iii!iiiiiiiiiii i iiii!iiiiiiiiiii 

where Xc is called the capacitive reactance. It has the same units as resistance, or 
ohms. Observe that  Xc is large at low frequencies, and small at high frequencies. 

A V c  is represented as a phasor AVc by a rotating vector of length Im/COC, with 
a phase angle 90 ~ less than that  of the current. See Figure 14.8(b). We say that  
the capacitor voltage lags the current (by 90~ Since A V c -  Q / C -  f I d t / C ,  
AVc "sees" the past of the current (the sum over the past). 

Now consider a circuit containing only a capacitor and a generator. That is 
equivalent to the black box of Figure 14.4 containing only a capacitor. How 
do we find ~b and Z of (14.43)? The capacitor is subject to the full voltage 
drop across the generator, so A Vg - AVc. Then, by (14.41), AVc - A Vg - gg = 
Emsino)t. Hence, with Im -- Cm/Z, we reproduce (14.52) for phase ~b - - J r / 2  
and impedance Z - (1/coC). Thus the capacitative reactance X c  - (coC) -1 is the 
impedance of a capacitor alone. 

• Capacitive reactance 

For C -  2 #F, find Xc for co - 102 s -1 and co - 108 s -1 . 

Solution: Equation (14.52) gives X c -  5000 ohms at co = 102 s -1, and Xc = 
0.005 ohm at co = 108 s -1 . Note how Xc decreases with increasing frequency co. 

With this as background, we now analyze some more complex circuits. 
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14.6 

14.6.1 

RC and LR Series Circuits 

RC Series Circuit 

When an emf (14.39) is applied to an R C circuit, there are two characteristic 
frequencies. One is the emf frequency co The other is r -1 the inverse of the 

�9 R C '  

RC time constant 

rRc = RC (14.53) 

for this circuit, studied in Chapter 8. The response of the system will depend 
on the ratio of these two frequencies, c o / r ~ ,  or o)rRc. For low frequencies, 
the capacitor, with the larger low-frequency impedance (wC) -1, will dominate 
the system. For high frequencies, the resistor, with the larger high-frequency 
impedance R, will dominate the system. We now derive the response of the R C 
circuit given in Figure 14.9(a). 

How do we find ~b and Z of (14.43)? First, we relate A VR and A Vc to gm 

of (14.42). The voltage drop across the generator equals the sum of the voltage 
drops across the resistor and the capacitor, so 

aVg = avR + a r c .  (14.54) 

Here, AVg -- G - V~, AVR -- V~ - V~, and A V c -  I~ - Vc. Use of (14.41) and 
(14.39) then gives 

Eg = gm sino)t = A Vg = A VR + A V c .  (14.55) 

We will solve for ~b and Z in two ways. 

I m sin(w t - ~) 

V m sin(to t) 

~ A V =  A V  R + A V  C 

A V  lags I 

AV c 

(a) (b) 

Figure 14.9 RC series circuit driven by a generator gg. (a) Circuit diagram. 
(b) Phasor diagram. The phase angle is intermediate between those for a 
resistor (0 ~ and a capacitor (-90~ 
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14,6,2 

14,6o3 

Trigonometric Method 

Using sin(A + B) - sin Acos B + sin B cos A, with A - cot - ~b and B - ~b, so 
A + B - cot, the left-hand side of (14.55) can be rewritten as 

Em sin cot - &[s in  (cot - ~b) cos~b + cos (cot - ~b) sin ~b]. (14.56) 

With (14.45), (14.51), and s in (o ) t -~b -  J r / 2 ) - - c o s ( w t - ~ b ) ,  the right-hand 
side of (14.55) becomes 

A VR + A Vc -- lm[ Rsin (cot - dp ) 
1 ]  

~-~ cos(~ot - ~b) . (14.57) 

By (14.55), the coefficients of sin(o)t-~b) and cos(oot-~b) in (14.56) and 
(14.57) must be the same. This leads to 

/m 
C~ cos~b- ImR, Cm sin~b- = - I m X c .  (14.58) 

o)C 

Using sin ~b/cos~b - tan~b, the ratio of the left-hand sides in (14.58) yields 

1/coC Xc 
tan ~b - R = - -~ - .  (14.59) 

Thus ~b lies in the fourth quadrant, intermediate between 0 (R alone) and -zr /2  
(C alone). 

The sum of the squares of the two terms in (14.58) gives, with sin2~b + 
cos 2 ~b - 1, 

R2+ --Xm R2+x , (14.60) 

SO 

j  1)2 
Z - g i n  R2+ - R  1 +  

i7 -g-d 
(14.61) 

Phasor Method 

In terms of the phasor representation in Figure 14.9(b), by (14.55) we must add 
the voltage phasors AVe and AVc across the resistor and the capacitor to obtain 
the total voltage phasor zXVg across the generator. Since AVe and AVc are 90 ~ 
out of phase, they add vectorially. By the Pythagorean theorem, the resultant 
phasor has a length squared 12 R? + I2mX20 which must equal Cm 2 . As expected, 
this is the same as (14.60). We obtain the phase angle ~ from the fact that its 
tangent is the ratio of the phasor voltage component along the local (rotating) 
y'-axis to the phasor voltage component along the local (rotating) x'-axis. By 
definition, the voltage ImR is along the local (rotating) x'-axis, so the voltage 
--Im/COC = - I m X c  is along the local (rotating) y'-axis. The ratio, by (14.43'), 
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gives (14.59). From (14.59) for ~b and (14.61) for Z, the total current at any 
time can be obtained using (14.43). 

~ A n  RC circuit 
Consider the values R = 10 ohms and C = 2 #F, for which Example 14.7 
applies. Which circuit element dominates at low frequencies, and which dom- 
inates at high frequencies? 

Solution: Since (14.52) gave Xc= 5000 ohms at o2= 102 s -1, and Xc= 
0.005 ohm at o) = 108 s -1, the capacitor dominates at the lower frequency, and 
the resistor dominates at the higher frequency. The reasons are simple: at low fre- 
quencies the capacitor has time to charge up, thus blocking current from flowing; 
at high frequencies the capacitor does not have enough time to charge up, so the 
resistor dominates. 

14.6.4 L R Series Circui t  

When an emf (14.39) is applied to an L R circuit, there are two characteristic 
frequencies. One is the frequency oo. The other is r~-~, the inverse of the L R time 
constant 

L 
rLR = -- (14.62) 

R 

for this circuit, studied in Chapter 12. The response of the system will depend 
on the ratio of these two frequencies, o)/r[~, or oorLR. For low frequencies the 
resistor, with the larger low-frequency impedance R, will dominate the system. 
For high frequencies the inductor, with the larger high-frequency impedance a)L, 
will dominate the system. We now derive the response of the L R circuit given 
in Figure 14.10(a). 

How do we find ~b and Z of (14.43)? First we relate A VR and A Vt to gm of 
(14.42). The voltage drop across the generator equals the sum of the voltage 

b 

/ 

I 
lZm sin(w t) i .......... A V -  AVL + AVR 

0 - A V R  w 

A ,  

AV leads I 

(a) (5) 

Figure 14.10 LR series circuit driven by a generator gg. (a) Circuit diagram. 
(b) Phasor diagram. The phase angle is intermediate between those for a resistor 
(0 ~ and an inductor (90~ 
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drops across the resistor and the inductor, so 

- n v R +  n v L .  (14.63) 

Here AVg - G -  V~, A V R -  Vc-  V~, and AVL - A G -  AG.  Use of (14.41) 
and (14.39) then gives 

Cg -- Cm sinwt -- AVg -- AVR + AVe. (14.64) 

We present only the phasor solution. Here we must add the voltage drops 
across the resistor and the inductor. Since these are at 90 ~ to each other, by 
(14.64) and (14.43), the phasors add vectorially to give a quantity of length 

E - ImZ--  mV/R2§ =  mV/R2§ (14.65) 

Thus 

Z -  v/R 2 + (o)L) 2 - RV/1 + (~orcR) 2. (14.66) 

See Figure 14.10(b). We obtain the phase angle 0 from the fact that its tangent 
is the ratio of the phasor voltage component along the local (rotating) y'-axis to 
the phasor voltage component along the local (rotating) x'-axis. By definition, 
the voltage ImR is along the local (rotating) x'-axis, so the voltage ImwL = ImXL 
is along the local (rotating) y'-axis. Thus, by (14.43'), 

wL XL 
tan 0 -- = ~ .  (14.67) 

R R 

From (14.66) for 0 and (14.67) for Z, the total current at any time can be 
obtained using (14.43). 

~ An LR circuit 

Consider the values R -  10 ohms and L - 5 mH, for which Example 14.6 
applies. Which circuit element dominates at low frequencies, and which dom- 
inates at high frequencies? 

Solution: Since (14.48) gave XL = 0.5 ohm at ~o = 102 s -1, and XL = 5 x 107 
ohms at ~o = 10 s s-l, the resistor dominates at the lower frequency, and the induc- 
tor dominates at the higher frequency. The reasons are simple: at low frequencies, 
the current is changing only very slowly, so the inductor is not very effective at 
producing an opposing emf-LdI/dt ;  at high frequencies, the current is changing 
very rapidly, so the inductor is effective. 

Food for Thought: How would you treat a resistor and inductor in parallel? 
A resistor and capacitor in parallel? A capacitor and an inductor in parallel? The 
last two cases are relevant to parasitic capacitance. 
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t ~  t - - - ~  

(a) (b) 

Figure 14.11 (a) Oscillating voltage. (b) Fully rectified oscillating voltage. 

14.7 Rectifying and Filtering AC Voltages 

Often, only ac voltage is available in situations where dc voltage is desired. Thus, 
somehow the ac voltage must be rectified, or converted to a dc voltage. Amplifiers 
use dc voltage as part of the input to a non-ohmic (i.e., nonlinear) device. An 
additional weak signal voltage can then produce a relatively large change in the 
output current. Certain motors, such as those used in battery-operated toys, also 
use dc power. 

As discussed in the previous chapter, one way to produce a dc voltage from 
an ac voltage, as in Figure 14.11 (a), is to use a commutator, which switches the 
connections every half-cycle. Another way is to use a set of diodes. Either way 
leads to an output that, in the ideal case (where the contacts do not cause any 
complications), consists of the absolute value of sine curves, as in Figure 14.11 (lo). 

Such output can more closely approximate dc power if we employ a more 
complicated set of coils and commutators. If there are twice as many coils, then 
the signal will be picked up in its positive phase every 90 ~ (rather than every 
180~ That is an improvement, but it is still far from dc. The Gramme dynamo, 
or generator, of the 1870s, used at least 16 coils and commutators (i.e., every 
180~ = 11.25~ thus producing a much smoother voltage. (At relatively low 
power, rectification can be performed with electronic tubes or transistor devices 
called diodes.) To obtain an even clean or dc voltage, with a minimum of so- 
called ripple voltage, we filter out the time-varying parts of the voltage. We speak 
of low-pass and high-pass filters, by which we mean that the filter passes either 
low-frequency signals or high-frequency signals. 

Filters also eliminate unwanted signals. For example, when we tune in a radio 
or TV, we don't want to hear two stations (or more) at the same time. A third 
common use of filtering is to eliminate unwanted static or hiss. Bass and treble 
controls, or the more sophisticated graphic equalizers, found on many stereo 
systems, are filtering devices. (Five frequency ranges may be associated with a 
graphic equalizer, each frequency range defined by a combination of a high-pass 
and a low-pass filter.) Note that signal really indicates a signal voltage. 

t4.7~! Inverse Relationship between Response in Frequency 
and in Time 

Because of (14.2), which shows that the period of an oscillation equals the inverse 
of its frequency, it should not be surprising to learn that the response of a circuit 
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to a given frequency is related to its response within the inverse of a given time. 
That is, if a circuit responds well at high frequencies, it will respond well to signals 
that change significantly only within a short amount of time; if a circuit responds 
well at low frequencies, it will respond well to signals that change significantly 
only over a long amount of time. We will use this result in what follows. 

14o7~2 RC Circuit  as F i l te r  

Consider Figure 14.9(a). By (14.45), the voltage A VR = I R across a resistor 
is proportional to the current at that instant of time. By (14.49) the voltage 
AVc = Q / C  = f Id t /C  across a capacitor in series with R is proportional to the 
charge at that instant of time. Because the charge is the time integral of the current, 
the capacitor largely sees the past. The capacitor voltage has a certain inertia, 
because it cannot change instantly. (This is a general statement that includes the 
fact that, for ac voltages, the capacitor voltage A Vc lags the current I entering and 
leaving the plates of C.) By putting a voltage across the resistor and capacitor in 

When we say "pick up a signal," we 
mean that we use a measuring device 
of very high resistance (or very high 
impedance), so that it draws negligible 
current. Otherwise, we would have to 
include the measuring device as part of 
the circuit. 

series, and then picking up only the voltage across 
one, it is possible to emphasize either the present 
or the past. 

For signals at a low frequency, the capacitor 
has time to charge up, and its voltage will domi- 
nate the circuit. Thus, picking up the signal from 
the capacitor in this circuit would smooth out a 
rippled dc signal from a generator. 

For signals at a high frequency, the capacitor 
does not have enough time to charge up, so it will 

not develop much voltage. Thus, picking up the signal from the resistor in this 
circuit would decrease the amount of low-frequency noise, such as "leakage" 
from a 60 Hz power line or unwanted dc voltage. 

~ A n  RC circuit 

In an RC circuit subject to a maximum voltage gin, find the maximum voltage 
A Vcm across the capacitor. 

Solution: Use of (14.52) for AVe, (14.43) for Im, and (14.61) for Z gives, with 

x u z  = x /v/R  + = + 

1 

A Vc = g,~ v/1 + (mR, C) 2 
sin(~ot - 4) - 3r/2). 

Thus A VCm = gin~V~1 + (oJRC) 2. Since A Vcm is finite at low o2, but goes to zero 
at high to, the capacitor picks up the voltage at low frequencies, but not at high 
frequencies. The capacitor is thus a low-pass filter for the RC circuit. Correspond- 
ingly, you may show that the resistor is a high-pass filter for the RC circuit, with 
a maximum voltage given by A VRm = Em(toRC)/v/-1 + (toRC) 2. The phase ~b is 
given by (14.59). 
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14.7.3 L R Circuit as Fi l ter  

By (14.4 5), the voltage A VR = I R across a resistor is proportional to the current 
at that instant of time. By (14.47), the voltage AVL = L ( d l / d t )  across an ideal 
inductor is proportional to the rate of change of the current at that  instant of 
time. In a certain sense the inductor sees the (immediate) future. (This is a general 
statement that includes the fact that, for ac signals, the voltage A VL leads the 
current I going into L.) By putting a voltage across the resistor and inductor in 
series, and then picking up only the voltage across one, it is possible to emphasize 
either the present or the future. 

For signals at a low frequency, the resistor voltage I R will dominate the 
circuit. Thus, taking the signal off the resistor in this circuit would smooth out 
a rippled dc signal from a generator. 

For signals at a high frequency, the inductor voltage L d l / d t  will dominate 
the circuit. Thus, taking the signal off the inductor in this circuit would decrease 
the amount of low-frequency noise. 

~ An LR circuit 

In an L R circuit subject to a maximum voltage ~m, find the maximum voltage 
A VLm across the inductor. 

Solution: Use of (14.48) for A VL, (14.43) for Im, and (14.66) for Z gives, with 

XL/Z = XL/v/R2 + X 2 = (XL/R)/v/1 + (XL/R) 2, 

i f)L/R) 
A VL = gm V/1 + (wL/R) 2 

sin(o)t - r + zr/2). 

Thus AVLm = Cm(wL/R)/~/1 + (wL/R) 2. Since AVL is finite at high w, but goes 
to zero at low w, this illustrates that the inductor picks up the voltage at high 
frequencies, but not at low frequencies. The inductor is thus a high-pass filter for 
the L R circuit. Correspondingly, you may show that the resistor is a low-pass filter 
for the LR circuit, with a maximum voltage given by AVRm ~ ~m/V/1 "Jr- (wL/R) 2. 
The phase r is given by (14.67). 

14,8 RLC Resonance: Tuning AC 

We shall show later in this section that an RL C circuit, as in Figure 14.1, has its 
largest response at the resonant frequency 

~ 1  (14.68) 
w 0  - LC 

of a circuit with only a capacitor and an inductor. Section 14.10 will show that 
by varying either L or C (or both), we thus can tune the frequency of the 
circuit to pick up a range of frequencies around the resonant frequency. The 
range of frequencies Am for which the circuit responds well is proportional to 
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~] AM is amplitude modulation 
V I Envelope (signal) 

~ /  FM is frequency modulation 

V 

t ~  

(a) (b) 

Figure 14.12 (a) Amplitude modulated signal (AM). The frequency is constant at the 
transmitter frequency (e.g., 1210 KHz), but the amplitude is modulated at much 
lower acoustic frequencies (up to about 10 KHz). (b) Frequency modulated signal 
(FM). The amplitude is constant, but the frequency is modulated around the 
transmitter frequency (e.g., 89.1 MHz), by perhaps 20 KHz. 

the resistance R, as we will derive in (14.76). For small R, the response is very 
narrow about coo, and the circuit is very sensitive to the signals that are picked 
up. For large R, the response is very broad about coo, and the circuit is not as 
sensitive. One therefore might think that it is always advantageous to have a small 
resistance. That is not the case. The actual signal is contained in modulations of 
the carrier signal, and this can be described as a range of frequencies around the 
carrier frequency. Let the R L C  circuit be used as a radio tuner. If the tuner 
response is too narrow in frequency, it will be able to pick up very weak signals, 
but it will not pick up enough of the high-frequency part of the radio signal. 
If the tuner response is too broad, then it might simultaneously pick up two 
stations. Note that there are two ranges, or bands, of commercial radio signals, 
AM and FM. 

Let us now give a more detailed discussion of the RL C series circuit, depicted 
in Figure 14.13 (a). 

We present only the phasor solution. Rather than, for example, (14.55) for 
the RC circuit, or (14.64) for the LR circuit, for the R L C  circuit 

gg = gmsino)t = AVR + AVL +AVc.  (14.69) 

In Figure 14.13(b), the phasors for the capacitor and inductor point opposite to 

The AM band corresponds to carrier frequencies running from about 55 KHz to 
1600 KHz. Here, the frequency of the carrier is fixed, and its amplitude is modulated by 
the audio signal (at much lower frequencies): the stronger the audio signal, the greater 
the amplitude of the carrier signal; the higher the frequency of the audio signal, the 
faster the modulation. See Figure 14.12(a). A radio receiver uses a tuned RLC circuit to 
filter out frequencies not within a narrow frequency range centered about a particular 
carrier frequency. It then feeds the remaining signal through a circuit that responds too 
slowly to detect the carrier but fast enough to detect the envelope of the carrier (i.e., 
the audio signal). A rectifier, as in Figure 14.1 l(b), coupled with a low-pass filter, as in 
Example 14.10, will perform this function. 
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The FM band runs from about 88 MHz to 108 MHz. Here, the signal is carried by 
modulating the carrier frequency. See Figure 14.12(b). High-frequency peaks are closer 
together in time than low-frequency peaks. The same considerations about narrowness 
and breadth hold for FM as for AM. The Federal Communications Commission (FCC) 
has reserved a larger bandwidth for FM stations than for AM stations; as a consequence, 
the sound quality of FM stations is higher because they can carry more of the higher 
frequencies than the AM stations. This relationship between the faithfulness, or fideliN 
of sound reproduction, and the frequency bandwidth is a consequence of the mathe- 
matical theorem of Fourier, referred to at the beginning of the chapter. Another reason 
FM sound quality is higher is that there is much less "static" (due to local atmospheric 
disturbances) in the FM band than in the AM band. 

one another. By the Pythagorean theorem, adding all three phasors vectorially 
gives a net phasor of length 

( ( Em = l m Z -  lm R 2 + coL ~ , (14.70) 

so that 

Z ~ ~,R2 , , ~+  k(('~L �84 �84 "'" ....... -"~O)~J] : 1  �84184 d ~  i + I r  Li [i[[ i! : i (~[! ~!i [ ~  2 i ! ! � 8 4  [~:[[! [ ; )J~ii~ii:[!i!!ii:!i)! ill ii I [ [  [ j' i[! ![: [7 [ iii!!!!iii!!ii!!iiiiii!iii(ii! ii[i!)[[)i[ji[[![iii!!iii!ii!i!iliiiiiiiiii i iii!iiiiiiiiiiii[i iil;;;[i[ �84184 �84 �84 �84 II ! �84184 i ! i ![Uii!iiii!i!!i!iii!ili [i 
OmpedanceofRLC~eUit) Cl~i~ti 

Here XL and Xc are defined in (14.48) and (14.52). We obtain the phase angle 
as follows. By definition, the voltage ImR is along the local (rotating) x'-axis, 

the voltage Im/CoC is along the local (rotating) -y'-axis, and the voltage Im(coL) 

b t O' 
-Q 

L 

I d 
~ V  k = O 

AVL~ k [lmsin(~t-4)) 
~ [ .... / I  ~ V m s i n ( c o t )  

aVl  + Av,  + 

AVc 

(a) (b) 

F i g u r e  14.13 RLC series circuit driven by a generator gg. (a) Circuit diagram. 
(b) Phasor diagram. The phase angle is intermediate between those for an inductor 
(90 ~ and a capacitor (-90~ 



14.9 Principles of Amplification 607 

is along the local (rotating) y-axis.  Thus, by (14.43'),  

See Figure 14.13(b).  Wi th  (14.71) for Z and (14.72) for ~b, the total current  
may be obtained from (14.43). For o)L --~ 0, we obtain the results for an RC 
circuit; for (coC) -1 --~ 0, we obtain the results for an LR circuit. At  the resonance 
frequency ~o = coo, X~ - Xc = 0, so Z = R, the m i n i m u m  possible value for Z. 
By (14.72), r = 0 on resonance. 

For a given input  voltage (which might  represent  the signal from a radio 
antenna), the m a x i m u m  current  occurs when  the impedance is at a min imum.  
This is at resonance, where  Z = R, so the full input  voltage is across the resistor. 
Nevertheless, for a circuit of low resistance, at resonance the voltage m a x i m u m  
Im/O)oC = ImXc across the capacitor (and its negative across the inductor)  is 
usually much  larger than the voltage m a x i m u m  ImR across the resistor. 

~ An RLC circuit  

Consider a circuit with the familiar values L - 5 mH and C = 2 #F, and with 
R = 10 ~2, driven at the frequency o)=  0.5 x 104 s -1 . Consider the power 
source to provide a maximum emf of Cm. Find a)0, Rc, (2, XL, Xc, Z, ~b, the 
time between voltage and current peaks, and the maximum voltage across 
each circuit element. 

Solution: Equation (14.68) yields the resonant frequency oo0 = 104 s -1, and 
(14.28) yields the critical resistance Rc = 100 ohms. Note that o0 is half the reso- 
nance frequency oo0, so the capacitor should dominate the inductor. By (14.31), 
the circuit has {2 = 5. By (14.48), XL = ooL = 25 ohms, and by (14.52), Xc = 
1/ooC = 100 ohms. Then, by (14.70), Z = v/102 + (25 - 100) 2 = 75.7 ohms. 
Hence the capacitor dominates the circuit, but the other circuit elements cer- 
tainly contribute. By (14.72), tan~b = (XL - Xc)/R = 2 5 -  100/10 = -7.5,  so 
~b ~ - 8 2  ~ or -1 .438 radians. Let us set oot* = ~b. By (14.39) and (14.43), the 
applied voltage peaks at a time t* = r = -1 .438 x 10 -4 s before the current 
peaks; here, the negative sign means that the current peaks before the voltage, 
as expected if the capacitor dominates. Note that at this frequency A VRm = 
(R/Z)g-.m = 0.132gm, A VLm m--- (o)L/Z)gm = 0.33gin, and A Vcm = (1/o)CZ)g,n = 
1.32gm. Thus the maximum voltage across the capacitor is larger than the max- 
imum applied voltage; however, the capacitor and inductor voltages oppose one 
another. 

14:o9 Principles of Amplification 

Tuners would  not  be useful if, after a signal were received and tuned  in, it could 
not  also be amplified. This makes a good place to discuss amplifiers. 

The first electronic amplifiers were called valves because their principle of op- 
eration was very similar to those for valves associated with water flow. There, for 
one valve s e t t i n g ~ o f f ~ t h e  valve prevents any water  from passing. For another  
setting, all the water gets through.  For an intermediate  setting, a small change in 
the valve setting causes a very large change in the output .  
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Figure 14.14 Amplification using a triode. (a) Electrons are emitted from the 
hot cathode. The circuit is completed by the positively charged anode (in 
modern semiconductor language, the "collector"). The current is sensitive to the 
voltage Vg of the grid screen. (b) Current versus anode voltage, for a family of 
grid screen voltages, illustrating the sensitivity of the current to the grid voltage. 

A standard and easily visualized electrical amplification device is the triode. 
See Figure 14.14(a). There, within a vacuum tube, a negatively charged cathode 
emits electrons, which travel to the positively charged anode. Between them is a 
screen called a grid, which serves as the valve. Let the cathode-to-anode voltage 
A V be fixed, as in Figure 14.14.(b). (A V can be hundreds or even thousands of 
volts.) To prevent a current I so large that the triode burns out, the grid voltage 
Vg is given a negative value, which somewhat suppresses the current because the 
electrons are then repelled by the grid. Together, A V and Vg define the operating 
point of the triode. For a triode, the input consists of a small change A Vg in the 
grid voltage. The output consists of the change in l R voltage across an external 
resistor R through which the anode current I flows. Amplification occurs because 
small changes A Vg in the grid voltage cause large changes A I in the anode current. 
The amplification is proportional to A I /A Vg and can correspond to a very large 
conductance (i.e., inverse resistance). (Small changes in A V do not cause large 
changes in I.) In the 1880s, Edison noticed that heating the cathode increases 
the current, but heating the anode has no such effect. (Edison didn't know this, 
but heating the cathode helps the charge carriers, electrons, escape; heating the 
anode has no such effect. This was an early clue that the charge carriers had 
negative charge.) Modem semiconductor electronics use a variety of devices 
whose ancestor was the triode. 

14.10 Power and Power Factor 

Let us now return to our discussion of tuners, in the broader context of the 
efficiency of power utilization. 

When the electric company sends power to a factory, it wants to ensure that 
a significant portion of that power is actually used by the factory. Otherwise, all 
that happens is that the power company uses energy in the wires (I2R heating) 
that go to and from the factory. For example, if the factory were simply a large 
stupid capacitor, then the capacitor would simply charge and discharge, with 
no actual use of power. Clearly, the electric company must characterize the 
effectiveness, or efficiency, of power utilization. It measures this with a quantity 
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Year 2000 television screens and computer monitors typically use 25 keV electron beams 
(e.g., A V = 2500 V) produced bythe cathode in a vacuum tube to "paint" a succession 
of images on the screen, which is covered with phosphor spots that emit light when hit 
by the electron beam. Because electrons and electronics respond much more quickly 
than the eye, which can only resolve times on the order of 1/30 of a second, images are 
painted on the screen every 1/30 of a second. The image consists of two "interleaved" 
partial images of horizontal lines (odd numbered and even numbered) that are succes- 
sively painted, each in 1/60 of a second. The horizontal sweep, with about 440 dots 
per line, is controlled by the magnetic field produced by electric current in a set of field 
coils above and below the tube. The vertical sweep (which enables the electron beam 
to go from one horizontal line to the next) is controlled by the magnetic field produced 
by electric current in a set of field coils on each side of the tube. Both of these sweeps 
are automatic, no matter what the television signal. Brightness is controlled by the grid 
voltage. The first 20 lines of each partial image are not visible because they correspond 
to the time it takes to go from the last line in one partial image to the first line in the 
next partial image. The final result is an image with a total of 485 visible lines from both 
partial images. 

called the  power factor, which is the  ratio of the power  used by the factory to the 
m a x i m u m  power  tha t  it could use. 

In this case, the average power  absorbed by the system is given by the t ime 
average of the  p roduc t  of the  input  voltage V/n = Vm sin cat and the current  I = 
Im sin (cat -- ~b). Thus, wi th  an overbar denoting the t ime average, 

m 

T 2 - lm Vm sin ~ot sin(o)t - ~b) 

ImVm 
= lm Vm sin 2 cat cos ~b - sin cot cos cot sin ~b - 

2 
~ cos~b. (14.73) 

Here  we have used sin 2 cot - 1/2 and sin cot cos cot -- (1/2)s in  2o)t - 0 for the  
averages over a period. We call 

i iiiiiiiiiiii! iiiiiiiiiiii !   i  !i ii!i!i!i!iiiiiii ii i  iiiii!iiiiiii  iiii  iiiiiii iiii   i   i 

These use three separate electron beams, one for the red phosphors, one for the greens, 
and one for the blues (hence RGB). To help ensure that the red electron beam doesn't 
hit the blue phosphors, a shadow mask separates the phosphors on the screen. This 
mask must conduct electricity (from the electron beam's charge), tolerate high temper- 
atures (from the electron beam's energy), and remain aligned with the phosphors as it 
heats up and cools down. The most suitable material for this mask is Invar, so named 
because its length is nearly invariant to temperature changes--its coefficient of thermal 
expansion is very small. Invar has the difficulty that it can be magnetized, which can 
affect the focusing of the electron beams. For this reason, many color television sets and 
monitors have degaussing coils to generate a magnetic field that automatically demag- 
netizes the shadow mask. 
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For power to be absorbed, the power factor must be positive, so ~ must lie in the first 
or fourth quadrant. Circuits such as those we have studied all have such a ~. If the 
power factor is negative, then the circuit must be providing power (in which case, we 
say that it is active), and ~ lies in the second or third quadrant. Factories that provide, 
rather than use, electrical power have negative power factors. 

the power factor for the system. (Here -~max is the max imum power utilization 
possible.) The power factor is the efficiency of power utilization. Note that  
cos~b-  0 for either a capacitor ( ~ -  - z t / 2 )  or an inductor (~b-  zr/2). If Im is 
out of phase (~b - i z r /2 ) ,  the power factor is zero; if Im is in phase (05 - 0), the 
power factor is unity. 

1 4 . 1 0 . 1  Power  Absorbed by an RL C Circuit 

Let us now return to the problem of a radio tuner, and of the power absorbed 
by an R L C  circuit as a function of frequency for fixed Vm. By (14.74), with 
I m -  Vm/Z and cos0 = R/Z ,  and (14.71) for Z, 

- -  1 R 

-- -2 V2m R 2 -ff (XL -- Xc) 2" (14.75) 

This has a max imum when Xr = Xc, which occurs for c o -  ~o0 = (LC)-�89 At 
resonance, Z = R and (14.75) shows that ~ reaches its max imum value 7)max = 
V~/2R. If the frequency is off-resonance, either above or below, the power ab- 
sorption is reduced. See Figure 14.15, which plots 79~79max versus frequency for 
a circuit with the familiar values L - 5 m H  and C -  2 #F. Recall from Examples 
14.2 and 14.3 that  these lead to a resonant frequency coo - v / 1 / L C -  104 s -1 J 

and a critical resistance Rc - 2 v /L /C  = 100 ohms. Three different values for the 
resistance R are considered. As expected, the larger the resistance, the broader 
the resonance. 
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Figure 14.15 Resonance curve for power absorption by an RLC circuit. The 
larger the resistance R, the broader the resonance curve. 
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When the resonance is sufficiently narrow, the frequency shift needed to 
reduce the power absorption by a factor of two is the same on both sides of the 
resonance. It is given by requiring that X t  - Xc  - R. Let us set co = co + Aw, and 
use oo -1 ~ O2o 1 - o0o2Ao0, which holds for Ao0 << coo. Since Xt - Xc = 0 when 
o0 - o00, for co near o0o we have 

1 
X L - X c - w L  

o~C 

1 
(Ao))L + ~ ( A o ) )  - 2(Aw)L. 

Equating this to R yields 2(Aco)L - R, or 

R 
Aco = ~ .  (14.76) 

2L 

For this frequency shift (either above or below resonance), the power absorbed 
is half the power absorbed at resonance. This assumes that Vm does not vary with 
frequency. B W -  2Aco is called the half-power bandwidth. 

With (14.76), we may rewrite the quality factor of (14.31) as 

cooL o)o 
(2 - = ~ .  (14.77) 

R 2Aw 

This may also be written as (2 - co0/B W. 

~ Bandwidth 
Using values from Example 14.12, find the co' s at which the power is at half- 
maximum, and the half-power bandwidth 2Ao0. 

Solution: Equation (14.77) gives Am = 10/(2.5 x 10 -3) =0.1 x 104 s -1. Hence, 
for c o - c o 0 + A c o - 1 0 4 + 0 . 1  x l04s  -1, giving co_--0 .9x104s  -1 and co+= 
1.1 x 104 s -1, the power is at half-maximum. The half-power bandwidth is 
0.2 x 104s -1. 

~'~ :~ () 2 Net Power Factor Unity and Resistance Matching 
for Maximum Power Transfer 

The previous discussion considered the power source to have negligible 
impedance. In some applications, this is not a valid approximation. In partic- 
ular, to obtain maximum power transfer, we must include the impedance of the 
power source. For a power supply in the laboratory, with impedance Zg and 
phase shift ~bg, and a system with impedance Zs and phase shift ~bs, we can pose 
the question of when the maximum power transfer will occur to the system. 

Rather than derive the answer in general, we will discuss one specific system, 
and show what the two conditions must be. Consider that the power source 
is an L R circuit with an emf and resistance Rg, and that the system is an R C 
circuit with resistance Rs. This combined circuit is equivalent to an RL C cir- 
cuit with a resistance R = Rg + Rs. For an RL C circuit, the maximum current 
occurs on resonance, when the inductive and capacitive reactances are equal. 
This corresponds to a power factor of unity. Once this first condition is met, we 
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obtain maximum power transfer when a second condition, P~ = Rs, is met, as 
discussed in Chapter 8. These two conditions--net power factor unity and equal 
resistances~must hold for maximum power transfer from a power source to an 
ac circuit. 

14,11 

14~I1ol 

Transforming AC 

Electrical transformers use the mutual inductance between two circuits to trans- 
form ac voltages, either to higher or to lower values. However, the ac frequency 
is unaffected; 60 Hz remains 60 Hz. After electricity is generated at an electrical 
power plant, it's then stepped up to a high voltage for transmission along power 
lines, of resistance R. The extra cost of insulation for high voltages is outweighed 
by the decreased 12 R heating in the power lines. The electrical signal is then 
stepped down in voltage for usage in the home or factory. 

Fluorescent tubes contain what is called a ballast, which contains a step-up 
transformer that produces the high ac voltage required to initiate startup of the 
tube. Doorbells and external house lighting usually are powered by step-down 
transformers, which provide a lower and safer voltage in the event of a short in 
the circuit. 

The A C Transformer 

Our discussion of transformers will neglect both eddy current loss and hysteresis 
loss. As discussed in Chapter 13, the latter can be made relatively small. We 
also neglect the resistive losses in the circuit of the primary, thus assuming that 
Rp - 0. Hence the only source of loss is the resistance Rs in the secondary. The 
primary is the side associated with the power source Eg, and the secondary is 
the side associated with the electrical load Rs. See Figure 14.16. Let Np turns 
of the primary and Ns turns of the secondary be wrapped around the iron of 
the transformer core. Also, we assume that the iron core perfectly retains the 
magnetic flux so that the flux (i.e., the number of field lines) crossing a turn of 
the primary is the same as the flux crossing a turn of the secondary. (Note: The 
mode of operation of an ac transformer is a consequence of Faraday's law. Thus 
it applies only to ac voltages and current, with their associated time-varying 
magnetic fields, not to dc voltages and currents, with their associated constant 
magnetic fields.) 

The voltages Vp and Vs across the primary and secondary are caused by the 
induced emfs gp and gs. Neglecting the resistance in the wire of the primary 

Figure 14.16 An ac transformer, with generator gg 
powering the primary. The primary and secondary 
typically have different numbers of turns; their relative 
voltage is proportional to their turns ratio. 
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and secondary, then just as for the ac generator of (14.41), the voltages and emfs 
are instantaneously opposite. In terms of their amplitudes, they are the same: 
Vp = Cp and Vs = Es. 

Now note that the same magnetic flux passes through each turn of both 
primary and secondary. (This observation makes it possible to avoid explicitly 
introducing the self-inductance and mutual inductance of the primary and sec- 
ondary.) By Faraday's law, the emf is proportional to the rate of change of the 
magnetic flux. Thus the voltage per turn is the same in both primary and sec- 
ondary, or 

Ve �89 
= Nss" (]4.78) 

When the secondary has fewer (more) turns, it is called a step-down (step-up) 
transformer. Equation (14.78) holds for any value of the load resistance Rs in 
the secondary. 

~ Step-down transformer 
It is desired to step down 480 V power at 50 Hz to 12 V. (a) Find the turns 
ratio between primary and secondary. (b) Find the frequency of the voltage 
in the secondary. 

Solution: (a) Equation (14.78) gives Np/Ns = Vp/V~ = 480/12 = 40. (b) Both 
primary and secondary voltage are at 50 Hz. 

~ W h y  High Voltage Power Lines? 

Via an ideal transformer, let a power station provide ac power with maxi- 
mum current lem through wires of resistance Re to a load resistor Rs car- 

2 rying maximum current lSm. The efficiency is l~mRs/(l~mRs + lemRP), or 
[1 + (Ipm/Ism)2(Rp/Rs)] -1 . [See (8.11).] For fixed secondary properties Rs 
and lsm, the efficiency is maximized both by minimizing Re/Rs-- th ick  
wires--and by minimizing IFm/Ism--the power lines carry a relatively low 
current. The next subsection shows that, for power transfer by a transformer, 
the high voltage side has the lower current. Hence, power lines should be on 
the high voltage side. 

14o I ~o2 The Effective Resistance o f  an A C Transformer 

An important relationship holds between the voltage changes lip and Vg across 
the power source and the primary. Since we treat the primary circuit as having 
no resistance, Vp -- Vg. This result also holds for any value of the load resistance 
Rs in the secondary. 

Now consider the case where the switch in the secondary is not connected. 
Then Rs ~ ~ ,  and Is = 0. In that case, there is no way to dissipate energy, 
so the power factor of (14.73) for the primary must be zero. This means that 
the current IF and the voltage Vp associated with the primary must be out of 
phase by 90 ~ Our earlier analysis of an inductor connected to an ac power source 
yields, by (14.48), that IF has an amplitude ] P m  --" Vpm/ogLp - Vgm/wLp. 
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Next consider what happens when the switch in the secondary is connected. 
Now a current is is induced in the secondary, so there will be resistive losses 
in the secondary. Because of this, and because of energy conservation, the pri- 
mary must provide an amount of energy equal to that dissipated in Rs. From 
energy conservation and (14.78), we can determine is, without having to obtain 
a detailed solution for the two coupled circuits. 

When the secondary is connected, so Rs is finite, by Ohm's law the current 
through it is driven by Vs: 

Vs 
is = ~ .  (14.79) 

Rs 

Since is and Vs are in phase, the power factor is unity, so by (14.73) the rms 
power loss is given by 

1 
72'S = -~ i sm V s m  . (14.80) 

The primary is a bit more complicated to describe. In addition to the out- 
of-phase current (relative to Vp), Ip, which does not provide power, there is an 
in-phase current i p that provides an rms power 

1 
"]2)p - -  ~ ipm VPm. (14.81) 

Enforcing energy conservation CPs = 72P) by equating (14.80) and (14.81) yields 

i p m V p m  = i s m V s m .  (14.82) 

Combining (14.82) and (14.78) gives 

Ns 
ie,,, - is,,, Vp----s = i S r n - T T - .  . (14.83) 

JXle 

With (14.79) and (14.78), (14.83) becomes 

i p m - -  i sm N p  = R s N p  - R s -~p " (14.84) 

Hence, on connecting the secondary, the primary develops an effective resistance 
associated with the in-phase current ipm given by 

iem -~s " (14.85) 

Thus the primary for step-up (step-down) transformers has less (more) resistance 
than the secondary. The above analysis holds as long as L p / R p  >> 0) -1 or XLp >> 
Re. That is, the inductive time constant for the primary must be much greater 
than the period of the ac power source, or the inductive reactance must be much 
greater than the resistance. Since we have taken Re - 0, this inequality certainly 
holds. Although it is not obvious, the in-phase current Ie is not affected by the 
presence of the secondary, and thus it continues to satisfy Ip~ - Vp~/coLp. 
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~ Designing a transformer 

A transformer converts from the high output impedance (784 fa) of an audio 
amplifier to the low impedance (4 fa) of a speaker coil. If the primary has 112 
turns, find the number of turns in the secondary. 

Solution: By (14.85), Np/Ns - (Re/f/Rs)�89 - 14. Then Ns - 112/14 - 8 turns. 

Besides the more obvious uses of transformers, they can also be used for 
impedance matching two devices with different resistances, such as an audio 
amplifier and a loudspeaker. Note that  transformer efficiencies have not changed 
much in the past 100 years. However, their reliability and size (volumes smaller 
by a factor of 100!) have improved enormously. 

14~1t,~3 The Tesla Coil 

Tesla coils produce dramatic high-frequency, high-voltage electric sparks. They 
utilize the principles of transformers, ac driven circuits, and RL C transients. 

A Tesla coil circuit uses two transformers. The first consists of a step-up iron 
core transformer at 120 V and 60 Hz, which drives the secondary to 25 KV 
and 60 Hz. See Figure 14.17. This charges up a low C capacitor and a spark 
gap (which, when it is not sparking, may be thought of as a capacitor), in series 
with an inductor L. Including the resistance in the wires, this is an RL C circuit. 
Because 60 Hz is a relatively low frequency, the voltage associated with the 

Figure 14.17 Tesla coil. The 60 Hz power source on the left drives an L C circuit 
that, when the voltage is high enough, causes sparking across the spark gap. This 
drives the primary on the right into oscillation at its high resonance frequency (on 
the order of a MHz). The Tesla coil, coupled weakly to this oscillation, draws off 
energy, at a high voltage and at the frequency of the resonance. 
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inductor L is not very high, so the voltages across the capacitor and the spark 
gap are both nearly 25 KV. A glass sheath keeps the capacitor from sparking 
when subjected to such high voltage, but nothing prevents the spark gap from 
sparking. When that occurs, charge rushes across the spark gap, thus taking this 
RLC circuit out of equilibrium. It then undergoes transients, as discussed in 
Section 14.3, which consist of a damped RL C resonance at a frequency on the 
order of a MHz. In contrast to what happens for the low-frequency 60Hz volt- 
age from the power transformer, for the high-frequency voltage associated with 
the L C circuit, the inductor couples to the step-up air transformer. This raises the 
high-frequency voltage of the latter to on the order of a MV. See Figure 14.17. 
The many-turn secondary coil of this second transformer, which can be thought 
of as a parasite off the main RL C circuit, is what is meant by the Tesla coil. 

The top of the Tesla coil gives a high voltage (MV), but sparks from it are not 
harmful. Some textbooks attribute this to a short penetration, or skin depth, of 
the magnetic field into the human body, as the body tries to set up eddy currents 
that keep out the rapidly changing magnetic field. This is not correct. As shown 
in Section 14.13, at MHz the skin depth is quite long. Sparks at this high voltage 
are not harmful primarily because at such high frequencies the current does not 
transfer much charge. 

14.12 Getting DC Force from AC Power 

Because ac voltage is so commonly available, motors using ac voltage are im- 
portant. Commutators and electronic switches are employed to ensure that the 
torque or force that causes motion is always in the same direction. However, 
there are other ways to produce a time-averaged, or dc, force using ac power. 
We now show how this can occur. Before presenting any detailed arguments, we 
present a qualitative discussion based upon Lenz's law. 

Consider a conducting loop that is in a time-varying, nonuniform magnetic 
field B. By the motion statement of Lenz's law, the loop will "want" to go to 
regions where the time-varying/~ is as small as possible. This is possible only if 
the spatial profile of B is nonuniform; it is the principle upon which the following 
examples operate. 

14~!2~I A Linear  AC M o t o r  

Consider a loop of resistance R and self-inductance L. It has dimensions a and b, 
with dimension x and b in the field, so that an area bx is in the oscillating field B~c. 
Moreover, the leftmost part of the circuit is not in any field. See Figure 14.18(a). 
This situation can be produced by placing the loop between two turns of a very 
large solenoid whose axis is normal to the page. From what we have just said, 
we expect there to be a time-averaged force tending to push the loop out of the 
field region. Let us show this explicitly. 

For fz and/~c into the page, the magnetic flux associated with/~c is 

r - / f3ac . dY t -  f ~a~ . ~ d A -  Bacbx. (14.86) 
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Figure 14.18 (a) A conducting rectangular loop partially within an oscillating 
magnetic field. Co) A conducting ring in a flaring and oscillating magnetic field. 

We let positive emf s  d~" and current I circulate clockwise. Thus d~" 
circulates clockwise, and by the circuit-normal right-hand rule, the normal fi is 
indeed into the paper. Then, including the effect of self-inductance, 

dI d dI g =  d c ~  L ~ =  (Ba~bx) -  L ~ =  
dt dt dt dt 

d Bac bx - Bacb dx d I 
dt -f[ - L d---[" 

(14.87) 

If B~c is changing rapidly relative to the motion, the motional emf B~cb(dx/dt) 
can be neglected. Then, taking 

Bac = Bm cos cot, (14.88) 

(14.8 7) becomes 

C = coBmbx sin cot - L 
dI 
dt " (14.89) 

Using (14.89) in Ohm's law then gives 

( d/) I - - ~ - - ~  g 1 coBmbx sin cot - L~-~ , (14.90) 

o r  

i__Cm L d I  
sin cot R dt '  Em -- coBmbx. (14.91) 

This is a rewritten version of equation (14.64), describing an ac driven LR circuit. 
The impedance Z and phase shift ~b are given by (14.66) and (14.67). I then can 
be obtained from (14.43). 
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14,12.2 

The motion along x is driven by the magnetic force on the right arm, 

Fmag-  II x B a c -  IbB~cSC. (14.92) 

With (14.88) and (14.43), Newton's equation of motion along x yields 

dv  
m-d7 - I b Bac -- Im sin (cot - ~ )b  Bm c o s  cot 

= Imb Bm [ s i n  cot cos cot cos ~b - COS 2 cot sin ~b ]. (14.93) 

Since (14.67) implies that sin ~b > 0, the time-averaged force is to the left, thus 
pushing the loop out of the field; the loop "wants" to leave the region of the field. 
(This time-averaged force suggests how to devise a motor based on ac power.) 
In addition, there is an oscillating force, at frequency 2o). If a capacitor is added 
to the circuit, and if the capacitor dominated the phase shift ~b at the driving 
frequency, causing ~b to be negative, so sin ~b < 0, then the time-averaged force 
would be to push the loop to the right (i.e., farther into the field). 

The Jumping Ring 

We now analyze Elihu Thomson's jumping ring demonstration (1887), which 
first established that an ac power source can produce a time-averaged force. 
(Thomson's inventions, which include the wattmeter, are nearly as numerous as 
Edison's. His company, like Edison's, was swallowed up in the formation of Gen- 
eral Electric. Thomson was later a president of MIT.) Consider Figure 14.18(b). 
An analysis of the force on a loop of radius a in a flaring B field at an angle 0 was 
done in Chapter 10, yielding (10.29). The flaring field means that the higher 
the ring, the weaker the field, so from our earlier considerations, there should 
be a tendency for the ring to be thrown out of the field region. Let us show this 
explicitly. 

Let B = Bac be due to the ac current Isol in the solenoid, and let I = Inng be 
the current in the ring. When the currents are in the same direction, the force is 
downward (attractive), which is taken to be positive. Because the ring "tries" to 
produce a flux that opposes that of the solenoid, I~ng and Isa will be in opposite 
directions, and the force will be upward (repulsive). We will not write down the 
circuit equation in this case, but merely note that, just as in the previous case, 
it is essential to include the self-inductance L as well the resistance R. Hence 
(14.64-14.67) apply. 

Using (10.29), (14.50), and (14.88) yields vertical force component 

F - l B(2zra) sin 0 - -  ]r~ngBac(2yra) sin 0 

= -Ira sin (cot - (~))Bin cos cot(2zra) sin 0 

= - lmBm(2Zra)  sin 0[sin cot cos cot cos~b - cos 2 cot sin ~b]. (14.94) 

Since (14.67) implies that sin ~b > 0, the time-averaged force is upward, or out 
of the field. In addition, there is an oscillating force, at frequency 20). On adding 
a capacitor to the circuit, if the capacitor were to dominate the phase shift ~b at 

t he  driving frequency, making ~b negative, then the time-averaged force would 
push the ring farther into the field: a "sucking" ring. 
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A more complete analysis would express Im and ~b in terms of L, R, and Em. It 
would also relate Cm to B~c. However, the latter relationship can be obtained only 
approximately (qualitatively, Em ~ o)B~ A~ing cos 0). These details are not needed 
to demonstrate that we can produce a time-averaged force using ac power. 

As the preceeding two examples make clear, phase is not an abstract concept; 
by suitable design a circuit can produce a repulsive force or an attractive force, 
according to the phase. 

14.12.3 Hum: 60 Hz and 120 Hz 

So-called 60-cycle hum occurs when there is an interaction between a permanent 
magnet and a power source at 60 Hz, such as for the speaker coil problem of 
Chapter 10, if the amplifier "leaks" signal at 60 Hz. For the solenoid associated 
with the jumping ring, there is also a hum, but it is not at 60 Hz. It is due to the 
interaction of the rods~so  chosen to minimize eddy currents~that  constitute 
the iron core. Half every cycle they are all pointing up, and a half-cycle later 
they are pointing down. This produces a magnetic repulsion twice every cycle, 
leading to 120-cycle hum. It is like the cos2cot terms in (14.93) and (14.94), 
which have nonzero time averages. 

Any circuit (even the "sucking" ring) is, for short times, dominated by its self- 
inductance, and this leads to a repulsive force on turn-on. However, this force is 
too weak to be observed for the sucking ring. Moreover, for the jumping ring, it 
is dominated by the repulsive force due to the ac voltage. This becomes clear if 
you power up the solenoid, pull the ring onto the solenoid, and then release the 
solenoid~the ring will still jump up. 

14~12~4 Induct ion M o t o r  

Once it was realized that ac power could lead to a net force, the road was clear 
for the development of motors based upon ac power. The induction motor, first 
developed by Tesla (1888), is commonly used today. It is based upon the idea 
that ac power can be used to simulate rotation. By Lenz's law, a rotating magnet 
just above a conducting disk produces eddy currents in that disk. The interaction 
between the magnet and the eddy currents in the disk then tends to bring the 
disk into rotation. (Recall the magnetic drag effect in Figure 12.10.) Similarly, a 
simulated rotating magnetic field, obtained by sequentially powering a set of coils 
placed at 120 ~ to one another, brings a conducting disk into rotation. In the 19th 
century, the use of three-phase ac power facilitated this. Presently, electronics 
can arrange the timing of ordinary ac power to simulate a rotating field. 

14,13 

14~13~1 

Electromagnetic Shielding--Skin Depth 
Overview 

Chapter 12 discussed eddy currents as an example of how a conductor "tries" 
to prevent changes in a magnetic field. Chapter 13 presented, without proof, 
Maxwell's receding image construction, which represents the eddy current 
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Table 14.1 Characteristic skin depths 

Copper 6.0 x 1 0  7 ohm -1 -1 -m 0.0085 m 
Salt water 4.4 ohm-1 -1 -m 31.4 m 

6.6 x 10 -6 m 6.6 x 10 .7 m 
0.0244 m 0.00244 m 

response of a thin conducting sheet. The present section discusses the eddy 
current response of a semiinfinite conducting sheet, for magnetic fields that lie 
in the plane of the sheet. In this case, the derivation, although not simple, is 
easier than for Maxwell's receding image construction. This derivation is closely 
related to the derivation in the next chapter for electromagnetic radiation; you 
may want to compare them after reading both. 

The central result of this section is that, because of eddy currents, an ac 
magnetic field will only be able to penetrate a conducting sheet to a limited 
extent, given by what is called the skin depth 

#0o'o) 
(14.95) 

This means that the electric and magnetic fields--and the eddy currents--within 
the sheet decrease exponentially away from the surface, with the characteristic 
decay length ~. 

From Table 14.1, at power line frequencies, electric and magnetic fields are 
shielded out by a couple of cm of copper, but are not shielded out by the human 
body; at FM frequencies, they are shielded out by a thin layer of copper, but they 
can penetrate a couple of cm into the human body; at microwave frequencies, 
they are shielded out by a thin layer of copper, but they can penetrate a couple 
of mm into the human body. Thus, the electromagnetic radiation from a poorly 
protected microwave oven will not quite reach the retina (but we do not rec- 
ommend that you work around such a microwave oven!). From Table 14.1 and 
(14.95), by proportionality of ~ to 1/vG, we deduce that if f = 1 MHz, then 

= 24.4 cm. Hence the electric field from a 1 MHz Tesla coil will penetrate 
your body. The frequencies used in MRI range from 1.5 to 10 MHz; at the upper 
end of 10 MHz, ~ = 7.71 cm, which is enough to penetrate an arm or a leg, but 
not the human torso. 

14.13,2 Derivat ion 

To derive (14.95) for the skin depth, we apply Ampere's law and Faraday's law 
to rectangular circuits whose planes include the normal to the sheet. 

Consider a semi-infinite system of uniform conductivity ~ that occupies the 
half-space x > 0. Let an incident ac magnetic field B, with frequency o2, point 
along the z-axis. We expect that an electric current and electric field pointing 
along the y-axis will be induced. See Figure 14.19. This current will produce its 
own magnetic field along the z-axis that will oppose the change in the incident 
magnetic field, thus preventing the net magnetic field from penetrating the con- 
ductor. Our goal is to determine the equations describing how the magnetic field 
is kept out. We will assume that/~ and/~ depend only on x and t. 
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14.13.3 

Vacuum Conductor 
dx /For Faraday's law 

~ X  ~'~ 

nl '~ds] 

/ 

dx ~For Ampere-Maxwell law 

Figure 14.19 Geometry for 
electromagnetic shielding of an ac 
electric field coming in on the left, 
and being absorbed by the conductor 
on the right (x > 0). Two imaginary 
circuits are drawn, one for use with 
Faraday's law (involving magnetic 
flux), and the other for use with 
Ampare's law (involving electric 
current). 

Use of Faraday's law 

Because/3 is along z, it produces a flux along z. Let us therefore apply Faraday's 
law to a small rectangular circuit whose normal fil is along z, with dimension 
hi along y and dx along x. See Figure 14.19. In that case, by the circuit-normal 
right-hand rule, in computing the circulation of/~ we must take d~l such that it 
circulates as in Figure 14.19. 

For the Faraday's law circuit, the electric circulation is given by 

f /~. d~] - [Ey(x + dx ) -  Ey(x)]hl 

[ dEydx_ Ey(x)]hl dEy 
E ( ) + -2-;x -d-;x ( h d ) " (14.96) 

The associated magnetic flux is 

f f ~ldA-Bz(hldx). (14.97) 

The negative rate of change of the associated magnetic flux is thus 

d~B _ dBz (h~dx). (14.98) 
dt dt 

Using Faraday's law to equate (14.96) and (14.98) yields 

dEy dBz 
dx dt " 

(14.99) 

14.13,4 Use of Amp~re's law 

Because/~ is along y, by (7.7) it generates in the sheet an electric current density 
J - o r  E along y. Let us therefore apply Amp~re's law to a small rectangular 
circuit whose normal/*2 is along y, with dimension h2 along z and dx along x. See 
Figure 14.19. In that case, by the circuit-normal right-hand rule, in computing 
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14,13,5 

the circulation of/~ we must take d~'2 such that it circulates as in Figure 14.19. 
For the Amp~re's law circuit, the magnetic circulation is given by 

f B" ds2 - [-Bz(x + dx)+ Bz(x)]h2 

[ dBzdx ] ,~. -Bz(x)- ~x + Bz(x) h2 .~. dBz (h2dx) (14 100) 
- ~ x  " " 

The associated electric current is 

f J.  dfit-  f J.  h 2 d A -  J y ( h 2 d x )  - o E y ( h 2 d x ) .  (14.101) 

Using Ampere's law to equate (14.100) to 4zrkm times (14.101) yields 

d B z  

d x  
= 4zr kmo Ey - #0cr Ey. (14.102) 

The Field Diffusion Equation and Its Solution 

Taking the space derivative of (14.102), and eliminating dEy/dx via (14.99), 

d2Bz 
d x  2 

dBz dBz 
= 4~em~--r.-- - -  # 0 ~  . dt a t  

(14.103) 

This equation, when solved, leads to (14.95) for the skin depth. It is called a 
diffusion equation. (Fourier was the first person to obtain a diffusion equation; 
for heat, he obtained a diffusion equation with the temperature T in place of 
Bz, and constants that depended upon the specific heat and the thermal con- 
ductivity.) Taking the space derivative of (14.99), and eliminating dBz/dx via 
(14.102), yields an equation like (14.103), but now for Ey. When Maxwell ob- 
tained (14.103), he was already familiar with related equations, so he knew how 
to solve it. We expect that, in the conductor, Bz will oscillate in time at the 
frequency ~o, and decay in space, so that the signal gets weaker on moving into 
the conductor. In fact, there is also an oscillation in space. Rather than try to 
solve the equation directly, we first write down the answer, and then indicate 
how to verify that it is the correct solution. For B~ satisfying Bz(O,t) - Bm sin o)t, 
the solution is 

Bz(x,t) -Bm sin(cot - kx) exp (-qx), k - q - -~ - (14.104) 

To establish that this is correct, note that on applying d2/dx 2 to Bz in (14.103) 
there are three terms. One comes from d2/dx 2 acting on the sine term, giving 
- k  2 Bz(x,t), and one comes from d2/dx 2 acting on the exponential term, giving 
q2 Bz(x,t). These two cancel if q = k. The third term involves twice the product 
of d/dx acting once on the sine term (converting it to a cosine times -k), and 
once on the exponential term (converting it to an exponential times - q  = -k) .  
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Thus  

d 2 Bz 
dx 2 

= 2k 2 Bm cos(ogt - kx) e x p ( - k x ) .  (14.105) 

This is now equa t ed  to the  r igh t -hand  side of (14.103) .  W i t h  d/dt on Bz in 
(14.103)  conver t ing the  sine to a cosine, we  obta in  

dBz 
[~O(Y -~ -- ~O~O)Bm cos(wt - kx) e x p ( - k x ) .  (14.106) 

Equat ing  (14.105)  and (14.106) ,  and solving for k = 1/8 in (14.105)  leads to 
(14.95)  for the  skin depth .  

Equat ions  (14.102)  and (14.104)  de t e rmine  Ey(x,t). Both Bz and Ey decay 
on moving  into the  conductor ,  as desired. Since Jy = c~ Ey, the  eddy currents  also 
decay on moving  into the  conductor .  The re  is no magic  abou t  e lec t romagne t ic  
screening; the  eddy currents  are responsible  for it. No te  tha t  if the  inpu t  p o w e r  
is too high, the  eddy currents  can p roduce  so m u c h  Joule heat ing  t ha t  t hey  cause 
the  conduc to r  to hea t  up and, perhaps,  to m e l t  ~. 

Problems 

14-1.1 Consider a signal that varies linearly from 
1 V to -1  V in time T/2, then from -1  V to 
1 V in time T/2, and so on. For this triangle- 
shaped signal, find the rms and average values of the 
voltage. 

14-1 .2  (a) Is there a unique value for the aver- 
age voltage across an oscillating circuit if the time 
average is taken to be only a quarter-period? (b) A 
half-period? (c) A full-period? (d) A billion-and-a- 
quarter periods? 

14-1 .3  For an oscillating circuit it takes 0.02s 
to go through a quarter-period. (a) Find the time 
it takes to go through a radian and through a 
full-period. (b) Find the inverse of these times. 
(c) Which (if any) of these corresponds to the fre- 
quency f and the angular frequency co? 

14-1 .4  Consider a signal that is Vm for time T/2, 
then is zero for T/2, and so on. For this step 
function-shaped signal, find the rms and average 
values of the voltage. 

14-1 .5  Consider a signal that varies linearly from 
zero to Vm in T/2 and linearly back to zero in T/2, 
and so on. For this triangle-shaped signal, find the 
rms and average values of the voltage. 

14-1 .6  Consider a signal that goes linearly from 

zero to Vm in time T, then suddenly goes to zero for 
time T, and so on. For this sawtooth-shaped signal, 
find the rms and average values of the voltage. 

14-1.7 Consider a signal that varies linearly from 
-Vm to Vm in T/2 and linearly back t o -  Vm in T/2, 
and so on. For this triangle-shaped signal, find the 
rms and average values of the voltage. 

14-1.8 An ac signal has a period of 2.4 ms. Find 
(a) its frequency, (b) its angular frequency, and 
(c) the time it takes to go from zero to a maximum. 

14-2.1 In an LC circuit, it is desired to double the 
frequency of the oscillation. You can change only 
one circuit element. What are your options? 

14-2 .2  An inductor is replaced in an LC circuit, 
and the oscillation frequency changes from 1250 Hz 
to 1950 Hz. What can you say about the replace- 
ment inductor relative to the original inductor? 

14-2.3 The AM radio frequency broadcast band 
ranges from 550 kHz to 1550 kHz. (a) For a 40 #H 
inductor, find the capacitance range needed to 
tune across the AM band. (b) For an rms volt- 
age 50 mV across the capacitor, find the energy 
stored in the circuit for signals at 550 kHz and 
1550 kHz. 
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14-2.4 The FM radio frequency broadcast band 
ranges approximately from 88 MHz to 108 MHz. 
(a) For a 60 #F capacitor, find the inductance range 
needed to tune across the FM band. (b) For an rms 
voltage 50 mV across the inductor, find the en- 
ergy stored in the circuit for signals at 88 MHz and 
108 MHz. 

14-2.5 A coil with L = 145 nil ,  to be used for nu- 
clear magnetic resonance, resonates at 103.7 MHz. 
Find the value of the parasitic capacitance. 

14-3.1 An underdamped RLCcircuit initially has 
zero charge and zero current, and is connected to a 
battery at t = 0. (a) Sketch the current as a function 
of time. (b) Repeat for the charge. 

1 4 - 3 . 2  An overdamped RLC circuit initially has 
zero charge and zero current, and is connected to a 
battery at t = 0. (a) Sketch the current as a function 
of time. (b) Repeat for the charge. 

1 4 - 3 . 3  For the underdamped RL C circuit, show 
that (14.29) with (14.30) leads to a current that 
satisfies (14.27). 

1 4 - 3 . 4  For the overdamped RLC circuit, show 
that (14.34) with (14.35) satisfies (14.27). 

1 4 - 3 . 5  An RLC circuit has L = 24 mH, C =  
67 nF, and R = 5f2. (a) Find the resonance fre- 
quency and the critical resistance. (b) Sketch the 
voltage across the capacitor if a constant emf is sud- 
denly switched into the circuit. 

1 4 - 3 . 6  An RLC circuit has R = 5 f2, a resonance 
frequency of 3.76 MHz, and a critical resistance 
of 48 ~2. (a) Find its capacitance and inductance. 
(b) Sketch the voltage across the resistor if a con- 
stant emf is suddenly switched into the circuit. 

1 4 - 4 . 1  It is desired to produce a 850 V maxi- 
mum voltage from a generator turning 240 times per 
second in a 0.48 T magnetic field. It has 400 coils. 
(a) Find the area of each coil. (b) If the field falls to 
0.24 T, find how many turns of coil are needed to 
raise the voltage back to 850 V. 

1 4 - 4 . 2  An ac generator yields a 2 A current when 
the voltage across it is 4 V. (a) If the generator is 
ideal, find the emf. (b) If the generator has a 0.02 s2 
resistance, find the emf. (c) In Figure 14.4, if the 
voltage A V e = % - V~ is positive, does that tend to 
drive current up or down the left arm? 

14-5.1 A black box has A Vmax = 85 V and/max = 
14.5 A, and the voltage leads the current in time by 
0.65 ms when subjected to an ac emf at 240 Hz. 
(a) Find its impedance and phase. (b) Is energy 
absorbed or provided? 

1 4 - 5 . 2  A high-voltage ac power line has two 
wires, carrying equal and opposite current. From 
measurements of voltage difference and current, 
how would you determine the direction of average 
power flow? Hint: Consider the phase for the case 
where power flows to a resistor. 

1 4 - 5 . 3  Circuit A is connected to circuit B. It is 
found that the phase angle of (14.43) for circuit 
B, thought  of as a single circuit element, is 125 ~ 
(a) Which circuit is providing power, and which is 
receiving power? (b) What  is the phase angle for 
circuit A? 

1 4 - 5 . 4  For an inductor connected to a 40 V rms 
ac voltage with a period of 0.02 s, the rms current 
is 0.08 A. (a) Find X/~, L, and ~b. (b) Find the time 
average energy stored by the inductor. 

1 4 - 5 . 5  For a capacitor connected to a 40 V rms 
ac voltage with a period of 0.02 s, the rms current 
is 0.08 A. (a) Find Xc, C, and ~b. (b) Find the time 
average energy stored by the capacitor. 

1 4 - 5 . 6  For a resistor connected to a 40 V rms ac 
voltage with a period of 0.02 s, the rms current is 
0.08 A. (a) Find R and ~b. (b) Find the time average 
energy dissipated by the resistor. 

1 4 - 5 . 7  (a) Is voltage a scalar or a vector? (b) How 
is voltage "scalarized" in the phasor construction? 

1 4 - 5 . 8  Explain why, for an ideal inductor, the 
voltage difference between its ends opposes the self- 
induced emf. 

1 4 - 5 . 9  Capacitors and inductors behave like short 
circuits or open circuits in the appropriate limits of 
either low or high frequencies. (a) Which limits give 
which behavior for capacitors? Explain. (b) For in- 
ductors? Explain. 

1 4 - 6 . 1  For an LR circuit the maximum generator 
emf  is 160 V, and the maximum current is 4 A. The 
frequency is 60 Hz, and the current lags the voltage 
by 5 ms. Find Z, el), R, XL, and L. 

14-6.2 For an RC circuit the maximum gener- 
ator emf is 160 V, and the maximum current is 
4 A. The frequency is 60 Hz, and the current 
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leads the voltage by 5 ms. Find Z, qb, R, Xc, 
and C. 

14-6.3 An L R  circuit with R = 20 S2 and L = 
5 mH is connected to a generator with rms emf of 
60 V and frequency 50 Hz. Find XL, Z, ~b, the time 
by which the net voltage leads the current, and the 
maximum current. 

14-6.4 An RC circuit with R = 20 S2 and C = 
5 nF is connected to a generator with rms emf of 
60 V and frequency 250 Hz. Find Xc,  Z, ~, the 
time by which the net voltage lags the current, and 
the maximum current. 

14-6.5 An unknown resistor is in series with a 
12 nF capacitor. At 440 Hz, the net voltage lags 
the current by 0.075 ms. Find Xc, R, Z, and ~b. 

1 4 - 6 . 6  An unknown capacitor is in series with a 
40 s2 resistor. At 440 Hz, the net voltage lags the 
current by 0.075 ms. Find Xc, C, Z, and ~b. 

1 4 - 6 . 7  An unknown resistor is in series with a 
12 #F capacitor. At 440 Hz, the maximum current 
is 0.08 A for a maximum emf of 12.8 V. Find Z, Xc, 
R, ~b, and the time by which the net voltage lags the 
current. 

14-6.8 An unknown resistor is in series with a 

25 mH inductor. At 880 Hz, the maximum cur- 
rent is 0.08 A for a maximum emf of 12.8 V. Find 
Z, XL, R, ~b, and the time by which the net voltage 
leads the current. 

14-6.9 An unknown inductor is in series with a 
12 f2 resistor. At 440 Hz, the net voltage leads the 
current by 0.055 ms. Find ~b, XL, L, and Z. 

1 4 - 6 . 1 0  An unknown resistor is in series with a 
12 #F inductor. At 440 Hz, the net voltage leads 
the current by 0.075 ms. Find ~b, XL, R, and Z. 

14 -6 .11  A 120 V rms, 60 Hz generator is placed 
across a resistor and inductor in series, with R = 
24 f2 and L = 15 mH. (a) Find the rms current 
through each of these circuit elements. (b) Find the 
rms voltage across each of these circuit elements. 
(c) Find the average rate at which power is lost 
to R and to L. (d) Find ~b and the associated time 
delay. 

1 4 - 6 . 1 2  A 120 V rms, 60 Hz generator is placed 
across a resistor and capacitor in series, with R = 
24 f2 and C =  940 nF. (a) Find the rms cur- 
rent through each of these elements. (b) Find the 
rms voltage across each of these circuit elements. 

(c) Find the average rate at which power is lost to 
R and to C. (d) Find ~b and the associated time 
delay. 

14-6.13 A 120 V rms, 60 Hz generator is placed 
across a circuit containing a resistor R = 20 s2 
and another circuit element (either a capacitor or 
an inductor). The phase angle is 63 ~ (a) Identify 
the other element, give its reactance, and give its 
capacitance or inductance. (b) Find the average rate 
at which power is dissipated. 

1 4 - 6 . 1 4  Derive the solution for the L R  circuit 
using the trigonometric method. 

14-7.1 Consider a resistor and an inductor that, at 
a frequency of 3500 Hz, have the same impedance 
of 200 s2. When they are in series, a voltage pulse 
applied across them rises from 0 V to 6000 V and 
falls back to 0 V within a characteristic time of 8 #s. 
(a) Estimate the corresponding frequency. (b) Find 
the impedance of the resistor and of the inductor 
at this frequency. (c) Explain why inductors, rather 
than resistors, are often used to limit current asso- 
ciated with power surges. 

1 4 - 7 . 2  An L R  circuit is to be used as a low-pass 
filter for an input voltage lqn. (a) Across which ele- 
ment would you measure the output voltage Gut? 
(b) Repeat for an L R circuit to be used as a high-pass 
filter. (c) For R = 17 S2, f = 1.97 kHz, L - 4 mH, 

~1max for both R and L and v m a x =  25 V, find -out  
- - Z T /  

(d) Repeat (c) for f = 19.7 kHz. 

1 4 - 7 . 3  An RC circuit is to be used as a low-pass 
filter for an input voltage V/n. (a) Across which 
element would you measure the output voltage 
Vout? (b) Repeat for an R C circuit to be used as 
a high-pass filter. (c) For R = 17 S2, f = 1.97 kHz, 

= = vmax for both C 458nH, and V max 25V, find -out --in 
R and C. (d) Repeat (c) for f = 19.7 kHz. 

1 4 - 7 . 4  Design two different circuits with R = 
24 s2 that can be used as low-pass filters with a "roll- 
off" frequency of 4500 Hz, at which the ratio of the 
voltage across the resistor to the signal voltage is 
11,/2. 

1 4 - 7 . 5  Show that, if an ac emf of amplitude Em is 
applied to an RC circuit, then the maximum voltage 
across the resistor is given by A VRm-~-Em(o)RC)/ 
V/] -t- ( (.o R C) 2 

1 4 - 7 . 6  Show that, if an ac emf of amplitude Cm 
is applied to an LR circuit, then the maximum 



626 Chapter  14 = Alternating Current  Phenomena 

voltage across the resistor is given by A VRm = 
~ m / r  "q-- (o2L/R) 2 

14-8.1 Consider an RLC circuit. Is it possible for 
the voltage across a circuit element to exceed the 
source voltage when the circuit element is (a) the 
inductor? (b) The resistor? (c) The capacitor? 

1 4 - 8 . 2  You are told that an RL C circuit is not op- 
erating properly at high frequencies. Which circuit 
element would you suspect? Repeat if the problem 
is at low frequencies. 

...... ~ 1 4 - 8 . 3  Consider an RLC circuit with L = 
................ 2.5 mH, R = 4 f2, C = 500/zF, driven by a 

24 V maximum emf at a frequency of 400 Hz. (a) 
Find XL, Xc, Z, and ~b. (b) Find the maximum cur- 
rent and the maximum voltage across L, R, and C. 
(c) Find the time by which the driving voltage leads 
(or lags) the current. (d) Find the maximum volt- 
age across the combination R and C, and the time 
by which this voltage leads (or lags) the current. 
(e) Find the maximum voltage across the combi- 
nation R and L, and the time by which this volt- 
age leads (or lags) the current. (f) Find the maxi- 
mum voltage across the combination L and (3, and 
the time by which this voltage leads (or lags) the 
current. 

1 4 - 8 . 4  In an RL C circuit, L = 56 mH, R = 2 . 4  ~2, 

and C = 8.4/zE (a) For what angular frequency o2 
will the maximum current have its maximum value? 
(b) For what angular frequencies o2+ and o2_ will the 
current have half the maximum value? (c) What is 
the fractional width Io2+ - o2-]/o2 of the resonance? 

1 4 - 8 . 5  A 1.20 V rms generator of variable fre- 
quency drives an RL C circuit with R -- 24 ~, C = 
940 nF, and L = 15 mH. (a) Find the resonance 
frequency of this circuit, and the rms current 
through it at that frequency. (b) Find the rms volt- 
age across each circuit element at resonance. (c) At 
twice the resonance frequency, find the impedance, 
the phase angle, and the rms current. (d) At twice 
the resonance frequency, find the rms voltage across 
each circuit element. (e) Compute the critical resis- 
tance and discuss whether this is a broad resonance 
or a narrow resonance. 

14-8.6 A 1.06 V rms generator of variable fre- 
quency drives an RL C circuit with R = 4 ~2, C = 
34 #F, and L = 2.6 mH. (a) Find the resonance 
frequency of this circuit, and the current through 
it at that frequency. (b) Find the voltage across 
each circuit element at resonance. (c) At half 

the resonance frequency, find the impedance, the 
phase angle, and the current. (d) At half the reso- 
nance frequency, find the voltage across each circuit 
element. (e) Compute the critical resistance and 
discuss whether this a broad resonance or a narrow 
resonance. 

1 4 - 8 . 7  Derive the solution for the RLC circuit 
using the trigonometric method. 

14-9.1 Explain why the first electronic amplifiers 
were called valves. 

14 -9 .2  Explain why heating the cathode increases 
the current, but heating the anode does not. 

1 4 - 9 . 3  Explain why a small change in the grid 
voltage of a triode can have a large effect on the 
current. 

14-10.1 Explain why it is not possible, on average, 
to transfer ac power to a capacitor or an inductor. 

1 4 - 1 0 . 2  An ac voltage divider is made of a re- 
sistor R and an inductor L in series, with the in- 
put voltage applied across the two in series, but 
the output voltage across only R. (a) Determine 
the ratio of the rms output voltage to the rms in- 
put voltage. (b) Determine its efficiency from its 
power factor. (c) For a voltage divider using a resis- 
tor R' instead of L, find the ratio of the rms out- 
put voltage to the rms input voltage. (d) Determine 
its efficiency of power utilization. (e) Which is a 
more energy-efficient method to control the output 
voltage? 

1 4 - 1 0 . 3  An oil refinery generates its own power, 
but it has wires connecting it to the power company 
grid, both to buy and sell electrical power. (a) As 
seen by the power company, what is the sign of the 
power factor when the refinery is buying power? 
(b) When the refinery is selling power? 

1 4 - 1 0 . 4  Power company A charges by power us- 
age, whereas power company B charges by power 
usage/power factor. They are both making an 8% 
yearly return. (a) If you are an efficient power user, 
which power company would you expect to provide 
you with lower prices? (b) If you are an inefficent 
power user? 

1 4 - 1 0 . 5  At 60 Hz, the phase and impedance for 
a factory are 65 ~ and 2300 f~. (a) Find the power 
factor. (b) What nondissipative circuit element, and 
what would be its value, if on adding it in series 
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the power factor equals 0.8? (c) What  is the new 
impedance? 

14-11.1 A generator provides 120 V to a primary 
with 25 turns. Find the number of turns needed to 
produce, in the secondary: (a) 30 V; (b) 300 V. 

1 4 - 1 1 . 2  120 V ac power is available, but you 
would like to use 12 V ac power for outdoor light- 
ing. You are given a transformer core with seven 
turns of wire already wrapped around one side. 
(a) How many turns ofwire would you wrap around 
the other side of the transformer? (lo) Which set 
of turns would you solder to the outdoor light- 
ing? (Turn the power off while you solder.) 

1 4 - 1 1 . 3  A transformer with 250 turns in the 
primary and 50 turns in the secondary provides 
20 V to the secondary. Find the rms voltage of the 
primary. 

1 4 - 1 1 . 4  A transformer is to be used to convert 
from the high output impedance (850 s2) of an 
audio amplifier to the low impedance (8 s2) of a 
speaker coil. If the secondary (speaker coil) has 
12 turns, find the number of turns in the primary. 
Interpret a nonintegral number of turns. 

14-11.5 A doorbell transformer operates at 12 V 
output for 120 V input. (a) Find the turns ratio. 
(b) Explain why, in a transformer, the wire is usu- 
ally thicker on the low-voltage side. 

14-11.6 An 8 S2 speaker produces 40 W rms 
when connected via a transformer to an amplifier 
with output impedance 1200 s2. Find (a) the turns 
ratio, (b) the current and voltage of the secondary, 
and (c) the current and voltage of the primary. 

1 4 - 1 1 . 7  (a) An ac generator produces 12 A r m s  
at 400 V rms with power factor unity. Find the 
rms power produced by this generator. (b) The 
generator voltage gets boosted by a step-up trans- 
former to 12 kV. Find the power after the step-up 
transformer, assuming no losses in the transformer. 
(c) The power then is transmitted to (and from) 
an electrical load with wires having resistance 
8 s2 each way, until it reaches a step-down trans- 
former. Determine the rms power loss in the wires. 
(d) Determine the power available to the load. 

1 4 - 1 1 . 8  A transformer has 600 turns in its pri- 
mary. It is driven at 120 V rms, and its secondary 
has taps that yield rms voltages of 2 V, 5 V, and 
8 V. Find the number of turns for each part of the 
secondary. 

14-11.9 Explain the operation of a Tesla coil. 

1 4 - 1 1 . 1 0  Explain why the top of a Tesla coil, 
despite its high voltage, does not give dangerous 
shocks. 

1 4 - 1 1 . 1 1  Automobile ignitions are so named be- 
cause they ignite, within the chamber associated 
with the piston, an explosive gas-air mixture that 
converts chemical energy from the gasoline to me- 
chanical energy of the engine. Such ignitions gen- 
erate high voltages using only a g = 12 V battery 
in series with a large inductor L (with resistance R) 
and a capacitor C that can be shunted out when a 
switch S is connected. (In "automobilese," the in- 
ductor L is known as the solenoid, and the capac- 
itor C is known as the condenser. The carburetor 
takes the fluid gasoline and vaporizes it with air in 
just the right proportion.) Here is how it develops 
the spark. (1) With S on (no capacitor), the battery 
sends current through the L R circuit of the induc- 
tor, until a current I = g/R is attained in charac- 
teristic time L/R. (a) If I = 12 A, find R. (2) The 
switch S suddenly takes g out of the circuit and puts 
C into the circuit, thus converting a powered L R 
circuit into an unpowered RL C circuit that starts 
with Q = 0 and 1 = g/R. (3) A quarter-cycle of 
the RL C resonance period later, the voltage across 
the inductor reaches its maximum value Vcm. (b) 
If VCm = 300 V, find Rc/R. (c) If a quarter-cycle 
corresponds to 0.84 ms, find L and C. (4) Coupled 
to the primary by a mutual inductance M is a sec- 
ondary. The secondary functions as a step-up trans- 
former, with a maximum voltage of 30,000 V to 
100,000 V. (d) Find the turns ratio needed to pro- 
duce 30,000 V. Note: Such a large voltage causes a 
spark in the gap of the spark plug, which is part of 
the secondary circuit. This drains energy from the 
primary, whose Q decreases during the spark. The 
primary is then ready to start the process again for 
the next spark plug. Modern automobiles use so- 
phisticated electronics in their engine control units 
to ensure that the timing of each spark plug matches 
the stroke of its piston. 

14-12.1 A toaster and an electric motor are de- 
signed for 120 V ac power. Which is more likely to 
work for 120 V dc power? 

14-12.2 Explain the difference between 60-cycle 
hum and 120-cycle hum. 

14-12.3 A linear motor with R = 12 S2 and L = 
45.2 mH is driven by 120 V, 60 Hz ac power, 
producing an ac field of amplitude 0.37 T. Take 
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b = 8.2 cm. (a) When x = 3.5 cm, find the ampli- 
tude of the emf acting on the loop of the linear 
motor. (b) Find Z and ~b for the circuit of the lin- 
ear motor. (c) Find the amplitude of the current. 
(d) Find the time-averaged force. 

1 4 - 1 2 . 4  A jumping ring with R = 1.4 fa, L = 
420 nil,  and radius a = 3.8 cm is in an ac field of 
amplitude 0.26 T and flaring angle of 15 ~ due to 
a solenoid of radius b = 2.8 cm, driven by 120 V, 
60 Hz ac power. (a) Estimate the amplitude of the 
emf acting on the jumping ring. (b) Find Z and ~b 
for the circuit of the jumping ring. (c) Estimate the 
amplitude of the current in the ring. (d) Estimate 
the time-averaged force on the ring. 

....... iiiiii!ii!i:ii~ii~ 14-12.5 Consider a linear ac motor when 
~;~:~:: ......... there is a capacitor C in series with the induc- 

tance L and the resistance R. (a) Find the equation 
describing the current. (b) Find the current. (c) Find 
the time-averaged force. (d) Discuss the qualitative 
difference between the time-averaged force on the 
circuit when the driving frequency o0 is above and 
is below the resonance frequency o)0. 

...... ~!iiiiill ..... 14-12.6 Consider the jumping ring when 
.... ~:ii: there is a capacitor C in series with the induc- 

tance L and the resistance R. (a) Find the equation 
describing the current. (b) Find the current. (c) Find 
the time-averaged force. (d) Discuss the qualitative 
difference between the time-averaged force on the 
circuit when the driving frequency o2 is above and 
is below the resonance frequency coo. 

14-13.1 (a) Find the skin depth for aluminum at 
12.4 MHz. (b) Will a 0.001-inch-thick sheet of foil 
"shield out" electromagnetic radiation? 

14-13.2 Show that Ey satisfies an equation like 
(14.103) for Bz. 

14-13.3 Show that, for any functions f (x)  and 
g(x), 

d2(fg) 

dx 2 
d 2 f d f  dg dZg 
d x 2 g + 2 -~x -~x + f d x 2" 

14-13.4 Discuss microwave heating for d >> 
and for d << 8, where d is the dimension of the ob- 
ject in the microwave field. 

14-G.1 The farther away the generator from the 
power consumption, the more line loss. To compen- 
sate for this, one can increase the emf by increasing 
the frequency at which the generator turns. This has 

misleadingly been called compensation for "loss of 
frequency." Comment.  

14-G.2 There is a story that the initial discovery 
of the J-psi particle, at a high-energy particle ac- 
celerator, was made by a group of physicists with a 
measuring device for particle energies that was sen- 
sitive only over a broad range of energies. The signal 
was repeatedly missed by another group of physi- 
cists who had an energy-measuring device that was 
very sensitive to a narrow range of energies. Only 
after the first group noticed a signal did the second 
group find that signal, and then they could study it 
in much more detail than the first group. Comment  
on how this relates to broad-band and narrow-band 
radio receivers. 

1 4 - G . 3  Consider an underdamped RLC circuit. 
An emf g = gm sin oot commences at t = 0, when 
I = 0 and Q = 0. Including transients, find I and 
Q for all t > 0. 

1 4 - G . 4  Consider an RC circuit. An emf g = c.C'm 

sin o2t commences at t = 0, when I = 0 and Q = 0. 
Including transients, find I and Q for all t > 0. 

1 4 - G . 5  Consider an LR circuit. An emf 
E --" E m sin a)t commences at t = 0, when I = 0 
and Q = 0. Including transients, find I and Q for 
all t > 0. 

14-G.6 Consider a resistor R and a capacitor C 
that are in parallel, and subject to the same ac volt- 
age. By adding the current phasors, find the net cur- 
rent phasor, and then determine the impedance and 
phase shift for this combination. 

1 4 - G . 7  Consider a resistor R and an inductor L 
that are in parallel, and subject to the same ac volt- 
age. By adding the current phasors, find the net cur- 
rent phasor, and then determine the impedance and 
phase shift for this combination. 

14-G.8 Let loop 1, carrying 11, be part of a rotat- 
able coil, to which a needle is attached. Let loop 2, 
carrying I2, be fixed in place, producing a magnetic 
field that causes a torque on the first loop. This is 
the basis of a dynamomet~ whose needle deflection 
is proportional to the torque between two current 
loops. (a) If 11 = I2 = I, the scale markings are not 
linear in current, unlike the torque for a perma- 
nent magnet and a current loop carrying current l. 
How should the scale markings vary with current? 
(b) Explain how such a device can be used to mea- 
sure ac current. (c) Consider a circuit that is be- 
ing monitored both for current and voltage. If the 
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output of the ammeter goes through the first loop, 
and the output of the voltmeter through the second 
loop, show that the deflection can give a measure 
of the power. This is a true wattmeter. [The meter 
at the back or side of your house is a small motor 
that turns a disk at a rate proportional to the power 
consumption. The reading on the dial is a measure 
of the electrical energy consumed (the time integral 
of the electrical power). ] 

14-G.9 Here is some general information about 
electric current and electric shock, approximately in 
order of increasing current. Interspersed with the 
basic information are two questions. (1) Perception 
without harm can occur at a few microamperes of ac 
current, and somewhat larger for dc. (2) The startle 
reaction can be elicited by 0.5 mA rms at 60 Hz cur- 
rent; this is the maximum leakage current allowed 
by appliances. Startle can be caused by a 2 mA dc 
current, but sudden changes in smaller dc currents 
can lead to startle. At frequencies of about 1 kHz 
and higher, the threshold of startle reaction is ap- 

proximately equal to 1 mA per kHz of frequency. 
(a) Explain why higher frequencies require higher 
currents to cause the startle reaction. Hint: It relates 
to charging of the body. (3) Currents above 5 mA 
at 60 Hz can cause rapid contraction and relaxation 
cycle called muscle tetanization, which lasts as long 
as the current flows. Like perception, tetanization 
occurs at a higher current threshold for dc and for 
higher frequencies. (4) Ventricularfibrillation, a dis- 
organized and not spontaneously reversible arrhyth- 
mic motion of the heart, can be triggered by a short 
dc current burst, but it typically requires larger cur- 
rents. For times less than about 0.1 second, the lim- 
its for ac and dc current are the same. For longer 
durations, dc current has higher limits. Ventricular 
fibrillation might be caused by a 20 m A r m s  cur- 
rent at 60 Hz; the corresponding dc current would 
be about 55 mA. (5) The onset of burning occurs at 
a current of about 70 mA rms, independent of fre- 
quency. (b) Explain this frequency independence, 
and why burns are more of a danger at high fre- 
quencies than are shocks. 



"When I placed the primary conductor in one corner of a large lecture room 14 meters 
long and 12 meters wide, the sparks [in the secondary] could be perceived in the farthest 
parts of the room; the whole room seemed filled with the oscillations of the electric force." 

~Heinrich Hertz, 
discoverer of electromagnetic radiation, predicted in 1865 by Maxwell (1888) 

"It seemed to me that if the radiation could be increased, developed, and controlled, it 
would be possible to signal across space for considerable distances." 

~Guglielmo Marconi, 
inventor of radio communications, 

in his later life reflecting on the idea he had in 1894, at the age of 20 
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Chapter Overview 

Section 15.1 introduces the chapter. Section 15.2 presents a brief history of mod- 
ern communications. Section 15.3 launches into the technical aspects of our subject, 
with a discussion of Maxwelt's displacement current, which serves as a new source 
for the magnetic field in Ampere's law. This completes the equations describing the 
electromagnetic field~Maxwell's equations~which have solutions that correspond 
to electromagnetic waves. To prepare you for electromagnetic waves, the next two 
sections discuss waves on a string, Section 15.4 obtaining the wave equation for 
the string, and Section 15.5 solving it for both standing waves (as for a guitar) and 
traveling waves (as on a long taut string). Section 15.6 solves Maxwell's equations 
for a particularly simple form of electromagnetic wave, known as a plane wave. 
Section 1 5.7 points out that electromagnetic radiation covers a spectrum ranging from 
the low-frequency waves associated with power lines, on up to successively higher fre- 
quencies in microwaves, visible light, and gamma rays. Section 15.8 considers power 
flow associated with a plane wave, and Section 15.9 considers the associated mo- 
mentum flow. Section 15.10 considers polarization, a consequence of the fact that 
in free space the electromagnetic field vectors E and B are normal to the direction 
of propagation. Section 15.1 1 considers electromagnetic standing waves, as in a mi- 
crowave cavity. Section 15.12 considers traveling waves for microwave waveguides 
and coaxial cables. Section 15.13 shows how the electric and magnetic properties of 
matter can influence, through the dielectric constant and the magnetic permeability, 
the velocity of an electromagnetic wave. We then show how this influences the phe- 
nomena of reflection and refraction. Section 15.14 reviews the critical experiments 
whereby Hertz established that, for a circuit that produced microwave oscillations, 
it also produced radiation in space whose properties were much like that for visible 
light. Subsection 15.15.1 deals with energy flow for traveling waves on a string, and 
Subsection 15.1 5.2 deals with compressional waves. 
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15,1 Introduction 

We are now prepared to take the final step in our study of electromagnetism, and 
treat electromagnetic radiation. Before getting to the physics, we will remind you 
of what the world was like before there were communications based upon electri- 
cal signaling, either along wires or through space itself. We will discuss matters of 
history and culture, matters that some take for granted, and of which others are 
completely unaware. For those who still think that electromagnetic radiation 
is magic, we are about to shatter that illusion. For those who no longer believe 
it is magic, we would like to encourage you to regain a sense of awe, a feeling 
that perhaps there is just a little bit of magic at work when radio and television 
signals are generated, traverse the earth, and then are detected and amplified 
for our business or pleasure. Electromagnetic radiation, of course, is not magic. 
Nevertheless, it is an amazing fact that in a mere 100 years since its discovery, 
humans have harnessed its power and now are completely dependent on it. 

15o2 A Brief History of Communications 

What follows is a brief history of communications, especially communications 
using electrical and electromagnetic signals. 

Today, we take it for granted that we will be able to communicate with one 
another using phones that use phone lines of copper wire or optical fiber, and 
may also include microwave transmission and satellite linkups. The late 1990s 
saw the first widespread use of e-mail and the  World Wide Web. All of our 
communications methods use some part of the spectrum of electromagnetic 
radiation, based upon the principles laid down in the previous chapters, and one 
more~due  to Maxwell~that  we shall develop shortly. 

Only in 183 7, after a number of years of inventors trying to transmit electric 
signals over a wire to cause mechanical movement, did Morse put the first com- 
mercial telegraph into operation. Previous to the electric telegraph, smoke signals 
(ineffective in winds), lantern-flashing (ineffective in cloudy weather), carrier 
pigeons (ineffective in winds, cloudy weather, and during mating season), and 
messengers (ditto) had been employed. Nevertheless, Paris and Lille, separated 
by 150 miles, could convey messages within two minutes, using a flag semaphore 
system with many intermediate flagmen. By 1861, the overland telegraph had 
improved to the point where New York and San Francisco were in contact with 
each other. 

15~2oI Telephony and Telegraphy 

In the mid-1850s, telegraph cable was first laid across the Atlantic~and failed, 
because the tried-and-true empirical methods that telegraph engineers had 
developed from nearly 20 years of experience with overland routes were in- 
adequate to the underwater environment. It was then that the young William 
Thomson (1824-1907) applied his prodigious scientific talents to the Atlantic 
cable problem, both developing a theory for it and developing more accurate and 
more sensitive methods to generate and detect telegraph signals. (The baud rate 
for the original Atlantic cable was perhaps 1 bit/s. In the year 2000, computer 
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Recall that when a signal is sent along a wire, the wire is not in equilibrium, and cannot 
be considered to be an equipotential. Different parts of the wire are at different voltages, 
and thus a current flows in the wire, according to Ohm's law. Moreover, that voltage 
is due to charge, according to Volta's law. From these ideas, in 1853 Kelvin developed 
a theory of the telegraph. The main reason signaling by single-wire telegraph cable is 
more difficult underwater than in air is that the capacitance is much greater in water. 
This is because charge on a wire in water polarizes the water, and due to the large 
dielectric constant of water (K ~ 80), a nearly equal and opposite amount of charge in 
the water surrounds the charge on the (insulated) wire. Hence, at a given charge on 
a wire, for a wire in air the voltages along the wire are much greater than for a wire 
in water. Faraday discovered this difference in capacitance at the beginning of 1853, 
about the same time as Kelvin's theoretical work. 

A secondary reason signaling by single-wire telegraph cable is more difficult under- 
water than in air is that the effective cable resistance is greater with water. The time- 
varying electric currents induced in the water by the signal along the cable lead to 
additional Joule heating and increased dissipation of energy. This corresponds to an 
increased effective resistance for the cable. 

modems attained nearly 56,000 bits/s, and Integrated Service Digital Network~ 
ISDN~lines commonly attained nearly 128,000 bits/s.) For his contributions to 
telegraphy, Thomson became rich, and was made a baron and then a lord: Lord 
Kelvin, the name by which he is more commonly known today. The telephone, 
which to reproduce speech required much more faithful reproduction of elec- 
trical signals than the telegraph, was invented in 1875. 

Kelvin's practical work in the field of communications was to be superseded 
by that of Maxwell on electromagnetic radiation. Although probably the first 
person with whom Maxwell shared his electromagnetic theory, Kelvin initially 
did not accept Maxwell's prediction of electromagnetic radiation. Unfortunately, 
Maxwell, who died in 1879 at the age of 48, did not live to see his 1865 pre- 
dictions verified by Hertz, in 1887. Kelvin wrote the preface to the English 
translation of Hertz's book, Electric Waves. 

1 5 , 2 . 2  Maxwell's Contribution 

For a number of years, Maxwell worked to express, in mathematical form, the 
physical ideas of Faraday. One of them is that electric charge is associated with 
electric field lines~Gauss's law. A second is the law that there is no true mag- 
netic charge (so the flux of/~ through any closed surface is always zero). A third 
is that the emf produced in a circuit is proportional to the rate at which mag- 
netic flux lines cross the circuit~Faraday's law, first given mathematical form by 
F. Neumann in 1845. In addition, Maxwell tried to develop an analogy due to 
Faraday, between electric currents and magnetic fields. This appears in a letter 
to Kelvin, dated 1861. In the end, Maxwell dropped this analogy, but he put an- 
other in its place. He found that, along with current (both free and Amp~rian), 
there should be a new source term on the right-hand side of Ampere's law. 

The laws of electromagnetism~called Maxwell's equations~appear to be 
complex. However, it should be kept in mind that Maxwell used a very different 
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and even more  c o m p l e x - l o o k i n g ~ b u t  e q u i v a l e n t ~ f o r m u l a t i o n  of the  equat ions  
of e lec t romagne t i sm than  we use today. W h a t  we today  call Maxwel l ' s  equat ions  
actually were  first publ i shed  by Heavis ide in 1885 and, independent ly ,  by Hertz ,  
in 1890. 

We no w tu rn  to Maxwel l ' s  greatest  scientific discovery, the  one on which  
wireless t e l ecommunica t ions  is based. It is also the  basis of all cable c o m m u n i -  
cations, including bo th  meta l  wire and fiber optics. Indeed,  Heaviside s tudied  
Maxwel l ' s  theory  in order  to apply it to te legraphy and telephony.  

15 3 Maxwell 's New Term--The Displacement Current 

It is reasonable  to inquire, "If, in Faraday's law, a t ime-varying magnet ic  field 
can p roduce  a circulat ing electric field, why  can't ,  in Amp~re ' s  law, a t ime-  
varying electric field p roduce  a circulat ing magnet ic  field?" Once  this ques t ion  
is asked, the  issue becomes  to de te rmine  how m u c h  circulat ing magnet ic  field 
is produced ,  and in which  direction. However ,  direct  observat ion of the  effect 
by, for example,  the  rapid discharge of a capacitor, is difficult, even wi th  m o d e r n  
equ ipment .  Indeed,  even after Maxwel l  de te rmined ,  by theoret ica l  means,  how 
large this t e rm is, it took  over 20 years before the  mos t  impor t an t  effect it 
i m p l i e d ~ e l e c t r o m a g n e t i c  r a d i a t i o n ~ w a s  detected,  by Hertz .  

The  key e l emen t  for Maxwel l  was the  real izat ion tha t  a new te rm was needed  
in order  to make  Amp~re ' s  law consis tent  wi th  conservat ion of charge. We 
present  two  justifications, one very general and one using the  specific example  
of the  charging of a capacitor. 

General Argument 

We already have three  of the  equat ions  tha t  describe the  e lec t romagnet ic  field. 
To repeat ,  they  are Gauss 's  law, or 
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and Faraday's law, or 
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The  four th  law wou ld  appear  to be Ampere ' s  law, bu t  there  is someth ing  
missing f rom it (as Maxwel l  not iced) ,  re la ted to charge conservation.  Charge  
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conservation states that the flux of electric current J leaving a closed surface 
must result in a decrease of the charge enclosed. Mathematically, this takes the 
form 

f J . d f i l -  dQ.en~ (15.1) 
dt " 

Taking the time derivative of (4.8) and using (15.1) leads to the result that 

jJ  dA= lfd  4nk - ~  . hdA. (15.2) 

Note that these are both integrals over closed surfaces. 
Now consider Amp~re's law, 

J B. d-~ - 4zrkm f J.  d/t, (15.3) 

where the integral over dil l-  ~dA is over an open surface, and d-d - ~ds and dfi~ 
are related by the circuit-normal right-hand rule. 

The integral on the right-hand side of (15.3) is very like the integral on the 
left-hand side of (15.2), except that in (15.3) the surface is not closed. Maxwell 
modified the right-hand side of (15.3) by adding in a term related to the right- 
hand side of (15.2). His modified Amp6re's law reads 

j ; ~ a t  j 
(Maxwell s modified ~ p e r e  s [igi:]~);:i 

o r  

J 
( ff ct of displacement cu  nO ii s 

J D w a s  called by Maxwell the displacement current density. The actual current 
density J, like the electric field E, has sources and sinks (such as capacitor plates). 
However, rearranging (15.2) and using (15.5)reveals that J + J D has no sources 
or sinks: f J .  d A =  0 - - - f  fD" dA= O, so f ( J  + JD)" d A =  0. 

Equations (4.8), (9.21), (12.4), and (15.4) are collectively known as 
Maxwell's equations. For our purposes (kin/k)-1 = 9 x 1018 m2/s 2, which is 
essentially c 2, where c is the velocity of light in free space. It thus should come 
as no surprise that light is somehow related to electricity and magnetism. 
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Figure 15.1 (a) Wire carrying current I to charge a pair of capacitor plates. The 
open surfaces $1, $2, and $3 all have the same circuit C as their boundary. (b) On 
the same figure we represent, for C, a circuit element d~ and a normal fi, and 
within the capacitor, the directions of dE/dt and/3. 

15o3o2 Displacement Current within a Capacitor 

The combination f + JD guarantees that, despite the ambiguity in determining 
which area to use for f fidA, the right-hand side of (15.4) is uniquely determined. 
Let us see how this works out for an electric circuit consisting of a long wire that is 
externally discharging the plates of a capacitor. At a given instant, let the current 
be l. Consider an Amperian circuit C that is a concentric circle surrounding the 
wire. It has a circulation given by the left-hand side of (15.4). To compute the 
right-hand side of (15.4), consider three surfaces associated with C. Surface $1 
is disk shaped, corresponding to the circle, through which a current I passes. See 
Figure 15.1 (a). 

The electric field is zero on $1, so the right-hand side of (15.4) is given by 

4rrkm f J . dft + -~ d f ~ . dA = 4JrkmI + O - (15.6) 

Surface $2 is obtained by deforming the disk, as if it were completely exten- 
sible, while leaving the perimeter of the circle in place. The current I intersects 
$2, as for $1, and the electric field is zero on $2, as for $1, so the right-hand side 
of (15.4) is given by (15.6), as for $1. 

An even more extended version of $2 is surface $3, which has part of its 
surface cross between the plates of the capacitor. In that case, no current crosses 
the capacitor, but the electric field is nonzero within the capacitor. The electric 
field that crosses $3 comes exclusively from the charge on the capacitor plate 
enclosed by $3. Thus we can artificially close the surface $3, and then use Gauss's 
law. Thus for $3 the right-hand side of (15.4) is given by 

d d km d 
4 rr km / J . d ft + ~ j~ r E .  d A -  O + ~ - ~  r E .  d d ~ -~-~ r E .  d A 

km d 
k dt 

~--4zrkO,~nc = 4JrkmI. (15.7) 

Hence the right-hand side of (15.4) is the same for $3 as it is for $1 and $2. 
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~pplication 15.' 

In free space, where there is no true current, if the/~ field is into the page and 
starts to decrease, then the displacement current, by (15.5), will point out of 
the page. Let us apply Maxwell's extension of Ampere's law, (15.4), to include 
displacement current, and use Oersted's right-hand rule. Then a/~ field will 
circulate counterclockwise for the Amperian circuit in Figure 15.1 (b). More 
formally, since clockwise d~ corresponds to h into the page (and thus positive 
current into the page), both the displacement current (integrated over the 
cross-section) and the magnetic circulation are negative, as expected. 

Hertz, in the introduction to his Electric Waves, noted that there are at least 
four ways to think about electricity: (1) action at a distance (Chapter 3); (2) 
the electric field produced by distant free charge (this is little more than action 
at a distance, as in Chapter 4); (3) the sum of the electric fields produced by 
distant free charge and by locally neutral polarization charge (e.g., in a dielectric, 
as in Chapter 7); (4) the electric field described solely by the local polarization of 
space P, as embodied in the physical picture of flux tubes, and the mathematics of 
the displacement vector D - s0/~ +/5,  whose only source is free charge. Hertz 
believed that Maxwell thought in the fourth fashion. Maxwell himself never 
really told us. He just left us the equations. 

The presence of the displacement current is felt constantly; it is essential to 
electromagnetic radiation. In short, without Maxwell's new term, there would 
be no radio, no television, no sunlight~and no life. 

15.4 Equation of Motion for a String under Tension 

For Maxwell, immersed in the physics of his time, it was second nature to recog- 
nize a wave equation. A beginning student of physics may not be able to do this. 
It is important, therefore, that you learn how to recognize a wave equation and 
that you become aware of some of its properties. Because a string under tension 
supports waves, its equation of motion should support waves. For that reason, 
we study the motion of a string. 

First, however, note that all waves satisfy the relationship 

xf  = v, (15.8) 

where )~ is the wavelength, f is the frequency in Hz (cycles per second), and v is 
the velocity of propagation. (Notational woe: We earlier used the symbol )~ for 
charge per unit length, so we again have the problem of too many quantities to 
represent. In this chapter, )~ will refer exclusively to wavelength.) 

We now make a distinction between two classes of waves. 

15.4.1 Nondispersive and Dispersive Waves 

Nondispersive waves have the same velocity for all frequencies. This includes 
waves on a uniform string, sound waves in air, and electromagnetic waves in 
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Seismic waves on the solid surface of the earth are nondispersive. That is why distant 
measurements permit us to locate the position and intensity of distant earthquakes. 
For a given type of wave to be useful from the point of view of communication, it 
should be as nondispersive as possible. If water waves were nondispersive, we might 
be able to communicate from ship to distant ship by using them. They aren't, so 
we can't. We use our voices (sound waves) when near, and radio (electromagnetic 
radiation) when far. 

free space. For each of these, there is a characteristic velocity of propagation 
that waves of all frequencies satisfy. As a consequence, if a complicated signal 
(like someone's voice) radiates outward, when it arrives at the listener, all the 
frequencies will arrive at the same time (i.e., nondispersively), and the sound 
will be intelligible. 

Dispersive waves have a velocity that varies with frequency (or, equivalently, 
varies with wavelength). The most common example of this is waves on the 
surface of a body of water. These all travel at different velocities, the high fre- 
quencies traveling the fastest. A pebble dropped into a pool generates waves 
of many frequencies and, by (15.8), correspondingly many wavelengths. Hence, 
if a second pebble is dropped into the pool, a few seconds after the first, the 
high-frequency, short-wavelength waves from the second pebble will catch up 
to and outrun the low-frequency, long-wavelength waves from the first pebble. 
To a lesser extent, light in materials and sound are dispersive. 

!5o4~2 Physical Picture 

We begin with some general considerations. For simplicity, neglect gravity. Attach 
the ends of a string of mass per unit length # to two posts, such that the string is 
under tension F. (Notational woes again: Often the symbol T is used for tension, 
but consistent with our previous usage, T will be reserved for the period. The 
symbol T is also used for temperature.) The string then forms a straight line. 
See Figure 15.2(a). Rotating the string (a change in slope) does not cause it 
to vibrate. See Figure 15.2(b). Lifting the string up and down as a whole (a 
uniform displacement) does not cause it to vibrate. See Figure 15.2(c). Thus 
the acceleration of any part of the string does not depend on either the value 
of the vertical displacement y of the string or of its slope dy/dx, where x is the 
horizontal distance along the string. 

Figure 15.2 A string under tension, which, when straight, does not 
move: (a) original configuration, (b) rotated configuration, (c) vertically 
displaced configuration. 
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Moreover, if the string is wrapped on a curved frame, and the frame suddenly 
is removed, the string will not retain its shape: it will start to move. This tells 
us that curvature, which is proportional to d2y/dx 2, can cause the string to 
accelerate. Since acceleration is given by d2y/dt 2, we expect that the second 
time derivative is proportional to the second space derivative. In other words, 
the acceleration is proportional to the curvature. 

Now consider the proportionality constant. The acceleration d2y/dt 2 should 
be proportional to the force that acts on it (and this force should be proportional 
to the tension F), and inversely proportional to the string's mass (which should 
be proportional to the mass per unit length #). Thus, if we are lucky about the 
dimensionality of F and #, and doubly lucky about the arbitrary constant, we 
might guess that 

d2y F d2y 
n 

dt 2 # dx 2" 
(15.9) 

In fact, this equation is correct. A check that it has the correct dimensionality 
can be done by observing that, because of the space and time dependences in 
the denominators of (15.9), F/I~ should have the same dimension as the square 
of a velocity. To verify this, note that F has the same dimension as a force, or N, 
and that # has the same dimension as a mass per unit length, or kg/m. Thus F/#  
has the same dimension as N-m/kg = J/kg = (m/s) 2, which is indeed the square 
of a velocity. 

This discussion neglects motion in and out of the page (i.e., along z). Because 
gravity has been neglected, motion along z will be similar to motion along y. 
Thus motion along z can be described by (15.9) with the y's replaced by z's. 

A comment about notation: The variable y depends on both x and t. In (15.9), 
the d/dx's are taken at fixed t and the d/dt's are taken at fixed x. It is conventional 
to use another symbol for these partial derivatives, where only one independent 
variable is changed. (Think of independent variables like t as input, and depen- 
dent variables like x as output.) Thus, the mathematical cognescenti write a/ax 
or ax instead of d/dx, and a/at or  Ot instead of d/dt. We will be a bit sloppy in 
what follows, but at least we have paid lip service to the mathematical conven- 
tions that you will see in more advanced courses. 

15.4~3 Derivation of  the Wave Equation 

Let us now derive (15.9). It applies in the limit where the slope dy/dx  is small. 
Consider a closeup diagram of the string. See Figure 15.3. 

In a spatial region of small length dx, the length of string is ds = 
v/dx 2 + dy 2 - dxv/1 + (dy/dx) 2 ~ dx. Thus dx has mass dm - #ds ~, ~dx. The 
mass times the acceleration in the y-direction is thus 

d2y ~, #dx  d2 y 
dm-d~ dt 2" (15.10) 

Horizontal motion of the string would cause significant extension or com- 
pression, which would change the tension F. However, since the motion of the 
string is essentially vertical, such tension-changing effects are negligible. In that 
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Figure 15.3 Closeup of string under tension F. In 
the absence of constraining forces, a curved string 
will move, even if it initially is at rest. 

case, as can be seen in Figure 15.3, the net force d Fy on dm in the y-direction 
is given by the difference in the y components of the nearly constant tension F. 
Since at x the angle O(x) that the string makes to the horizontal is small, we can 
set sin 0 ~ tan 0 - dy/dx. Then 

Fy = F [sin O(x + dx) - sin 0(x)] ~ F [tan O(x + dx) - tan 0(x)] 

[ dy dy ] .~ F d2y dx 
= F dx x+dx dx x ~ " 

(15.11) 

The last approximate equality of (15.11) used the straight-line approximation 
(valid for small dx) that f (x + dx) - f (x) ~ (d f /dx) dx, with f (x) = dy/dx. By 
Newton's second law of motion, we equate (15.10) to (15.11), thus obtaining 
(15.9). 

Certainly, we believe that (15.9) has wave solutions because stringed 
instruments~l ike violins and violas and cellos and guitars and basses~support  
wave motion. Let us use that to guide us in finding wave solutions to (15.9). As 
a start, rewrite (15.9) as 

F . . . . .  
v = --  (wave equation for a g t r i ~  (I5.12~ i~t2 ~x 2 ' lz i 

where v has the dimensions of a velocity. 
We will discuss two types of solutions to (15.12), standing waves and traveling 

waves. 

15.5 Waves  on a Str ing 

Standing waves occur when there are fixed boundaries, as with stringed instru- 
ments. Traveling waves occur when there are open boundaries, or when we are 
far from the boundaries, as when we shout from the center of an immense audi- 
torium. 

15o5~I Standing Waves and the Theory of Stringed Instruments 

Now, what does a wave for a stringed instrument look like? If its ends are at x = 0 
and x - L, then we may choose coordinates that make y = 0 at these ends. See 
Figure 15.4. 
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When a string on a stringed instrument is plucked or picked or pulled or 
bowed, it makes a characteristic sound. Analysis of this sound shows that it is 
dominated by a single frequency. Therefore, let us try a solution of the form 

y(x,  t) - g(x)  sin (o)t + ~b). (15.13) 

Here there are many unknowns" the frequency co in radians per second, the 
shape function g(x),  and the phase q~. 
(Recall that co, the frequency in radians 
per second, equals 2~r times f, the fie- 

L ~ quency in cycles per second.) The func- 
tion g (x) must satisfy the boundary condi- 
tions that g(0) - 0 and g(L)  - O, in order 

Figure 15.4 String that is fixed at its to make y - 0 at the ends. Substituting 
~nds. (15.13) into (15.12) yields 

_o)2 g _ v2d2g v2 = --,F (15.14) 
dx 2' # 

where we have factored out sin(~ot + ~). 
This is a disguised version of the harmonic oscillator equation, (14.11). With 

K the spring constant, M the mass, and X the position coordinate, the harmonic 
oscillator equation is 

- K X - M ddt X.  (15.15) 

In (15.15), t is the independent variable and X is the dependent variable. 
Equation (1 5.1 5) has as its solution 

X(t) - A sin(f2t + ~b0), 
K 

n =  ~ ,  (]5.16) 

where ~b0 and A are determined by what are called the initial conditions: the 
initial values of X and dX/d t .  [Don't be bothered by the use of s2 in (15.16), 
instead of o90 as in (14.12); we already have used the lookalike w in (15.14).] 

Comparison shows that the set (K, X, M, t) of (1 5.1 5) is just like the set 
(0) 2, g, v 2, x) of (1 5.14). Since the solution to (1 5.1 5) is (1 5.1 6), we can obtain 
the solution to (15.14) by substituting the appropriate quantities. Replacing 
s2 - v / K / M  by q - v/o)2/v i - co~v, the solution for the shape function g(x) of 
(1 5.14) is given by 

g(x) - A sin(qx + ~b0), 
o) 

q - - .  (15.17) 
v 

We call q (yet another notational woe~q  is not to be mistaken for a charge!) 
the wavenumber. In (15.17), q plays the same role as ~2 does in (15 16), and as 
~o0 did in (14.12). (We really have a problem with too many quantities for the 
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number of symbols at our disposal. Other symbols often used for wavenumber 
are Q, K, and k. Each of them has its notational difficulties!) 

Equation (15.17) still isn't a solution to our problem even though it satisfies 
the differential equation (15.14). The problem is that it doesn't yet satisfy the 
boundary conditions g(0) = 0 = g(L). To satisfy g(0) = 0, set ~b0 = 0 in (15.17). 
To satisfy g(L) = 0, set sinqL = 0 in (15.17), which implies that 

/47r 
q - ~ .  (n a nonzero integer) (15.18) 

L 

Hence, the boundary conditions restrict the allowed values of the wavenumber q. 
It is universally the case that boundary conditions impose restrictions. See 
Figure 15.5 for the modes corresponding to n = 1 and n = 2. 

Let's now finish things up. Placing (15.17) into (15.13) yields the space and 
time variation of the displacement y of a string tied down at x = 0 and x = L. 
It is 

~~~~~i~i~ii~~i~i~~~i~i~i~i~i~i~~~~i~i~~~i~i~i~i ~ i i i i ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~  ~!i i ii i ~ ~ ~  ~ e  ~ i i~~  !i ii 
i iiiiiiiiiiiii !ilii ! i~i i~i i  

where, from (15.17) and (15.18), ~o only takes on the values 

iiiiiii~iiiii~iii!iiiiiiiiiiii]iiiiiiiiii~iiiiiii~i~ii~iii~i~iiii~i~iiiiiiiiiiii~iiiiiiiiiiii~iiiii~i~!iiiii~ii!iiiiiii~iiiiiiiiiiiiiiiiiiii~i~i~ii!ii~ii~iiiii~ii~iii~iiii~iiiiiiiiii~iiiiii!~i~iiiiiii~ii~iiiiiiii~i~i~i~ 
~iiii i ) i i i i i i ii i i i 

i iiiiiiiiii i !i i iii i i iili ii! i! i i!il iii ii il i!iiiiiiii i i ii!i!iiiiiiili il !!iiiii! i i!iiiiiii iii ii!i!iiiii 

This equation gives the natural vibrational frequencies, or harmonics of a string 
under tension. The n = 1 frequency is called the fundamental, or first harmonic. 

The n = 2 frequency is called the second har- 
monic, or first overtone. Equation (15.20) also 
contains the theory of the tuning of stringed 
instruments. For a given instrument the length 
L is fixed; thus the shorter instruments will 
have the higher frequencies. For a given length 
and tension, the lighter the string the higher 

Figure 15.5 (a) Fundamental the frequency. (Note: All strings on a given 
mode of a uniform string. (b) instrument have about the same tension; oth- 
Second harmonic of a uniform erwise, some supports would be built stronger 
string, than others.) For a given length and mass per 

unit length, the higher the tension the higher 
the frequency. Any motion of the string is a superposition over a proper amount 
(with the proper phase) of each of the modes. 

Waves satisfying (15.19) are called standing waves because they retain their 
shape (given by sin qx) although their amplitude changes with time. We say that 
the string resonates at the resonant frequencies given by (15.20). The acoustic 
resonances of a room and the electromagnetic resonances of a microwave cavity 
are analogous to the resonance of a string. 
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~ Tuning a guitar string 

A guitar string is 60 cm long and has a mass per unit length of 2.2 g/m. 
Find the tension it should be given so that its third harmonic has a frequency 
f - 690 Hz. 

Solution: Since ~o- 2zrf = 4335 s -1, L -  60 cm, and n -  3, the first part of 
(15.20) gives v = o)L/n;r - 276 m/s. The second part of (15.20) gives F = #v 2 = 
167.6 N. This would lift a mass m - F /g  = 17.0 kg under the earth's gravity. 

Traveling Waves 

Travel ing waves ,  as seen by an observer at rest, do not repeat in time. They radiate 
energy away from the region in which they are generated. There is something 
special about the wave equation given by (15.12): its traveling waves do not 
change shape. (This is because the velocity is independent  of the wavelength; it 
is nondispersive.)  Thus, for an observer moving with the traveling wave, the wave 
will appear to be at rest. In this section, we derive )~f = v, and we show that  
(15.12) has solutions that  correspond to waves with velocity v. 

Consider a possible solution to (15.12) with the form 

y ( x ,  t) - g ( x -  v t ) .  (15.21) 

Clearly, in (15.21), derivatives of g with respect to x are proportional to deriva- 
tives with respect to t. Indeed, d y / d t  - - v ( d y / d x ) ,  and d 2 y / d t  2 - v 2 ( d 2 y / d x 2 ) ,  

x0 

Figure 15.6 A rightward-moving 
traveling wave. 

which is (15.12). Hence (15.21) is indeed 
a solution to (15.12). Moreover, g ( x -  v t )  
represents a wave that  travels to the right 
at velocity v because the x = 0, t = 0 value 
g(0) is at x = v t  at t ime t. See Figure 15.6. 

Note that, in a wave, the mater ia l  doesn't  
travel rightward, only the position of the 
peak (and, more generally, the shape) of 
the wave. A chalk mark near the left end of 

the string doesn't  travel to the right with a rightward wave, but  rather it moves 
vertically. Similarly, we don' t  get carried to shore when we are floating on the 
water and a water wave goes by. 

Now consider, far from the walls, the specific waveform 

g ( x -  v t )  - sin[q(x - vt )] ,  (15.22) 

where the wavenumber  q is arbitrary. (We could also add an arbitrary phase 
~b, or use a cosine function.) We can relate q to both the frequency co and the 
wavelength X. 

First, if at fixed x we wait a t ime period t = T = 1 / f  = 2zr/co, then by defi- 
nition, in (15.22) there will be a decrease in phase of 2zr. Explicitly, in (15.22) 
this decrease in phase is q v T  = qv(2rr /co)  = 2Jr, so 

q v  - o 2 -  2Jr f . (15.23) 
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Also, if at fixed t we displace ourselves by a wavelength k, then, by definition, 
in (15.22) there will be an increase in phase of 2Jr. Explicitly, in (15.22) this 
increase in phase is q)~ - 2Jr, so 

iiiiiiiiiii!iii iiill ii!iiii!!ili!iiiiiiiiiiiiiiii!i ii iiii !ii i!!iiii i iiiiiiiiii  ii!ii!i iii iiiii il iiiiiiiiiiiiiiiii!ii! il iii iii!!i ill iiiiiiiiiiiiiiii!iiiii!i!i!iiii iii ii i! :iiii iiiiiiiiiiiiiiii!iiiiiiii!iiiiiii!iiiil iiiiiiiii:iiiiiiiii!i!iii::i!iiiiiiiiiii!iiiiii!iiiiiiiii!iiii!i!iiiiiii i!! 

Taking the ratio of (15.23) and (15.24) yields 

As indicated earlier, this relationship is satisfied by all waves. If v is independent 
of frequency, as for nondispersive waves, the frequency and wavelength are in- 
versely proportional to each other. 

Note that the physical motion of the string is along y, whereas the wave 
propagates along x. Hence the motion of the string is transverse to the direction 
of propagation. In contrast, sound waves in air, if they travel along x, produce 
a displacement of the air along x, and thus the motion is longitudinal to the 
direction of propagation. 

~ From frequency to wavelength 

Take the velocity of sound in air and in water to be Vair-  340 m/s, and 
Vwater -- 1500 m/s. For the guitar string ofthe previous example, v = 276 m/s. 
For a frequency f = 300 Hz, find the corresponding wavelengths. 

Solution: Using (15.25), f - 3 0 0  Hz yields wavelengths k a i r  = 1.133 m and 
)~water = 5.0 m, and )~guitar - -  0.92 m. 

You are now experts on the properties of wave equations, and you know how 
to recognize a wave equa t ion~  (15.12) ~ w h e n  you see one. We can now return 
to the problem of electromagnetic waves. 

t 5 o 6  Electromagnetic Waves 

Now consider, in three-dimensional space, an electromagnetic wave that has no 
y or z dependence. This is called a plane wave, since for any point on any plane 
x - constant ,  the wave has the same amplitude. 

Our derivation for plane wave electromagnetic radiation closely follows the 
derivation of the last chapter for the skin depth. It employs the same rectangular 
circuits, and it employs the same laws, Amp~re's law and Faraday's law, except 
that now we employ Maxwell's version of Amp~re's law. The result for Faraday's 
law is exactly the same as in the previous chapter. If you are familiar with that 
section, don't bother to read the subsection on Faraday's law. The result for 
Amp~re's law changes, however, because now, instead of the real current, there 
is the displacement current. 

Consider empty space for the region x > 0. Let the x = 0 plane be a sheet of 
conductor that provides a time-varying current along the y-direction. Hence, at 
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least within the sheet, by Ohm's law there is an electric field along the y-direction. 
We therefore assume that the electric field points along the y-direction. More- 
over, from Ampere's right-hand rule, we expect a magnetic field near the sheet 
that points along the z-axis. We therefore assume that the magnetic field points 
along the z-direction. A plane wave with this form is said to be linearly polar- 
ized because as time goes by the electric field points along or against the same 
linear direction in space (and similarly for the magnetic field). In contrast, light 
from a lightbulb or from the sun has electric and magnetic field vectors whose 
direction in space changes nearly randomly (and rapidly) with time. Such light 
waves are said to be unpolarized. 

Our goal is to determine the two equations describing how the electric and 
magnetic fields Ey and Bz vary in space and in time. We assume that the only 
spatial dependence comes from x. 

Use o f  Fa ra day  "s L a w  

Because the magnetic field is along z, it produces a magnetic flux along z. Let us 
therefore apply Faraday's law to a small rectangular circuit whose normal hi is 
along z, with dimension h l along y and dx along x. See Figure 15.7. 

By the circuit-normal right-hand rule, d~l must be taken to circulate as in the 
figure. Then the electric circulation is given by 

f -. dEy 
E . d-gl - [ E y ( x  + dx) - Ey(x)lhl ,~ -d-~x (hldx). (15.26) 

The associated magnetic flux is 

~B - / B " d f t -  l B .  h ~ d A -  Bz(hldx). (15.27) 

The negative rate of change of the associated magnetic flux is 

d~B = dB~ (hldx). 
dt dt 

(15.28) 

dx /For Faraday's law 

- I 
hi 

fll 

=dx~ 
For Ampere-Maxwell law 

Figure 15.7 Geometry describing 
electromagnetic radiation flowing to 
the right, caused by an electric 
current on the x - 0 plane, 
oscillating along y. Two imaginary 
circuits are drawn, one for use with 
Faraday's law (involving magnetic 
flux), and the other for use with the 
Ampere-Maxwell law (involving 
electric flux). 
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Using Faraday's law to equate (15.26) and (15.28) yields 

dEy dBz 
= (15.29) 

dx dt " 

15,6 ,2  Use of Amp~re's Law, as Modified by Maxwell 

Because the electric field is along y, it produces an electric flux along y. Let us 
therefore apply Ampere's law to a small rectangular circuit whose normal ~2 is 
along y, with dimension h2 along z and dx along x. By the circuit-normal right- 
hand rule, we must take d~2 such that it circulates as in Figure 15.7. Then the 
magnetic circulation is given by 

J B. d-~2 - [ - B ~ ( x  + dx )+  B~(x)lh2 dBz (h2dx) (15.30) 
~ x  " 

For empty space, the true electric current is zero, but the displacement current 
is nonzero. From (15.5), it is given by 

1 dEy (h2dx) 
f / D "  d f i -  f JD" f t 2dA-  JDy(h2dx)- 4rrk dt " (]5.31) 

Using Ampere's law to relate (15.30) and 4rckm times (15.31) yields 

dBz km dEy dEy 
dx k dt - #~176 dt (15.32) 

15o6,3 The Electromagnetic Wave Equation 

Taking the time derivative of (15.29) and the x-derivative of (15.32), we can 
eliminate d 2 Ey/dtdx - d 2 Ey/dxdt, to obtain 

d 2 Bz km d 2 B~ d 2 Bz 
dx ~ = k dt 2 = tz~176 dt 2 �9 (15.33) 

A similar equation can be derived for Ey. Not only are E and/~ normal to each 
other, they are normal to the direction of propogation, which is along x. 

Comparison to (15.12) shows that (15.33) is a wave equation, with velocity 

i i ii i iii~ii~~iiii ~ ~ i ii ~ ~ i i i i i iii ~ i iiii i i i~iiiiii~i~ii i iiiili iiiiiiii i ii '~ i iii i iiiiiiiiii iiiiii i ill i ili iiiii i iil i iiii ~' i i i li i ii~ iii!iiii i iiiii ili i iii i iii 
ii!i !i i iiii iiiiiiil il i !i iiiiiiii iiiiiiiiiiiiiii! 

Thus Maxwell's equations have, in free space, a solution corresponding to a 
coupled wave involving both the electric and magnetic fields, which propagate 
at a speed identical to the speed of light c in vacuum! Surely this is a hint that 
light is a form of electromagnetic radiation; indeed, the electromagnetic nature 
of light has been borne out by experiments and practical applications for over 
100 years. 
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15,6~ Properties of Electromagnetic Waves 

Consider a traveling wave of the form 

Bz(x , t )  - A sin (qx  - o)t). (15.35) 

Substitution into (15.32) yields, with (15.34), 

d E y  k dBz 

d t  km d x  
= - c  2 A q  cos (qx  - o)t). (15.36) 

This integrates to 

Ey - c 2 A q sin (qx  - o)t) = c A  sin (qx  - cot), 
o) 

(15.37) 

where we have used (15.23) with v -  c. Comparison of (15.35) and (15.37) 
gives 

Ey - cBz, or I E I - c l B I ,  or E - cB,  (15.38) 

for this rightward-traveling wave. A leftward-traveling wave would have the 
waveform cos (qx  + o)t), and Ey = -cBz.  

From this discussion we conclude that, in a vacuum, electromagnetic waves 
have the following properties: 

1. They travel with the velocity of light c. 

2. Their frequency ca is related to their wavenumber q by co - cq. 

3. Like waves on a string, they are transverse. That is, the quantities that vary- 
/~ a n d / ~ a r e  normal to the direction of propagation ~. Then, just as (~, j, k) 
is a right-handed triad, so is (/~,/~, ~) a right-handed triad. More specifically, 
E x B points in the direction of propagation ~, so 

- - - c ~  x /~, / ~ -  -lc) • E. (15.39) 
c 

4. IEI-  clBI. 

• Properties of radiation 

Consider an electromagnetic wave that propagates along 3?, with E instanta- 
neously pointing along ~. E has a maximum amplitude Em of 18 V/m. (a) 
Find the instantaneous direction of/3. (-b) Find the maximum value of I/~1. 

Solution: (a) Because /~, /~, and the direction of propagation ~) are mutually 
perpendicular,/~ must point along +2. Specifically, B along +3c satisfies (15.39). 
(b) By (15.38), the maximum value Bm o f  I BI is Bm -- E m / c  = 6 . 0  • 10  -8  T. 

Finally, note that by Fourier's theorem, any shape can be reproduced as a sum 
over sines and cosines if enough wavelengths are included. Hence we can decom- 
pose, for example, a rightward-traveling localized pulse, into a sum (or integral) 
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over waves with all wavelengths. Now, since in a vacuum each wavelength 
travels at the same velocity, that means that a localized pulse as a whole 

travels rightward at that same 

Direction of propagation 
v -  

Figure 15.8 Representation of an electromagnetic 
wave that is traveling rightward. At any instant of 
time, its electric field and magnetic field are 
uniform along any plane defined by a constant 
value of x. In this case,/~ points along y and/~ 
points along z. 

velocity, without any change 
in shape. This nondispersive 
behavior also holds for sound 
in air and for waves on a string. 
As discussed earlier, that is 
why sound and light are useful 
for communications. 

Figure 15.8 summarizes 
our results. This depicts two 
types of dependent vectors, 
the electric field vector /~, 
and the magnetic field vector 
/~, at a given instant of time. 
Properly, E and /~, having 
different units, do not really 
co-exist in same coordinate 
space; the x-axis represents 

the real space x-axis, the y-axis represents Ey space, and the z-axis represents 
Bz space. Nevertheless, we present Figure 15.8 to show how both /~ and/~ 
propagate together in time at the speed of light. As time goes by, the curves 
representing E and/~ would move rightward with velocity c. 

15o7 The Full Electromagnetic Spectrum 

Equation (15.34) is critical. It says that all electromagnetic waves in free space 
move with the same velocity. It also says that electromagnetic radiation can 
occur, in principle, at infinitely high and infinitesimally low frequencies, with 
corresponding short and long wavelengths. At the low-frequency end is ac power 
(60 Hz). Successively higher frequency and shorter wavelength give long radio 
waves, short radio waves, UHF, VHF, microwaves (produced by microwave tubes 
and by molecular rotations), infrared (produced by lasers and molecular vibra- 
tions), optical (produced by low-energy electron transitions), ultraviolet (pro- 
duced by high-energy electron transitions), x-rays (produced by very high-energy 
electron transitions), and gamma rays (produced by high-energy nuclear transi- 
tions). Because of the Doppler effect, whereby the frequency of a wave increases 
(decreases) when the source approaches (recedes from) the observer, these forms 
of electromagnetic radiation are equivalent to one another, except for their dif- 
ferent frequencies. See Figure 15.9. 

Table 15.1 summarizes the wavelengths associated with visible electromag- 
netic radiation~light. 

Table 15.1 Wavelengths of colors 

i!i ilii ill ii i . . . . . . . .  ................. 

400-440 nm 440-480 nm 480-560 nm 560-590 nm 590-630 nm 630-700 nm 
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Frequency f (Hz) 

10 24 10 21 
Hz I I I I I I 

Gamma rays 

EHz 

1018 
I ! 

PHz 

1015 
I I I I 
(uv) 

Visible 

X - r a y s  
m I I I I I I I I I I I I 

1 0 - ] 5  1 0 - 1 2  1 0 - 9  1 0 - 6  

f m  p m  g m  n m  

THz GHz MHz kHz Hz 

1 0 1 2  1 0  9 1 0  6 1 0  3 1 0  ~ 
I I I I I i I I I I I I I I I 

(IR) 
Amateur 
radio band 

Microwaves TV FM AM Long radio waves 
I ! I I ! t I ! I I I t I I I 

1 O-3  10 ~ 10 3 10 6 10 9 

m m  m k l n  

Wavelength ;l (m) 

Figure 15.9 A representation of the electromagnetic spectrum. The upper line gives 
frequency f, and the lower line gives the corresponding wavelength )~, where )~f-  c. 

15,8 Electromagnetic Energy and Power Flow 

An energy density is associated with an electromagnetic wave, and it travels at 
the velocity c of the wave. The total energy density u is the sum of the electric 
and magnetic energy densities, so from previous chapters, 

E 2 B 2 
U - -  UE n u/AB - -  { (15.40) 

8zrk 8zrk~" 

For the plane wave of Section 15 6, E 2 2 and B 2 2 �9 = Ey - B~. Use of (15.34) then 

yields c / k -  (kmc) -1, so with (15.38), Equation (15.40) becomes 

H - -  
E B c  E B  E B  EB  EB 

8zrk ) 8rrckm = 8zrckm r 8zrckm = 4zrckm" 
(15.41) 

We now consider the flow of energy, using an argument similar to the one we 
used in Chapter  7 when we considered the flow of charge. Instead of charge 
density ne, we now consider energy density u; instead of drift velocity va, 
we now consider the speed of light c; and instead of electric current per unit 
area J, we now consider the power per unit area S. 

Consider a small imaginary box of area A normal to x and thickness dx  << k. It 
has volume Adx and contains an energy u A d x .  The energy moves with velocity c 
so that  this energy moves out of the box in a time dt  = dx / c .  Thus the energy 
per unit time, or power, crossing the box is u A d x / d t  = uAc.  Hence the power 
per unit area S is given by u A c / A  = uc. Thus 

EB EB  
S = uc - = . (power per unit area) (15.42) 

4Jrkm ~0 

The energy flows in the direction of wave propagation. Another  name for the 
power per unit area is the intensity, with symbol l. 
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A more general t rea tment  shows that  the energy flow and the magnitude of 
the intensity are both given by the Poynting vector 

ii!ii ! ii iiiiiiii i  iiiiiiiii i ,!i iiii  i'iiii 'i iiiii{ iiiiii!iiiiiiii'!i  'iliiiiii i i iiii 'iiiii!i i!iiiii iii  f     ii'iiii !!i iiiiiii !!iiiii iiii il ! iiiiiiiii!iiii ii iiiii :i!iiiiii  iiiiiiiiiii  iiiiiiiiiiiiiili!i!ii!!iiiii i iliiiiiiii i!iiii!iiiiii!! iiiiiiiiiii 
':!~': !': ~, !iiiii!~ ~!',ii ii i!~ii i~iiii!i ii i il il ',iii i i~: ~,ii ii i ii ii iil il iliii iii ii i iii iii ii iiii~i0iiii i~i i~i i~: ~,i i iiiii!iiiiiiiiiii!iiiiiii!iiiiiiiiiii ii~i i !iiiiiiiiiiiiiii{i!iiiiiiiii!iiiiill ii ::i':, iiii!i!ilili!iiiiiiiiiiiii!iiii ilill ii! ii i~:':i i iii ~ , ii ',i!i iiiiiiiiiiiiii ii i ii !i!il il ii!ii ili ii iliiiiiiiii i i! iiii!ii i ~ :; i i ~ , i! ',i! iii ii iiiiiiiiii i iiiiiill ii i iiiiiiii~,!iiiiiiiiiiil :,ii iiliii i iiiiiiiii!iiiiiiiiiiiiiiiiiiiiii ii :,ii~,iiiiii':iiiiiiiiiii!!iiiii!!ii!iiiiiiiiiii iiii!i!iii 

!!i ii ii il !i ilii iiii iiii iili 
Clearly, $ is the vector form of S, so S - I SI. The Poynting vector explains how 
power flows into a wire that  is subject to Joule heating. The energy enters the 
sides of the wire, rather than along its axis, from the electromagnetic field to the 
wire. Of  course, a voltaic cell or mechanical mot ion converted to an emf  (by 
Faraday's law) is the ul t imate source of energy for the electromagnetic field. 

• Light from the the earth s u n  at 

Visible radiation from the sun has an average intensity S of about 1500 W/m 2 
at the earth's orbit, for which RE = 1.50 x 1011 m. Find the characteristic 
value of the maximum electric and magnetic fields Em and Bm incident on 
the earth. 

Solution: Including a factor of one-half from averaging over an oscillation (as for 
ac circuits), (15.42) and (15.38) give 

S -  E2m - - E2m . (15.44) 
8Jrkmc 2/x0c 

Here Em denotes a maximum electric field, averaged over all radiation frequen- 
cies. Solving for Em gives Em = v/2t.toc$, which evaluates to Em = 1060 V/m. 
Corresponding to this is Bm = Em/c = 3.54 x 10 -6 T. 

Radiation by an isotropic spherical source. An isotropic spherical source is one 
for which the radiation intensity is the same in all directions, as for a lightbulb 
and for the sun. In this case, the average total power 75 is obtained by multiplying 
the average intensity S ~ a  power per unit  a r e a ~ b y  the surface area 4zr R 2 of a 
sphere of radius R. Thus 

73 - $(4zc R2). (15.45) 

Since 73 is independent  of radius R, it is useful to rewrite (15.45) as 

$ - 4zr R 2" (15.46) 

By (15.44), the intensity $ varies as E~. Hence (15.46) implies that  Em falls off 
inversely with distance, and similarly for Bm. 

• L i g h t  f r o m  t h e  s u n  a t  J u p i t e r  

Find 72s,,, and S, Em and Bm at Jupiter. Take Rj = 1.43 x 1012  m .  
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Solution: Using values of S and R appropriate to the earth, from (15.45) we 
find that the sun radiates an average power 75sun = 4.18 X 1026 W 1. (Without this 
power, there would be no life on the earth.) Next, using Rj = 1.43 x 1012 m in 
(15.46), we deduce that, at Jupiter, $ = 16.3 W/m 2. Finally, using the values of 
Em and Bm at the earth (Example 15.4), and the fact that Em a n d  Bm fall off in- 
versely with radius, we deduce that Em= 111.2 V/m and Bm - -  3.71 x 1 0  - 7  T at 
Jupiter. Only terrestial measurements of S, RE, and Rj were needed to obtain this 
information. (However, if the raw data on S is taken on the earth, compensation 
must be made for absorption and scattering by the earth's atmosphere.) 

1 5 9  Momentum of Electromagnetic Radiation, 
Radiation Pressure 

Just as the light wave carries energy, it also carries m o m e n t u m ~ t h i s  despite the 
light having no mass! If it is any consolation, for light the ratio of momen tum p 
to energy U is as low as possible: p / U  = 1/c. 

The discussion that follows shows that a charged particle can absorb energy 
and momentum from a linearly polarized light wave, and thus that light itself 
must possess both energy and momentum.  Moreover, the ratio of energy absorp- 
tion to momentum absorption is independent of the specific particle. However, 
that ratio is very much dependent on the fact that energy and momentum are 
absorbed from light. 

Consider a charge q, of mass m, in a plane electromagnetic field like~ that 
in Figures 15.7 and 15.8, traveling to the right, with E along y, and B along 
z. The electric force on q is along y, and the magnetic force is normal to z. 
Explicitly, q feels the Lorentz force (11.3 5), or 

F - q (E  + f i x  B) = q ( E y ~ -  vxB~,  + vyBzYc). (15.47) 

Because Ey - c Bz, and ]vl << c, the first term dominates. That is, the force along 
3) (the direction of/~) is the largest. Thus the particle is brought into motion 
along y by the electric field and absorbs energy at the rate 

7 2 -- Fyvy = q Eyvy. (15.48) 

72 thus is proportional to two oscillating terms, vy and Ey. In the absence of any 
collisions, they are out of phase and average to zero (just as the product of a sine 
and cosine average to zero). However, when a small amount  of damping due to 
collisions [e.g., a force - ( m / r ) ~ ]  is included, the time average of 7 ~ is nonzero. 
The specific form of the damping is immaterial. 

Although y -momentum is transferred instantaneously, since the force along y 
oscillates, the net momen tum transfer along y averages to zero. However, there 
is an average absorption of momentum along the direction of propagation x, 
coming from the magnetic force due to the motion caused by the electric field. 
The rate of absorption of x -momentum is given by the third term in (15.47), or 

Fx = qvyBz.  (15.49) 
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Because Bz = E y / c ,  comparison of (15.48) and (15.49) shows that Fx equals 
72/c. More explicitly, at any instant of time 

7 ~ Fyvy qEyvy Ey 
= = = = c .  ( 1  s . s o )  

Fx Fx qvyBz Bz 

Thus the energy absorbed (dU = 7)dt) and the momentum absorbed [dpx = 

(dp~/dt)dt = Fxdt] are proportional, with a coefficient that is independent ofthe 
absorber. Explicitly, (15.50) gives dU = Ddt = cFxdt = cdp~. Integration over 
time then gives 

U = pc. (energy U and momentum p of EM wave) (15.51) 

(Here we have written p for Px.) 
Consider a set of vanes, painted black on one side and silver on the other, 

that are free to rotate. In a high vacuum, they will, under uniform illumination, 
absorb more momentum from the silver side. This is because in the reflection 
process there is a momentum change that is twice as great as the actual incident 
momentum. However, inexpensive low-vacuum radiometers turn oppositely. 
This is because the momentum of the relatively massive air molecules (massive 
relative to light) dominates at atmospheric pressure, and thus the hot molecules 
that leave the black side of the vane give the vane more of a kick than do the 
light waves that reflect off the silvered side. 

We might try to use the momentum of light to direct a spacecraft. Taking 
a burst of energy U = 10 W-hrs = 3.6 x 104 J for a directed light source, the 
corresponding momentum is p = 1.2 x 1 0  . 4  kg-m/s. If this light completely 
reflects off a spacecraft of mass 103 kg, the spacecraft would gain twice this 
momentum, thereby increasing its velocity by 1.2 x 10 -7 m/s. The momentum 
of light is low because its velocity c is high. 

Since pressure P is force per unit area, or rate of change of momentum per 
unit area, by (15.51) we have 

since S is power per unit area. This is the radiation pressure of light. The radiation 
pressure of the sun is believed to be responsible for producing comet tails. At 
the surface of the sun, S -  ~/4rcRs~ n - 6 8 7  x 107 W / m  2, so (15.52) yields a 
radiation pressure there of Prod = 0.229 Pa. 

15.10 Index of Refraction and Snell's Law of Refraction 

In a real material, the equations describing the electric and magnetic field must 
include the effect of electric and magnetic polarization of the material. As shown 
by (7.13), the electric field within a dielectric medium is decreased by the di- 
electric constant (or relative permittivity) x, due to electric polarization. Thus 
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Table 15.2 Table of index of refraction (characteristic of optical frequencies) 
. . . . . . .  

(5TP) Water Crown glass Flint glass Diamond ~ Ice Benzene: Luc i te  Salt 

1.000293 1.333 1.52 1.66 2.42 1.31 1.501 1.491 1.544 

k = (4zre0) -1 -+ (4zrKe0) -~ . Alternatively, the permitivity E0 offree space is mul- 
tiplied by K. 

Similarly, to obtain the magnetic field within a magnetic medium, the effect 
of the material's magnetic polarization, as shown by (10.23) and (10.24), the 
magnetic permeability of free space #0 is multiplied by the relative magnetic 
permeability # r .  Ferrites, for example, have # r  ~" 10 4 at microwave frequencies. 
However, even for magnetic materials, # r  ~'~ 1 at optical frequencies, because the 
processes responsible for magnetic permeability, such as domain wall motion, 
cannot respond at optical frequencies, which are around 1015 Hz. On the other 
hand, since electrons are responsible for electric polarizability, and they can 
respond at optical frequencies, 6r is not unity at optical frequencies. 

The effect of nonzero polarizability and permeability on the propagation 
velocity of electromagnetic waves is that, when computing the velocity of light, 
in (15.34) we must make the replacements k --+ k/6r (60 -+ 606r) and km -+ km#r 
(#0  --+ #o l l r )  �9 This leads to 

C m C  

7J "-" V km~ ~ 6 r  ~r  -- -~' 

~:: ~ !! i;~ i !i �84184 iil ! i  

~/6r/~r, (speed of Iight i~ m a ~ } i  i 

where n is called the index of refraction. It depends upon the detailed properties of 
a given material. See Table 15.2. The origin of the word refraction only becomes 
clear when we discuss what happens when light passes from one material to 
another, as we do shortly. 

For each material there is a characteristic frequency dependence. See 
Figure 15.10. 

1 . 7  

Index of 
refraction 1.6 - 

1.5 

Heavy flint glass 

Light flint glass 

Zinc crown glass 

1 I I I I I I I 
0.4 0.5 0.6 0.7 0.8 

Wavelength (nm) 

Figure 15.10 Index of refraction as a function of wavelength for three 
types of glass. 
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The dependence of n on frequency leads to dispersion; that is, the different 
colors of light in the medium do not travel with quite the same velocity. Disper- 
sion must be minimized for optical fibers along which light signals are sent. In a 
quantitative sense, this dispersion of light in materials is minor compared to the 
dispersion of water waves. 

15,10.1 How Frequency and Wavelength Behave on Reflection 
and Refraction 

Consider a plane wave of frequency o21 impinging on the air-water surface at an 
angle 01 with respect to the normal. See Figure 15.11 (which features a brown 

pelican eyeing a rather large 
goldfish). 

To learn how frequency 
changes on crossing the surface, 
consider a related problem, in- 
volving sound transmission and 
reflection. Let a drummer beat 
monotonously at the rate of 
once per second, with the sound 
in the air transmitted across the 
surface of a fishtank. The time 
interval between beats in both 
the air and the water is one 
beat per second. Moreover, the 
frequency of any sound reflected 
off the surface is one beat per 
second. In other words, the fie- 

Figure 15.11 Reflection and refraction of light, quencies in each material are the 
A beam of light from behind the pelican is same. This is also true for light. 
transmitted to the goldfish. Hence 

By (15.23), this may be rewritten as 

! I 
vl ql -- vl ql = v2q2. (15.55) 

Since v' 1 - vl,  by the first equality in (15.55), and by (15.24), we have 

! 

q'l - ql, X1 - X1. (15.56) 

The transmitted (i.e., refracted) wave has the same frequency but a different 
velocity than the incident wave. Hence, by o01 = vlql = o02 = v2q2, and by vl = 
c / n l ,  v2 = c/n2 [which follow from (15.53)], (15.55) shows that 

q__~2 = ~q_z*. (15.57) 
n2 nl 
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From (] 5.24), (15.57) yields 

: ~.2n2 = ~1 nl .  (wavelength matching at i n t e ~ e )  ............................................... ~!l~:i~Si .... 

Thus the wavelength changes under refraction, decreasing on going to a material 
of larger index of refraction. 

15,10.2 How Angle Behaves on Reflection and Refraction 

The incident wave propagates along the coordinate yl = - y  cos 01 + x sin 01, so 
that it takes the form, analogous to (15.3 5), of cos(q1 yl - cot). Along the surface 
y- -0 ,  this becomes cos(ql sin OlX- wt). Although the frequency is the same 
everywhere in space, the sound from the drummer (and the light reflecting off 
the pelican) does not arrive at the same time everywhere on the surface. In fact, 
along the interface y = 0, the phase of the incident wave varies as ql sin 01 x. To 
keep the same phase variations in the reflected and transmitted waves, q'l sin 0{ x 
of the reflected wave and q2 sin 02 x of the transmitted wave must be the same. 
This leads to the conditions 

ql sin 01 - q'l sin 0{ - q2 sin 02. (15.59) 

Equation (15.56) and the first equality in (15.59) yield, for the reflected wave, 

0{ (reflection a n g l e ) :  (i5 ~0) 

This is formalized in the familiar result that the angle of reflection equals the angle 
of incidence. Equation (15.55) and the second equality in (15.59) yield, for the 
transmitted wave, 

sin 01 sin 02 
= ~ .  (15.61) 

721 722 

Then, using (15.53), we have Snell's law. 

n2 sin 02 = nl sin O1 
i:~ii~i~::~i:~ �84 ~ ~ ! ' ,  : ;i !ii~i!!~i~ii~!!i~!!~!i~!~!!~!~!~!~i!~i~!~;~!~!~!ii~;!!iii!i~!~!~!i~!~Q~ i~:i: ! ~�84 

This implies, as is well known, that the transmitted light is bent, or refracted. 
The material with the larger index of refraction has the smaller angle to the 
normal. Equation (15.61) also describes how sound is refracted on going from 
one material to another. Note that on going from air to water, light bends toward 
the normal, whereas sound bends away from the normal. This is because light 
is slower in water (by a factor of 1.33), but sound is faster in water (by a factor 
of 4.3). Figure 15.11 accurately describes the path of light between the pelican 
and the goldfish, but the squawk of the pelican heard by the goldfish would take 
a more downward path, contacting the water to the left of the contact point for 
light. 
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~ Refraction of light by water 

Let Opelica n be 4 5 ~ with n,ir = 1, and n2 = nwater = 1.33. Find Ogoklfish = 02. 

Solution: OpeIica n = 0 1 ,  nl = n a i r  = 1, and n2 = nwater = 1.33. Equation (15.62) 
yields Ogoldfish = 02 = 32.1~ This shows explicitly that light incident from the 
material with the smaller index of refraction is refracted to a smaller angle relative 
to the normal. 

Correspondingly, light incident from the material with the larger index of 
refraction is refracted to a larger angle relative to the normal. This leads to the 
following interesting phenomenon that occurs when the refraction angle is 90 ~ , 
for then no light enters the material of smaller index of refraction. 

15~10.3 Critical Angle for Complete Internal Reflection 

What  is called complete internal reflection can occur when the velocity in the 
second material is larger than, and thus the index of refraction is smaller than, in 
the first material. In that case, the transmitted angles 02 are larger in the second 
material. When 02 is 90 ~ the incident light at angle 01 is at the critical angle Oc. 
From (15.62), this occurs for 

sin Oc - n2. (critical angle in medium 2, for n2 < n l )  (15.63) 
/21 

For angles exceeding Oc, no light is transmitted into the second medium. 
When the goldfish in Figure 15.11 looks up at the sky, complete inter- 

nal reflection can occur. Since nair < nwater, to apply (15.63) to Figure 15.11 
we must interchange the meaning of 1 and 2. Then (15.63) gives sin0~= 
n l / n 2 =  1 /1 .33=0 .75 ,  for which 0c=48 .6  ~ For O>Oc there is complete in- 
ternal reflection. Note: When the brown pelican in Figure 15.11 looks down at 
the water, complete internal reflection cannot occur. 

~ Complete internal reflection of sound 

Mamie, listening for Buddy under water, can hear him only if she is suffi- 
ciently close to the normal, although she can always see him. Find the angle 
of complete internal reflection of his sounds. 

Solution: The index of refraction for a medium is the ratio of the velocity of 
light in the standard medium air (properly, in vacuum) to the velocity of light in 
the medium. Equation (15.61) applies to sound, so with 02 = 90 ~ and 01 = 0c, 
(15.61) yields 

722 
sin O~ = -- .  

721 

Since Vwater = 4.3Vair, with water as medium 2, this gives Oc = 13.4 ~ Only within 
a cone of this angle, centered around Buddy, will Mamie hear Buddy. 
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15.10.4 The Prism 

As indicated, the index of refraction depends upon frequency, so that light 
of different frequencies and wavelengths travels at different velocities, and 
therefore is dispersive. Moreover, the frequency dependence of the index of 

refraction implies that light of dif- 
ferent colors bends slightly differ- 
ently. This is the basis of opera- 
tion of the prism, which separates 
the different pure colors of light. 
Isaac Newton (1666) was the first to 
study this effect systematically. The 
human eye cannot distinguish be- 
tween a pure color and certain com- 
binations of other pure colors. The 
study of color perception, which in- 
volves both physics and physiology, 
is still full of unanswered questions. 

Figure 15.12 Separation of the pure colors See Figure 15.12, which shows inci- 
of white light by a prism, due to the dent white light that has been bro- 
wavelength dependence of the index of ken up into its component colors, 
refraction, due to their different indices of re- 

fraction (indicated in Figure 15.10). 
The least deflected color is red, which has the longest wavelength of the visible 
colors. Comparison with Figure 15.1 O, for common glasses, shows that red has 
an index of refraction that is closer to n = 1 than any of the other colors. The 
deflection angle S would be zero for n = 1. Also see Color Plate 1 for a photo. 

15 11 Transverse Nature of Electromagnetic 
Radiation; Polarization 

An illustration of how the transverse nature of electromagnetic radiation is used 
can be seen in the different types of antennas that accompany television sets. 

Figure 15.13 (a) Linear antenna, sensitive to the electric field of the incoming 
radiation. (b) Circular antenna, sensitive to the magnetic field of the incoming 
radiation. 
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Figure 15.14 (a) Linear polarization of E, where at 
every instant of time the electric field is along the same 
(fixed) axis normal to the direction of propagation. 
(b) Random polarization of E, where at any instant of 
time the electric field is in a plane normal to the 
direction of propagation, but the direction can change 
over time within the plane. 

Linear antennas (Figure 15.13a) pick up the signal of the electric field produced 
by a given TV station, causing current to flow along the direction of the antenna, 
into and out of the amplifier circuit of the TV. A linear antenna pointed along 
the direction of propagation will pick up no signal (unless there are reflections 
off buildings or cars, etc.). Circular antennas (Figure 15.13b) also pick up the 
electric field broadcast by the TV station. However, their operation is more easily 
understood by thinking of an incoming magnetic field that is normal to the plane 
of the circular antenna, and by its time variation inducing a circulating electric 
field within the antenna. Linear antennas are efficient for long-wavelength radia- 
tion, but they decrease in efficiency when the wavelength gets shorter than about 
half the length of the antenna. They work for VHF signals. Circular antennas 
pick up the higher-frequency, shorter-wavelength UHF signals. 

For a given direction of propagation, at a given instant of time the electric 
field of electromagnetic radiation can point in any direction in the perpendicular 
plane. The way in which the electric field varies within that plane specifies its 
state of polarization. Linear polarization is the simplest type of polarization. The 
electric field of linearly polarized light propagating into the paper is depicted as 
a function of time in Figure 15.14(a). For very short time intervals, the electric 
field oscillates rapidly back and forth, represented by lines with arrows at both 
ends. For linearly polarized light, as time progresses the electric field amplitude 
can change in magnitude, but not in direction. 

The light emitted from a lightbulb, as well as light from the sun, at any instant 
is likely to have its electric field in any direction within the perpendicular plane. 
This is because, at any instant of time, the light is likely to be emitted by a 
different atom in the light source, and the light emitted by a given atom lasts 
only on the order of 10-Ss. Hence the direction of the electric field changes very 
rapidly in time, the changes being essentially random to the observer. Such light 
is said to be unpolarized. It is depicted in Figure 15.14(b). 

In principle, all forms of electromagnetic radiation can be linearly polarized. 
Microwave polarizers are parallel strips of metal, which preferentially along 
the field direction absorb the polarization. Similarly, long molecules absorb one 
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polarization of light preferentially, as discovered by Edwin Land in 1928. For 
linearly polarized light, the electric field direction gives the direction of linear 
polarization, and the plane of the incident direction and the electric field gives 
the plane of polarization. (For historical reasons, the direction of linear polariza- 
tion was first associated with the direction of the magnetic field, and the term 
plane of polarization was associated with the plane of the incident direction and 
the magnetic field. However, many authors now apply such usage to the electric 
field, and we will follow suit.) 

If linearly polarized light has its electric field at an angle 0 to the preferred 
axis of a linear polarizer, then the electric field can be decomposed into a frac- 
tional component cos0 along the preferred axis, and a fractional component 
sin 0 normal to the preferred axis. The intensity associated with the absorption 
axis is completely absorbed. What remains is the electric field along the axis of 
the polarizer. The resultant intensity is lower by a factor of cos 2 0. If the inci- 
dent intensity is I0, and the reflected intensity is negligible, then the transmitted 
intensity is 

i l ~ :'~ i!Lil i �84 : : :  

: I = I0 cos 2 0. (Malus's la~ 

This is known as Malus's law. It was actually discovered in the context of polar- 
ization caused by transmission through biaxial crystals, a topic to be discussed in 
the next chapter. 

When unpolarized light passes through an ideal linear polarizer, the inten- 
sity of the light that emerges is half that of the incident light, and the po- 
larization is precisely that of the polarizer. This factor of two can be under- 
stood as follows. In (15.53), at any given instant of time the unpolarized light 
has a 0 that can point anywhere in the transverse plane. Within a very short 
time, this direction changes randomly because another atom, uncorrelated with 
the first, now is radiating the light. Hence, averaging over 0 gives cos2= 1. 
In Figure 15.15, we depict what happens when unpolarized light successivery 
passes through two linear polarizers making an angle of 0 with respect to each 
other. When a polarizer is used to study the polarization of light, it is called an 
analyzer. 

Light can be partially polarized both by reflection from polished surfaces, 
and by scattering off molecules. Thus light that reflects off a mirror is partially 

0 0 

Intensity l 0 Polarizer Intensity l l 0  " r Intensity ~ l 0 c o s 2 0  

Figure 15.15 Unpolarized light of intensity I0 passing through a sequence of 
two linear polarizers, whose acceptance axes make an angle 0 relative to each 
other. These polarizers work by completely absorbing electromagnetic radiation 
with its electric field along one direction, and completely transmitting the other 
component of electromagnetic radiation. 
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15o12 

Figure 15.16 Geometry 
associated with complete 
polarization of reflected 
radiation (the Brewster 
angle). | represents 
polarization normal to the 
page. 

polarized, as is light from a clear sky. Polarized sun- 
glasses take advantage of polarization by reflection 
to reduce the glare from reflections and the back- 
ground light from the sky. 

There is a special angle of incidence for 
which reflected light is completely polarized nor- 
mal to the plane defined by the direction of 
the incident wave and the normal to the in- 
terface (the plane of incidence.) This angle oc- 
curs when the angle of incidence from mate- 
rial 1 and the angle of refraction by material 2 
are complementary, or 01 + ~)~ = 90 ~ See Figure 
15.16. 

For this angle of incidence, called the Brew- 
ster angle, and denoted by ~)l = (~p (P for polariza- 
tion), (15.62) gives nl sin 0~ = n2 sin(~r/2 -- ~)p) = 
n2 cos Op. Thus 
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This effect can be observed using a set of polarizing sunglasses. 
Figure 15.16 shows both the plane of incidence and light of both polarizations, 

for light incident at the Brewster angle. Light of both polarizations propagates 
within material 2. The reflected light must be caused by radiation from atoms 
of material 2 in the vicinity of the crystal surface (recall the planar antenna of 
Figure 15.7). Since the atoms in the crystal, in response to the electric field E, 
develop dipole moments ~ along/~, the Brewster angle result indicates that only 
the component of ~ normal to the propagation direction produces radiation in 
the direction of propagation. 

Radiation by induced dipole moments explains why sunlight, scattered by air 
molecules, is partially polarized. Figure 15.17 shows an observer viewing the sky 
at an angle of 90 ~ to the sun. Only when the electric field has a component normal 
to the scattering plane (the plane of the page), or | will the air molecules develop 
dipole moments normal to the direction of propagation from the molecules 
to the observer (the vertical). Such light will be completely polarized, as can 
be observed using a set of polarizing sunglasses. In practice, due to multiple 
scattering, the polarization is not complete. At other observation angles, the 
light is only partially polarized. 

Microwave Cavities--Standing Waves 

Standing waves occur on a string only because forces at the ends keep the string 
from moving above or below the end, which is fixed in place. Standing waves 
occur in an acoustic cavity only because forces at the walls keep the air from 
moving into or out of the walls, which are fixed in place. Similarly, standing 
waves occur in a microwave cavity (such as a microwave oven) only because 
charges and currents at the walls of the cavity make the normal component of 
the electric field and the transverse component of the magnetic field take the 
appropriate values. 



660 Chapter 15 m Maxwell's Equations and Electromagnetic Radiation 

Figure 15.17 Unpolarized light from the sun being scattered 
off atoms in the atmosphere; for an observer at 90 ~ if there is 
no other scattering the light is completely polarized. | 
represents polarization normal to the page. 

Within the walls of the microwave cavity, the electric and magnetic fields are 
zero, as a result of the so-called skin effect, discussed in Section 14.13. How- 
ever, because of surface charges and surface currents, certain components of the 
electric and magnetic fields abruptly become nonzero just inside the cavities. 
Surface charge can make the component of the electric field perpendicular to 
the plane of the walls go abruptly from zero just within the walls to nonzero 
just within the cavity. However, the components of the electric field parallel to 
the plane of the wall cannot abruptly become nonzero just within the cavity; 
they are zero inside, and they remain zero just outside. Surface current can make 
the components of the magnetic field parallel to the plane of the wall go abruptly 
from zero within the walls to nonzero within the cavity. However, the compo- 
nent of the magnetic field perpendicular to the wall cannot abruptly become 
nonzero just within the cavity; it is zero inside, and it remains zero just outside. 
Without the charges and currents on the walls of the microwave cavity, there 
would be no microwaves within the cavity. See Figure 15.18. 

Specifically, the boundary conditions on the electric and magnetic field are, 
with h the outward normal from the wall, 

E • ~z - 0, B �9 ~ - 0. (15.66) 

At the surface, the relationships between the surface charge ~s and the electric 
field, and between the surface current f( and the magnetic field, are given by 
(4.22) and (11.43), 

E,. ~ t -  4zckcrs, /~ • ~ -  --4Z~kmf(. (15.67) 
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Figure 15.18 (a) A surface charge density ~s at a conducting surface can change 
the normal component of the electric field/~ from zero inside the conductor to 
a nonzero value just outside the conductor. The transverse component is zero 
both inside and just outside the conductor. (b) A surface current density f( at a 
conducting surface can change the transverse component of the magnetic field/~ 
from zero inside the conductor to a nonzero value just outside the conductor. 
The normal component is zero both inside and just outside the conductor. 

Although (11.43), involving/~, was derived for the static behavior of a field- 
expelling perfect diamagnet, it is also valid for the dynamic behavior of a field- 
expelling conductor. 

Equations (15.66) serve as the boundary conditions that determine the al- 
lowed wavenumbers of the microwave cavity, and Equations (15.67) tell us the 
surface charges and surface currents that cause the modes to occur. These surface 
charges and surface currents serve an analogous role to the forces exerted on a 
string by the contacts at the ends. 

The character of the sound of a stringed instrument is determined by the way 
in which the strings are plucked; the closer to the end of the string, the greater 
the amplitude of the high-frequency modes relative to the low-frequency modes. 
Similarly, the radiation pattern within a microwave cavity depends very much 
upon the placement and shape of the waveguide that leads from the power 
tube to the microwave cavity. Within the structure of some microwave ovens, in 
order to more evenly distribute the radiation, a small rotating metal fan is used 
to scatter the radiation. 

Wires, Co-axial Cables, and 
Waveguides--Traveling Waves 

In 1857, Kirchhoff studied the problem of the transmission of electrical signals 
along a wire. He employed values for the capacitance per unit length and the 
inductance per unit length that were appropriate to the wire geometry. 

Kirchhoff found that the velocity of propagation was given by 

~ /1  (15.68) 
v -  s 

where C is the capacitance per unit length~given for concentric cylinders by 
(7.6)--and s is the inductance per unit length--given for concentric cylin- 
ders by (13.38). Substituting these values, we obtain v - v / k / k m  - 3 x 108 m/s. 
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Kirchhoff's theoretical value, was too low by x/2 because of an error in his cal- 
culation of the individual quantities C and s 

In 1876, Heaviside studied this problem, but with unspecified values for the 
resistance per unit length, capacitance per unit length, and inductance per unit 
length. He obtained what has since been called the telegrapher's equation. This 
was a generalization of Kelvin's earlier theory, which neglected the effects of 
inductance. 

On the experimental side of this question, in 1849, Fizeau measured the 
speed of light in air, finding a value of 3.15 x 108 m/s. In 1850, Fizeau and 
Gounelle determined the velocity of propagation along iron and copper wires 
to be about 108 m/s, and in 1875, Siemens found it to be, for iron wires, about 
2.6 x 108 m/s. 

In 1883, Heaviside began to apply Maxwell's theory to the problem of signal 
propagation along wires and co-axial cables, thus founding the modern theory of 
cable communications. When studying problems in radiation, Maxwell did not 
actually use the electric and magnetic fields, but rather another set of variables: 
the usual (scalar) electrical potential due to charges, and another (vector) poten- 
tial due to currents. (In this introductory course, there is no need to study the 
vector potential.) To make the equations more tractable, Heaviside rewrote the 
equations that Maxwell used, giving us the theory in the form used today. 

Figure 15.19 indicates the pattern of electric and magnetic fields, and the 
surface charges and currents, for a wave that is traveling leftward in a co-axial 
cable (leading, perhaps, to your television set). The cable has inner radius a and 
outer radius b. At a given position z along the cable, the electric field E points 
radially inward or outward. Let's say it points outward from the inner cylinder, 
as on the left part of Figure 15.19. Then the surface charge density as must be 
positive where E leaves, and as must be negative where E enters at the outer 
cylinder. For a leftward traveling wave, the magnetic field/~ must point such that 
the Poynting vector/~ • B points leftward. This determines in which direction/~ 
circulates around the inner cable. The surface currents K produce the magnetic 

Figure 15.19 The surface charges and surface currents, and the electric 
and magnetic fields, for an electromagnetic wave propagating along a 
co-axial cable. 
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field, so from Oersted's right-hand rule we can determine the direction of the 
surface currents. Since/~ and/~ are related, by (15.67) the surface currents and 
the surface charge densities are related. For this type of mode, not only do E 
and/~ have components normal to the direction of propagation, but there is 
also a component of/~ along the direction of propagation, needed to produce a 
component of K along that direction. 

Electromagnetic radiation along wires and co-axial cables is nondispersive. 
However, along waveguides, which have no inner wire, electromagnetic radia- 
tion is dispersive, not propagating at all below a geometry-related cut-off fre- 
quency COc. The narrower the waveguide, the higher the cut-off frequency. For 
frequencies just above COc, the waves are very slow and dispersive, whereas for 
frequencies very far above O)c, the waves are nearly nondispersive. For commu- 
nications purposes, usually it is best to work at higher frequencies, where the 
signals are nearly nondispersive and do not distort significantly. 

Hertz's Studies of Electromagnetic Radiation 

In 1886, Heinrich Hertz undertook to detect electromagnetic radiation, using a 
pair of matched spirals with spherical knobs at their ends (see Figure 15.20a). 
On exciting a spark between the knobs in one coil (the primary) by discharging a 
Leyden jar, the knobs of the other coil (the secondary) would spark~a dramatic 
demonstration of mutual electromagnetic induction. The spirals were so sensitive 
that they did not require a large bank of batteries to cause sparking. Indeed, 
"even the discharge of a small induction-coil would do, provided it had [enough 
energy] to spring across a spark gap." He then developed even more effective 
methods to generate and detect electrical sparks. 

The Spark-Excited Oscillating Antenna 

The spark from a primary excited electrical signals in any wire connected to the 
primary, much like hitting a hammer against a rod excites sound in a rod. Upon 

Capacitor 
loading ~ Antenna wire 

J Spark 

] ~ ' - ~ -  - - ~ Receiver 
I \  -..,/o / 

C~ U Kn~ ~ .  " 

(a) (b) 

Figure 15.20 (a) A pair of coupled coils, which were used to demonstrate 
electomagnetic induction. (b) One of the geometries used by Hertz to detect 
electromagnetic radiation. The transmitting antenna is linear, with a spark gap, 
and is driven by a capacitor. 
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In the early 1840s Henry suspected, by their effect on magnetic needles, that capacitors 
discharge in an oscillatory fashion, and in 1847 Helmholtz noticed that H2 and 02 were 
produced at both electrodes when a Leyden jar was discharged through an electrolytic 
cell. Following Kelvin's theory of L C oscillations, it was realized that Leyden jars typi- 
cally would oscillate at a frequency of about 104 Hz, and that open induction coils 
typically would oscillate at a frequency of about 10 6 Hz. 

sparking, the gap resistance fell to a much lower value, where it remained while 
current flowed across the gap. Hertz attached a wire to each knob, so signals 
could travel from knob to wire, reflect off the end of the wire, return to the 
knob, and then cross the spark gap. Sometimes he "loaded" the wire by placing 
a capacitor at its end. See Figure 15.20(b). He used the resonance frequency 
formula T = 1/f = 2zr/~o = 2sr~/LCto estimate that T ~ 10 -8 s, corresponding 
to a frequency f = 1 / T = 108 Hz that was too high to measure at that time. 

The wires attached to each knob were in a line. This made it easier, when 
studying mutual induction, to get good proximity with the secondary circuit, 
which was equipped with a micrometer spark gap (see Figure 15.21 a). On in- 
creasing the gap until no sparking occurred, Hertz could obtain a measure of 
the intensity of the signals in the wire. By eliminating electrostatic induction as a 
source of sparking, he established that electromagnetic induction was its source. 
He suspected that the wire circuit (including the spark gap) was oscillating largely 
at a single frequency. Nevertheless, he had not proved that there were such 
oscillations. 

15~14.2 The Resonating Receiver 

Hertz reasoned that if the primary (the transmitter) was oscillating, and the sec- 
ondary (the receiver) was brought into resonance with it, then the secondary 
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Figure 15.21 (a) A closeup of the receiving coil of Figure 15.20(b). (b) Data taken 
by Hertz, showing the increased sensitivity of the receiving coil in the vicinity of its 
resonance frequency. 
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would be a more effective detector. By varying the capacitance and inductance 
of each circuit, he could bring the two circuits in and out of resonance. [He 
changed the capacitance by connecting large spheres to the knobs or the ends 
of the antenna wire ("capacitive loading"), and he changed the inductance by 
changing the length of the circuit. ] Figure 15.21 (b) shows the largest gap across 
which a spark could be seen, as a function of the length of the secondary cir- 
cuit (this is proportional to the self-inductance of the secondary). With his 
resonant receiving circuit, he mapped out the positions and orientation of the 
electric field produced in the air by his linear transmitting antenna. When the 
receiver was placed along the axis of the antenna (0 = 90~ there was no sig- 
nal for any receiver orientation. For other positions of the receiver, the max- 
imum response occurred when the receiver was in the plane defined by the 
antenna and the line of sight, with the spark gap oriented perpendicular to 
the line of sight. See Figure 15.20(b). 

I5,14~3 Waves in Wires, Waves in Space 

Hertz next studied the speed of propagation of electromagnetic waves along 
a long wire connected to his transmitter (the primary). Just outside the wire, 
he found regularly spaced null points which determined the wavelength )~. 
Estimating f = 1/T from the theoretical value of T for the primary, he used 
the relation v = f)~ to obtain a speed of propagation v along wires; it was near 
the speed of light, and consistent with previous studies. Moving the receiver away 
from the wire, he saw complex patterns, which he attributed to interference be- 
tween radiation traveling along the wire and the radiation in air. He concluded 
that the speed of electromagnetic radiation in air was finite, and on the order of 
the speed of light. 

Hertz suspected that the complex patterns involved three sources: the wire, 
the direct radiation in air, and reflections off the walls of his laboratory. By elimi- 
nating the wires, he found a simple pattern of standing waves, confirming the 
presence of reflections from the walls. 

15~t4~4 Further Experiments on Electromagnetic Radiation 

Hertz also showed that, when an electromagnetic signal propagated along a 
wire, the current only penetrated a small distance into the wire (the skin depth). 
Further, he found that even a cage of only four wires~provided that their sepa- 
ration was much less than the wavelength of the radiation~would provide elec- 
tromagnetic shielding. (The metallic screens on the doors of microwave ovens 
use this effect. The screen permits short-wavelength light to escape, but retains 
microwave radiation, whose wavelength is much greater than the holes in the 
screen.) 

For a shorter wavelength, Hertz made a focusing reflector out of a large con- 
cave parabolic mirror and used it to demonstrate straight-line propagation, po- 
larization, and reflection. To demonstrate refraction he used a large wedge of tar. 

Finally, by measuring quantities with amplitudes quadratic in the fields (as 
for the jumping ring, discussed in Section 14.12.2), first for the electric field and 
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(a) (b) 

Figure 15.22 Closeup of the electric and magnetic fields in 
the immediate vicinity of the linear transmitting antenna of 
Figure 15.20(b): (a) when the ends of the antenna have 
maximum charge, (b) a half-period later. 

then for the magnetic field, Hertz showed that both E and/~ are present in an 
electromagnetic wave. 

15.14.5 Theory of the Dipole Antenna 

Hertz also developed a theory of radiation by his dipole antenna. Near the an- 
tenna, the electric field is like that for a static distribution of charge, and the 

. -+  

magnetic field is like that due to a long wire. See Figure 15.22, which depicts E 
and B at times a half-period apart. 

Further from the antenna, the field pattern becomes more complicated. This 
is because, as time goes by, the directions of the electric and magnetic fields 
near the antenna must change. At a quarter-period the fields near the antenna 
are zero; this is where they must "pinch off" from the source and, like all other 
electromagnetic signals, propagate outward at the velocity c. See Figure 15.23, 
which depicts signals at t = O, t = T/4, and t = T/2, where T is the period of 
oscillation of the antenna circuit. 

Figure 15.24 depicts the field pattern for a few cycles of oscillation. 

(a) (b) (c) 

Figure 15.23 Electromagnetic radiation in the vicinity of the linear 
transmitting antenna of Figure 15.20(b): (a) the electric and magnetic fields 
before they "pinch" off, (lo) a quarter-period later, (c) a half-period later. 
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I ~ 
Figure 15.24 The electric field in the vicinity of the linear 
transmitting antenna of Figure 15.20(b) for nearly two 
periods of oscillation. 

15,15 
l id j l  i [ q  i 1";.1 i 

15o15~I 

Supplementary Material 

Energy Flow for Traveling Waves 

Traveling waves transport energy. Since they travel with velocity v, the local rate 
of energy flow 7 2 (an energy per unit time) equals the energy per unit length e 
times v: 

72 = ev. (15.69) 

If we can determine e, we can determine 7 2. 
Consider a string. The kinetic energy per unit length eKE is given by one-half 

the mass per unit length times the velocity squared, or 

~K~ - ~ ~ 7  " ( l s . 7 o )  

There is also potential energy per unit length, ePE, associated with stretching 
of the string by the wave. Because the string has nearly constant tension F, the 
work done on the string in stretching it from length dx to length ds is F (ds - dx). 
This goes into elastic potential energy, with the potential energy per unit length 
dx given by 

) d---7---= F dx = F 1 + dx - 1 . (15.71) 

Since we assume that d y / d x  is small, use of the straight-line approximation, as 
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in (4.3 5) [(1 + X) n ,~, 1 + nx for small x, where we use d y / d x  in place of x], gives 

1 +  dxx ~ l + g  ~ , 

SO ( y)2 
epF -- -~ F ~x  " (15.72) 

We now show that, for a rightward traveling wave, described by (15.21), EK~ = 
8PE. 

By (15.21), d y / d x  - d g / d x  and d y / d t  - - v d g / d x .  With v 2 - F / #  we then 
have 

rE -- ~ #  ~-~ -- 2#v2 dxx - ~ F dxx - ~PE" (traveling waves) 

(15.73) 

This result holds both for leftward and rightward traveling waves. 
Combining (15.69) and (15.73) we have, for traveling waves, that the rate of 

energy flow is 

72 = ev - V(eKE + ePE) -- 2WKe -- V# - ~  (traveling waves) (15.74) 

This same result can be obtained by another route. We can directly calculate 
the work per unit time d W / d t  being done on the right part of a string at position 
x, due to the left part. Since the vertical force is - F d y / d x  and the vertical 
displacement is dy, the work done is d W =  ( - F d y / d x ) d y ,  so 

aw & &  
= r (15.75) 

dt dx  dt" 

For a rightward wave, described by (15.21), d y / d x -  - v -  
F / #  (15.75) gives 

l dy /d t ,  so with v 2 = 

d W  

dt - 7  27 27 " 
(traveling waves) (15.76) 

This equals 7 ~ of (15.74). Equation (15.75) for d W / d t  is more general than 
(15.76) and holds for any kind of motion of the string. Similarly, our first expres- 
sions for eKE and e eE hold for any kind of motion of the string. 

15 .15 .2  Compressional Motion (Longitudinal Waves) 

Sound waves are waves of compression. So are the waves you excite on hitting 
one end of a rod with a hammer. These involve not transverse motion, as for 
a string, but longitudinal motion. The x-coordinate of the object is changed, 
and this means we must distinguish it from the fixed x-coordinate of real space. 
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Figure 15.25 A rod subject to longitudinal distortions" (a) equilibrium, 
(b) uniform compression, (c) nonuniform longitudinal distortion. 

For that reason, we will use Ux to denote the deviation from equilibrium of the 
x-coordinate of the object whose motion we are studying. However, the subscript 
x really is unnecessary here, so let's simplify our notation and use u. 

Physical Picture for Compression of a Rod Consider  a one-dimensional rod 
of cross-section A, and undistorted length lo, that lies along the x-axis. See 
Figure 15.25(a), which represents the undistorted deviation u ( x ) -  O. Just as 
uniform vertical translations don't cause the string to come into motion, so uni- 
form horizontal translations don't cause the rod to come into motion. In addi- 
tion, uniform compression or expansion of the rod doesn't cause it to come into 
motion. See Figure 15.25(b), which represents the static uniform deviation of 
compression u(x) - -0.08x,  for which du/dx < O. (Even for the nonuniform 
case, du/dx < 0 corresponds to compression; correspondingly, du/dx > 0 corre- 
sponds to expansion.) Only nonuniform compressions or expansions can cause 
the rod to come into horizontal motion. This corresponds to d2u/dx 2 # O. It is 
very like what happens for the string, where dZy/dx 2 # 0 causes vertical motion. 

Figure 15.25(c) gives an example of a nonuniform compression. Here we have 
a snapshot of the rod at a specific time. We have arbitrarily broken up the rod into 
12 slabs. The solid lines are the equilibrium positions and the dashed lines are the 
instantaneous positions. To determine the direction of the expected acceleration, 
consider two adjacent slabs. If the slabs have the same compression, their dashed 
separation line will not accelerate. If the slabs have different compressions, the 
separation line will move away from the slab that is more compressed. Thus 
the line separating 11 and 12 will accelerate to the left. (Keep in mind that this 
snapshot does not show the velocities at this instant of time.) 

The force, or stress, associated with longitudinal motion is proportional to 
the strain du/dx. The proportionality constant is the product of the area A and 
Young's modulus Y (which has units of force per unit area). Typical values of 
Young's modulus for the elements are on the order of 10 x 10 l~ Pa, although for 
lead it is only 1.7 x 10 l~ Pa; atmospheric pressure is about 105 Pa, and a car tire is 
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typically inflated to about three times this value; rubber has a Young's modulus 
of only 5 x 108 Pa. 

Consider a position x of the rod. The side to the right of x feels a force 

du 
Fx - -YA----  (15.77) 

dx" 

The negative sign means that if the rod is compressed (du /dx  < 0), then the 
force at its right end is to the right. 

Equation of Motion for a Rod Now consider the force on a horizontal slice dx 
of the rod. The net force is the difference between the forces on its ends, at x 
and at x + dx. This gives a net force of 

(~X du) d2u 

With mass per unit volume p, the mass contained by dx is p Adx.  By Newton's 
second law of motion, (15.78) must equal the product of its mass and its hori- 
zontal acceleration d2u/dt  2. Thus 

d2u d2u . 
p A d x  - YA-v-9 dx, 

-IV ax (15.79) 

SO 

d2u y d 2 u  

dt z p dx 2" 
(15.80) 

Comparing with (15.12) of our earlier study of waves on a string, we conclude 
that (15.80) is a wave equation with velocity 

v-~. (15.81) 
Note that when a rod is compressed it normally expands in the transverse 

direction, something we have not shown in Figure 15.25. 

Longitudinal Waves in Bulk Matter One distinction between longitudinal 
waves in rods and longitudinal waves in a bulk material is that in bulk the 
proper variable is not displacement, but volume change. Not surprisingly, the 
compressibility determines the velocity of sound in this case. The compressibil- 
ity is precisely the inverse of the bulk modulus B, a measure of the pressure 
increase to a fractional decrease in volume. Thus B has units of pressure. For 
water, B = 2.05 x 109 Pa. 

With this modification, a full analysis yields that the velocity of propagation is 

v - ~_flB_. (15.82) 
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For gases, B = y P, where  P is the  pressure  and y is the  dimensionless  ratio of 
the  specific heats  at cons tant  pressure  and at cons tant  volume:  y = Cp/Cv .  For 
air, y = 1.4. 

Equa t ion  (15.82)  applies bo th  to traveling and to s tanding waves. O n e  im- 
po r t an t  example  of s tanding waves is to sound waves in pipes. For closed pipes, 
the  b o u n d a r y  condit ions are tha t  the  velocities at the  ends are bo th  zero. This 
implies, by analogy to waves on a string, t ha t  sound  waves resonate  wi th in  a 
p ipe  w h e n  the  length L of the  pipe corresponds  to a half-integral  n u m b e r  of 
wavelengths  k, or 

tz 
L = ~k .  n - 1, 2 , . . .  ( resonance of closed pipe) (15.83) 

For a p ipe  open  at one end, the  b o u n d a r y  condi t ion  at the  closed end is still t ha t  
the  velocity is zero, for the  sound can ' t  move  the  rigid wall. O n  the  o ther  hand,  
at the  open end, the  veloci ty is comple te ly  unconst ra ined,  wh ich  corresponds  to 
it reaching its m a x i m u m  value at the  open  end. Hence,  for a m a x i m u m ,  in this 
case, the  length L corresponds  to a quarter- integral  n u m b e r  of wavelengths,  or 

2 n + l  
L - - - T - - k .  n - O ,  1 , . . .  ( resonance of pipe wi th  one open end) 

(15.84) 

In particular,  for a given pipe  length L, n = 0 of (15.84)  gives k = 4L, whereas  
n = 1 of (15.83)  gives k = 2L. Hence,  for a given pipe  length, a pipe wi th  one 
open end gives a lower  resonant  f requency  than  for e i ther  a pipe closed at bo th  
ends or a p ipe  open at bo th  ends, whose  resonance  wavelengths  are also given 
by (15.83).  

Problems 

15-2.1 (a) For the Paris to Lille semaphore sys- 
tem, estimate the effective velocity of transmis- 
sion. (b) Estimate the effective rate of transmis- 
sion of a bit (flag up or flag down). (c) How long 
would it take to send a 100-word message, assuming 
7 letters per word and 6 bits per letter, and a flag- 
man who can send 1 bit per second? (d) If it takes 
1 second for a flagman to receive a signal and 
1 second to transmit it, estimate the number of flag- 
men between Paris and Lille. 

15-2.2 Consider two concentric cylindrical shells 
of radii a and b, with a < b. Their interior is filled 
with de-ionized water, having relative dielectric 
permeability of 80. (a) Find the capacitance per 
unit length C. Evaluate it for b = 0.25 cm and 
a = 0.36 cm. (b) Let seawater fill the space between 
the shells, and let the inner shell be given charge 

If b - a >> l, where l is a "screening length" due 

to the ions (see the last section of Chapter 4), 
the field lines "end" on ions within a distance l. 
Estimate the capacitance per unit length for l = 
1.2 nm. (c) If there is no outer conducting shell, es- 
timate the capacitance per unit length for the inner 
shell. 

15-3.1 Findthe value ofldE/dt that corresponds 
to a displacement current density (current per unit 
area) of 2.5 x 105 A/m 2. 

15-3 .2  For dE/dtl = 4 x 107 V/m-s pointing to 
the left, find the displacement current density. 

15-4.1 A string 1.2 m long has a mass of 0.252 kg 
and a tension of 46 N. If it has a vertical acceleration 
of 2.4 m/s 2 at point P, find d2y/dx 2 at P. 
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15-4.2  A string 1.4 m long has a mass of 0.186 kg 
and a tension of 37 N. If d2y/dx  2 = 0.038 m -1 at 
point P, find the vertical acceleration at P. 

1 5 - 4 . 3  A circle of radius a, centered at x = 0, 
y = a, satisfies the equation x 2 +  ( y - a ) 2 =  a 2. 
(a) Compute  d y / d x  and d2y/dx  2. (b) Evaluate 
d2y/dx  2 at x = 0, which corresponds to the bot- 
tom of the circle. (c) Determine the relationship 
between d2y/dx  2 at x = 0 and the radius of curva- 
ture a. 

15-4 .4  Explain why the acceleration of a string 
under tension does not depend on the string's over- 
all height or slope, but does depend on its curvature. 

1 5 - 5 . 1  A rope 3 m long has mass 0.05 kg and is at 
a tension of 240 N. Find the speed of propagation 
of transverse waves along it. 

15-5.2  Sound propagates along a 200 m long wire 
at 60 m/s. It has mass 1.2 kg. Find its tension. 

15-5.3  A steel wire 1.6 m long and of mass 
0.012 kg is to be used to produce transverse waves 
with frequency 50 Hz and wavelength 0.4 m. What  
tension should it be given? 

15-5 .4  A string 1.2 m long and of mass 0.008 kg is 
fixed at one end. The other end passes over a pulley 
that supports a 0.25 kg mass. Find the velocity of 
transverse waves and how long it takes for a wave 
to pass from one end and back again. 

15-5.5 A string telephone system consists of two 
paper cups with holes in their bottoms, connected 
by a taut string knotted around the outside of the 
holes. Speaking into a cup makes it vibrate, both 
along the direction of the string axis and along the 
two directions transverse to the string. In what fol- 
lows, consider only the transverse motion. (a) Ex- 
plain why the sound at the receiving end is louder 
than it would have been had the signal traveled 
through the air as a sound wave. (b) Can a transverse 
wave on a string travel faster than a sound wave in 
air? (c) For a 10 m long string of mass 0.284 kg, what 
tension will give a velocity equal to the velocity of 
sound (344 m/s)? (d) Will a paper cup support this 
tension? 

15-5.6  A string is plucked on two occasions, for 
the same length of time. The second time it is 
plucked twice as hard as the first. (a) Compare 
the wave speeds in these two cases. (b) Com- 
pare the vertical velocities of a given point on the 
string. 

1 5 - 5 . 7  For a leftward wave, show that the slope 
has magnitude given by the ratio of the particle 
speed dy /d t  to the wave speed v. 

1 5 - 5 . 8  Write down the equation describing a 
leftward vertical wave on a string, of amplitude 
0.78 cm, frequency 248 Hz, and speed of 145 m/s. 
It satisfies y -- 0.52 cm at t -- 0 and x - 1.4 cm. 

15-5 .9  Sinusoidal water waves pass a dock at reg- 
ular intervals of time. It takes 25 sec for eight waves 
to pass by; the wave peaks are 6.4 m apart, and the 
maximum water height is 0.36 m above what it is 
without the waves. (a) Find the wave speed. (b) Find 
the wave amplitude. (c) Find the instantaneous ver- 
tical velocity 0.56 s after a maximum. (d) Find the 
instantaneous vertical acceleration 0.56 s after a 
maximum. 

1 5 - 5 . 1 0  A transverse wave on a string is de- 
scribed mathematically by the form y(x, t ) -  
(3.5 c m ) s i n ( 0 . 0 8 5 x -  1.46t + 0.75), where phase 
is measured in radians, x is measured in m, and 
t in s. Find (a) the amplitude, (b) the wavenum- 
ber, (c) the wavelength, (d) the angular frequency, 
(e) the frequency, (f) the wave velocity. (g) If the 
tension is 4.5 N, find the density. (h) At t - 0, find 
the position of the first maximum with x > 0. (i) At 
x - 4 cm, find the time of the third minimum after 
t -  2.5 s. 

1 5 - 5 . 1 1  Leftward sinusoidal waves on a string 
have wave speed 8 m/s, amplitude 0.03 cm, and 
wavelength 2.5 cm. At t -- 4 s and x - 2 cm, y - -  
-0 .02  cm. Find (a) the wavenumber, (b) the an- 
gular frequency, (c) the frequency, (d) the period, 
(e) the phase, (f) the mathematical expression for 
y(x, t) ,  (g) the value of y at t - 8 s and x - 12 cm. 

1 5 - 5 . 1 2  A leftward transverse wave has ampli- 
tude 0.8 cm, velocity 250 m/s, and initial shape 
e x p [ - ( x - 4 ) 2 / a 2 ] ,  with a - 2  cm and x in cm. 
(a) Write down an expression for the vertical dis- 
placement at a finite time t. (b) Evaluate it at x - 0 
for t -  0, 0.001 and 0.002 sec. (c) Evaluate it at 
x -- - 2  cm for t - 0, 0.001 and 0.002 s. 

15-5 .13  A wave satisfies y(x, t) -- (2.2 cm) 
cos(0.015x - 6.0t + 0.35), where phase is mea- 
sured in radians, x is measured in cm, and t in s. 
(a) If the string has tension 48 N, find the mass den- 
sity. (b) if the string has mass density 0.045 kg/m, 
find the tension. 

1 5 - 5 . 1 4  Discuss why these wave shapes can 
or cannot be used to describe traveling waves: 
(a) y = x/x + vt, (b) y = A / [ (x  - vt) 2 + a2]. 
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1 5 - 5 . 1 5  A string of length 85 cm has a mass per 
unit length 6.45 g/m and tension 140 N. Determine 
(a) the wave speed, (b) the wavelengths of the first 
and the second harmonics, (c) the frequencies of 
the fundamental and the first overtone. 

1 5 - 5 . 1 6  A string of length 74 cm and mass per 
unit length 12.5 g/m is to be used to produce a 
third harmonic of frequency 450 Hz. Find (a) the 
wavelength, (b) the sound velocity, (c) the tension 
in the string, (d) the wavelength of the correspond- 
ing frequency in air. 

1 5 - 5 . 1 7  The fifth harmonic of a string satisfies 
the equation y(x,t) - 0.36 sin(0.84x) cos(490t + 
0.15), where phases are in radians, x and y are 
in meters, and t is in seconds. Find (a) the 
wavelength; (b) the length of the string; (c) the 
period; (d) the frequency; (e) the vertical dis- 
placement, velocity, and acceleration at t = 0 and 
x =0.12.  

15-5.18 At t = 0 ,  a rightward wave satisfies 
y(x,t = O)=exp[-(x/b)2]. It travels at speed v. 
Find y(x, t) for t > 0. 

15-5.19 A guitar string (along x) can produce 
sound in two distinct ways. Usually it is plucked 
so that the string moves parallel to the guitar face 
(along y). It also can be plucked by pulling it farther 
from the guitar face (along z). (a) Write down the 
equation of motion for the z-coordinate. (b) Find 
the wave speed for motion along z. (c) For a guitar 
length L, ring the lowest resonance frequency for 
motion along z. 

15-6.1 For an EM wave that propagates along +y, 
if I/]1 =0.04 mT and/~ points along +z at y = 2 cm 
and t = 1.2 s, find the direction and magnitude of 
/~ at y = 2 cm and t = 1.2 s. 

15-6.2 For an EM wave that propagates along +z, 
ifl/~ = 52 V/m and/~ points along +x at y = 3.4 cm 
and t = 2 s, find the direction and magnitude of 
at y = 3.4 cm and t = 2 s. 

15-6.3 (a) For an electromagnetic wave propa- 
gating along x, if Ey(x,t)= Dsin(qx-~ot), find 
Bz(x,t). (b) For an electromagnetic wave prop- 
agating along y, if Ez(y,t)= Dsin(qy-cot), find 
Bx(y,t). 

15-6.4 In a microwave cavity filled with air, the 
nodes in the electric field are 3.2 cm apart. Find the 
wavelength, the wavenumber, the frequency f ,  and 
the angular frequency ~o. 

15-6.5 An electromagnetic wave from a cell 
phone travels along +y, its electric field given 
numerically by E(x,y,z,t) = 4.5 x 104(V/m)~ 
sin[qx - cat], where its frequency of 3.2 x 101~ Hz 
lies in the microwave band. Find (a) the wavelength, 
(b) q, (c) ~o, and (d) B(x,y,z,t). 

15-6.6 An electromagnetic wave has 
B(x, y, z, t ) -  1.5 x 10-4T~sin[qy-  ~ot], where 
its wavelength of 0.24 mm lies in the infrared 
band. Find (a) the frequency y, Co) q, (c) ~o, and 
(d) E(x,y,z,t). 

15-7.1 Find the wavelength of (a) an AM station 
broadcasting at 990 kHz; (b) an FM station broad- 
casting at 89.1 MHz. 

15-7.2 Find the frequencies f associated with the 
extremes of human vision, taken to be red (700 nm) 
and violet (400 nm). 

15-8.1 (a) Assuming no energy loss, how must 
the amplitude of an outgoing spherical wave fall off 
with distance from the power source? (b) Repeat 
for an outgoing cylindrical wave. 

1 5 - 8 . 2  A laser beam of 4 mW (rms), with wave- 
length 680 nm, propagates along the +z-direction. 
Its electric field is along the y-axis. Find (a) the 
maximum value of the electric and magnetic fields; 
(lo) the frequency; and (c) explicit expressions for 
both E(x,y,z,t) and B(x,y,z,t), which are zero at 
the origin for t -- 0. 

15-8.3 Find the electric and magnetic field ampli- 
tudes needed to produce a time-averaged power of 
4 x 10 s W within an area of 120 cm 2. 

15-8.4 Take the total intensity of starlight at the 
earth to be 10 .9 the total intensity of light from the 
sun, at the earth. Find the distance from the sun 
where the sun's intensity at the earth equals that of 
starlight. 

15-9.1 A flashlight of mass 0.18 kg and 4 s2 resis- 
tance is in outer space. It is equipped with two 1.5 V 
cells in series, each with an initial charge of 4 A-hr. 
The flashlight provides light with 100% efficiency 
at a constant rate until the batteries are totally dis- 
charged. Find (a) the rate at which it accelerates, 
(lo) how long it accelerates, (c) the maximum speed 
it attains, and (d) the distance it travels while still lit. 

15-9.2 A laser beam of 4 mW power (rms) 
and 1.4 mm 2 width, with wavelength 680 nm, 
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propagates along the +z-direction. Its electric field 
is along the y-axis. Find (a) the electric and mag- 
netic energy densities, (b) the Poynting vector, and 
(c) the radiation pressure. 

15-9.3 An electromagnetic wave from a 
cell phone travels along +y, its electric 
field given numerically by E ( x , y , z , t ) = 4 . 5  x 
lO4(V/m)~sin[qy-o)t] ,  where its frequency of 
3.2 x 10 l~ Hz lies in the microwave. Find (a) the 
electric and magnetic energy densities, (b) the 
Poynting vector, and (c) the radiation pressure. 

15-9.4 An electromagnetic wave has 
B(x,y,z, t)  = 1.5 x 10-4T~ sin[qy - ~ot], where its 
wavelength of 0.24 mm lies in the infrared. When 
B points along +~, E points along -2 .  Find 
(a) the electric and magnetic energy densities, 
(b) the Poynting vector, and (c) the radiation pres- 
sure. 

...... : ........... 1 5 - 9 . 5  Within a solenoid of radius R and n 
turns per unit length, carrying current l, there 

is an axial magnetic field B. See Figure 15.26, which 
does not show the turns of wire. If the current is 
changing, there is also a tangential induced electric 
field. (a) Find the Poynting vector for r < R. (b) For 
r < R, find the power flow (per unit length along 
the axis), and give its direction when d I /d t  > O. 
(c) Find the net flow of power (per unit length 
along the axis) for an annulus from r to r + dr. (d) 
Find the rate of change of the magnetic field energy, 
and interpret your result. 

Figure 15.26 Problem 15-9.5. 

........ ~.~!ii~ ..... 1 5 - 9 . 6  Within a parallel-plate capacitor of 
.... < .............. radius R and plate separation d << R, with 

charge Q, there is an axial electric field /~. See 

Figure 15.27. If the charge varies, there is also 
a tangential induced magnetic field. (a) Find the 
Poynting vector for r < R. (b) For r < R, find the 
power flow (per unit length along the axis), and 
give its direction when d Q/d t  > 0. (c) Find the net 
flow of power for an annulus from r to r + dr. (d) 
Compare with the rate of change of the electric 
field energy, and interpret your result. 

Figure 15.27 Problem 15-9.6. 

15-10.1 Radiation at 67.5 MHz propagates with 
velocity 2.65 x 108 m/s along a plastic tube. (a) Find 
the wavelength. (b) Find the index of refraction. 
(c) If/xr = 1, find er- 

1 5 - 1 0 . 2  In a ferrite, radiation of 22.4 MHz prop- 
agates with velocity of 3.5 x 106 m/s. (a) Find the 
wavelength. (b) Find the index of refraction. (c) If 
Er = 1.8, find/Xr. 

1 5 - 1 0 . 3  Light ofwavelength 591.5 nm in air is in- 
cident on water at an angle of 23 ~ from the normal. 
(a) Find the frequency of the light in air. (b) Find 
the frequency of the light in water. (c) Find the 
wavelength of the light in water. (d) Find the an- 
gles the reflected and refracted light make with the 
normal. 

1 5 - 1 0 . 4  Sound of frequency 475 Hz in air is in- 
cident at 6 ~ on a wall of rock for which the sound 
velocity is 2380 m/s. (a) Find the wavelength of 
sound in the air. (b) Find the wavelength of sound 
in the rock. (c) Find the frequency of sound in the 
rock. (d) Find the angles the reflected and refracted 
sound make with the normal. 

1 5 - 1 0 . 5  (a) Find the critical angles for crown 
glass and for diamond. (b) Now consider two cut 
gems, one of crown glass and the other of diamond, 
with precisely the same geometry. From which is a 
randomly chosen light ray more likely to emerge? 
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(c) If the light intensities within the two stones are 
equal, which gem is likely to emit brighter light, 
when light does emerge? 

15-10.6 Consider light that enters one side of a 
flint glass prism with corner angle of 90 ~ . Let the 
light enter at an angle of 50 ~ to the normal. See 
Figure 15.28. (a) Find the angle that the light 
emerges at. (b) Which will be deflected more, red 
light or blue? 

Normal .90 ~ 

Incident l i ~ / /  

Figure 15.28 Problem 15-10.6. 

15-11.1 Unpolarized light of intensity 4.6 W/m 2 
is normally incident on a perfect linear polarizer 
whose preferred electric field axis is vertical. Find 
the intensity of the transmitted light, and describe 
its state of polarization. 

1 5 - 1 1 . 2  Linearly polarized light of intensity 
2.8 W/m 2 is normally incident on a perfect linear 
polarizer whose preferred electric field axis is ver- 
tical. The transmitted light intensity is 1.6 W / m  2. 
Describe the state of polarization of the incident 
light and the transmitted light. 

15-11.3 The preferred electric field axes of linear 
polarizers 1 and 2 are along x and y, respectively. 
Their normals are along z. (a) If unpolarized light of 
intensity 0.4 W / m  2 is normally incident on 1, find 
the intensity and polarization of the light trans- 
mitted by 2. (b) If polarizer 2 is now rotated, so 
that its preferred electric field axis makes a counter- 
clockwise angle of 35 ~ to x, find the intensity and 
polarization of the transmitted light. 

1 5 - 1 1 . 4  The preferred electric field axes of two 
linear polarizers are along x and y, respectively. 
Their normals are along z. Unpolarized light of in- 
tensity 1.5 W/m 2 is normally incident on the first. 
(a) If a third, middle polarizer is introduced be- 
tween the two polarizers, its preferred electric field 
axis at a clockwise angle of 56 ~ to y, find the inten- 
sity and polarization of the transmitted light. See 
Figure 15.29. (b) For the third polarizer, find the 
angle of the preferred electric field axis for which 

the intensity will be a maximum. (c) Find the inten- 
sity of the transmitted light, and describe its state 
of polarization. 

56 ~ 

Figure 15.29 Problem 15-11.4. 

15-11.5  A superposition of unpolarized light of 
intensity 2.6 W / m  ?, and linearly polarized light 
of intensity 4.1 W / m  2, is normally incident on a 
perfect linear polarizer. If the polarizer's preferred 
electric field axis is vertical, and the polarization 
axis of the polarized light makes an angle of 56 ~ to 
that, give the intensity and state of polarization of 
the emerging light. 

1 5 - 1 1 . 6  Consider a superposition of unpolarized 
light and linearly polarized light. It has total in- 
tensity 4.6 W/m 2 and is normally incident on a 
perfect linear polarizer. When the polarizer's pre- 
ferred electric field axis is vertical, the intensity 
of transmitted light is 3.7 W/m 2. When the po- 
larizer's preferred electric field axis is horizontal, 
the intensity of transmitted light is 3.1 W/m z. For 
the incident light, find (a) the intensity of unpo- 
larized light, (b) the intensity of linearly polarized 
light, and (c) the angle that the electric field of the 
polarized light makes to the vertical. 

15-11.7 (a) Find the Brewster angle for light pass- 
ing from air into water. (b) Repeat for light passing 
from water into air. 

1 5 - 1 1 . 8  As in Figure 15.17, an observer looks 
up at the sky, but now through a linear polarizer 
whose plane is normal to the incident light. The 
intensity of the transmitted light changes on rotat- 
ing the preferred electric field axis of the polarizer, 
whose plane remains normal to the incident light. 
Let 0 = 0 correspond to maximum intensity. How 
should the intensity vary with 0? Assume that the 
light seen arises from only a single scattering of light 
by the atmosphere. 

1 5 -12 .1  (a) Describe in your own words why the 
electric field can be normal to, but cannot be parallel 
to, the surface in a microwave cavity. (b) Describe 
in your own words why the magnetic field can be 
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parallel to, but cannot be normal to, the surface in 
a microwave cavity. 

1 5 - 1 2 . 2  At a given instant of time, the electric 
field at point P just outside the wall of a microwave 
cavity has magnitude 478 V/m, pointing into the 
wall. Determine the magnitude and sign of the 
surface charge density. 

1 5 - 1 2 . 3  At a given instant of time, the magnetic 
field at point P just outside the wall of a microwave 
cavity has magnitude 3.62 mT, pointing along y. 
The outward normal is along z. Determine the mag- 
nitude and direction of the surface current density. 

15-13.1 In Figure 15.19, verify that (a) the sur- 
face current density and the B field have the appro- 
priate relationship, (b) the surface charge density 
and E have the appropriate relationship, (c) the 
propagation direction is as indicated. 

15-13.2 Explain why it is preferable to use 
nondispersive waveguides when transmitting in- 
formation using microwaves. 

15-14.1 The end of a linear antenna normally 
cannot become very charged because it has a rela- 
tively low capacitance. Thus the antenna current, 
considered to be spatially varying (unlike the case 
in circuit theory) has two near-zeros. (a) For a lin- 
ear antenna of length 1.2 m, what is the longest 
wavelength to which this corresponds in the lin- 
ear antenna, considered as a resonator? (b) What 
is the wavelength of the radiation? [Note: For a 
guitar, the geometric resonances of the string de- 
termine the wavelength, and v = z f determines 
the frequency, which is then radiated to the air, 
with a sound velocity different from that of the 
string. For a linear antenna, the geometric reso- 
nances of the antenna determine the wavelength, 
and v = )~f determines the frequency, which is 
then radiated to the air, with the same velocity (c) 
as that of the antenna. See the discussion following 
(15.68).] 

15-14.2 Near a linear antenna, when the electric 
field is at a maximum, the magnetic field is zero, 
and when the magnetic field is at a maximum, the 
electric field is zero. On the other hand, far from the 
antenna the electric and magnetic field are in phase. 
What does this imply about phase relationships in 
the intermediate region? 

1 5 - 1 4 . 3  Comparing Figure 15.21(b) to Figure 
14.15, estimate R~ P~ for Hertz's detector. 

15-14.4 Two concentric circular disks of radius 
a, with seperation d >> a, are centered along the 
x axis. Let Q and - Q  be uniformly distributed 
on the disks, centered at x = • respectively. 
A rod of resistance R, placed along the x-axis, 
connects the two disks. For a concentric circular 
loop, of radius R >> a, find f ( J  + JD)-~dA, when 
the plane of the loop is inside and outside the 
disks. 

........ ~::~:::!~:i~ ...... 15-15.1 A string has an unstretched length 
:: ..... of L0. It is now stretched to L. A standing 

wave y(x, t)= Asin(zrx/L)sin(o2t) is set up. The 
maximum value for the additional length associated 
with the vertical displacement (the length of string 
is now f ds, not f dx) should be much less than the 
stretching length L -  L0; otherwise, the tension 
will not be nearly constant. (a) Find the additional 
length ~L = f ( d s -  dx) due to this wave. (b) Set- 
ting ~L = L/64, show that A = L/4zr ,~ 0.08L. 
This is a surprisingly large amplitude, yet it per- 
mits L -  L0 to be as small as 0.1L and still have 
(~ L (( L -Lo .  

1 5 - 1 5 . 2  Astring 1.5 mlonghasamassofO.152kg 
and a tension of 82 N. Find the amplitude of 250 Hz 
waves with time average transmitted power of 
0.56 W. 

1 5 - 1 5 . 3  A bar is made of aluminum (Young's 
modulus 7 x 10 l~ Pa, mass per unit volume 
2.7 x 103 kg/m3). It is 5 m long and has a cross- 
sectional area of 4.8 x 10 -4 m 2. Find: (a) the veloc- 
ity of longitudinal waves; (b) the time it takes for a 
wave to pass from one end and back again. 

15-15.4 For equal sound intensities at different 
frequencies, the kinetic energies of the air and thus 
the actual air velocities must be the same. (a) If 
two equal intensity sounds are at fl = 125 Hz and 
f2 = 1250 Hz, which has the larger amplitude? (b) 
What does this say about the design of movable 
diaphragms for low-frequency speakers (doglike 
woofers) as opposed to high-frequency speakers 
(bird-like tweeters)? 

1 5 - 1 5 . 5  A manufacturer produces radios with 
compact speakers that accurately reproduce low 
frequency sounds. Assume that a speaker contains a 
long wrapped up tube of length L that resonates at 
,~ = (1/2)L (a small hole permits sound to escape). 
Find the length of tube needed to reproduce the 
lowest piano key (27.5 Hz). 

15-15.6 A tube resonates at 40 Hz when filled 
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with air. You are to add krypton gas to make it 
resonate at 27.5 Hz. (a) What fraction of krypton 
should be in the gas? (b) Does the pressure matter? 
(c) Could you use kryton and air at a lower pressure? 
(Hint: The velocity of sound in a gas is proportional 
to v/kB T/m, where kB is Boltzmann's constant, T 
is the temperature, and m may be considered the 
average molecular mass.) 

15-15.7 A tube that resonates at 27.5 Hz when 
filled with air is now filled with water. What is its 
new resonance frequency? 

15-15.8 (a) Find the wavelengths (in air) associ- 
ated with the extremes of human hearing, taken to 
be 20 Hz and 20,000 Hz. (b) Find the correspond- 
ing wavelengths in water. 

15-G.1 Explain the principle of echo location. 
Apply it to find the distance to a building if your 
echo arrives with a 2.4 s delay. Take the sound 
velocity to be 344 m/s. 

15 -G .2  Develop a rule of thumb to estimate the 
distance between you and a source of lightning. 
When you see the lightning, start counting at about 
a rate of one per second, until the thunder arrives. 
(a) What integer would you multiply by to estimate 
the distance in miles? (b) In kilometers? 

15-G.3 A rightward wave with velocity v is pho- 
tographed using a strobe light with a time inter- 
val r that is slightly more than half a period: r = 
T / 2 + r ' .  (a) Show that the wave appears to 
be a leftward-moving wave with velocity v ' =  
v(T - r)/r.  (b) Show that the maximum apparent 
leftward velocity, is less than v. (c) If v'/v = 0.28, 
find r/T.  [Hint: Use the factthat sinqx - sin(qx + 
2zr).] 

1 5 - G . 4  A uniform rope of length L and mass m 
hangs from the ceiling. (a) Show that at a distance 
y from the bottom of the rope, the local trans- 
verse wave velocity is given by v = C ~ .  (b) Show 
that the time it takes for the bottom of the rope 
to wiggle, if an earthquake shifts the ceiling, is 
~ -  24Z7~. 

1 5 - G . 5  Repeat Problem 15-G.4 when the rope 
supports a mass M attached to its bottom. 

. . . .  

(a) Show that v =  4 ~ v / y + ( M / m ) L  and r = 

2 ~ / ~ ( ~ / M / m  + 1  - , /M/m).  (b) Verify that this 
gives the expected results for M/m-- ,  0 and for 
M / l ' t z  ----~ oo .  

15-G.6 Show that the time-derivative of the dis- 
placement vector D = E0/~ + P is the sum of the 
displacement current JD and the polarization cur- 
rent 3P/Ot. 

1 5 - G . 7  Take a pen in your hands and bend it. 
(a) Is it under tension? (b) Is it curved? (c) Is it 
in equilibrium? (d) Does the argument about ac- 
celeration being proportional to curvature apply 
to a rigid object like a string? In the early 19th 
century, Mlle. Sophie Germain studied bending 
of a rigid beam, finding that the equation de- 
scribing its motion required four spatial deriva- 
tives, rather than two, in order to produce an 
acceleration. 

15-G.8 Kelvin developed a capacitance-and- 
resistance-based theory of telegraphy. Consider a 
co-axial cable where T4 and C are, respectively, the 
resistance per unit length and the capacitance per 
unit length. The current I, the charge per unit 
length X, and the voltage V are all taken to vary 
with x along the axis, with the inner and outer 
parts assumed to always have equal and oppo- 
site charges. Consider a length dx. For slow varia- 
tions of I and X along x, show that: (a) the charge 
on dx changes at the rate d Q/dt  = I (x) - I (x + 
dx); (b) d)~/dt = -dI /dx;  (c) I = -7~ - ldV/dx;  
(d) dV/dx = C -1 d)~/dx; (e) Tr = d2)~/dx 2. 

1 5 - G . 9  Before applying Maxwell's equations to 
telegraphy, Heaviside extended Kelvin's work by 
developing a theory of telegraphy where self- 
inductance dominates over resistance. This is im- 
portant at high frequencies. Consider a co-axial 
cable made of a perfect conductor (no resistance; 
surface charge and surface currents). Denote by 
the charge per unit length and by I the current for 
the inner cylinder. The inner and outer wires are as- 
sumed to always have equal and opposite charges. 
(a) For slow variations along the axis show that 
charge conservation implies that dX/dt = - d I / d x .  
(b) Next, again for slow variations along the axis, 
show that the emf equation for a resistance- 
less wire is given by O=C- ldX /dx+  s 
(c) From this deduce that the velocity of propa- 
gation is v = ~/1/s 



Plate 1 White light through a prism. 

A beam of white light passed through an equilateral triangular prism. The white light is 
a composite of many pure colors with their own characteristic wavelengths and indices 
of refraction. On passing through the prism, each individual wavelength is refracted 
differently, thus splitting the beam into its component wavelengths, and revealing the 
full spectrum of visible light. 



"When two Undulations [waves], from Different Origins, coincide either perfectly or very 
nearly in direction, their joint effort is a Combination of the Motions belonging to each." 

~Thomas Young, 
stating the principle of interference in "Theory of Light and C olours," 1801 

Chapter 16 

Optics 

Chapter Overview 

Section 16.1 introduces the chapter. Section 16.2 introduces interference and diffrac- 
tion, largely in the context of water waves. (However, these ideas apply to all types of 
waves, including sound waves and light waves.) Having introduced all these phenom- 
ena, the remainder of the chapter discusses light from a somewhat historical viewpoint. 

Sections 16.3-16.5 discuss the early views of light, which tended to think of light 
as a particle emitted by a source. A more complete discussion~not the purpose of 
the present work~would also include the study of focusing by mirrors and lenses, 
and application of these focusing principles to optical instruments like the telescope 
and the microscope. Section 16.3 presents a brief history of optics to the end of 
the 17th century. It emphasizes two of the successes of the particle emission theory: 
explanations of the laws of reflection and refraction, and the formation of rainbows. 
Section 16.4 enumerates a number of 17th-century experiments on light, many of 
which are explainable only by the wave theory. Section 16.5 summarizes the sometimes 
contradictory theoretical developments of the 17th century. 

Sections 16.6-16.8 consider the more modern view of light, which is based upon 
a wave viewpoint. (Both the particle and wave viewpoints were speculated on by the 
ancient Greeks, some 2000 years ago.) Section 16.6 introduces Young, applies his 
analysis of constructive and destructive interference in numerous contexts, and ana- 
lyzes his famous two-slit interference experiment. Section 16.7 introduces Fresnel and 
gives his analysis of the observed intensity patterns both for Young's two-slit inter- 
ference experiment and for single-slit diffraction. Section 16.8 discusses birefringent 
crystals, by which the phenomenon of polarization was discovered. 

Sections 16.9 and 16.10 discuss the applications of diffraction, by which we analyze 
both the very large and the very small. Section 16.9 considers the diffraction grating, 
by which we determine the nature of the very distant stars. Section 16.10 considers 
diffraction by crystals of x-rays (like light, a form of electromagnetic radiation), by 
which we determine the positions of individual atoms within a crystal, a 

16ol 

678 

Introduction 

Man has become a celestial detective~his forensic tools the telescope and the 
diffraction grating~investigating the birth, evolution, and death of the stars. 

1. The telescope, with a wide aperture, lets light of all pure colors pass through 
in nearly a straight line, intensified by focusing with a lens. This is an application 
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of geometrical optics, which includes the fundamental phenomena of reflection 
and refraction at surfaces. 

2. The diffraction grating, with either many narrow lines for scattering or 
many narrow apertures for transmission, analyzes the light into its component 
colors. This is an application of physical optics, which includes polarization (dis- 
cussed in Chapter 15) and the very general and closely related wave phenomena 
known as interference and diffraction (to be introduced in Section 16.2). 

Chapter 15's discussion of light as a wave phenomenon depended heav- 
ily upon mathematical reasoning. The solution of Maxwell's equations yielded 
plane wave solutions of all frequencies and wavelengths, corresponding to a cou- 
pled oscillation of the electric and magnetic fields~electromagnetic radiation~ 
traveling at the speed of light in vacuum. The identification of light as a small 
part of this spectrum was clear. However, even without knowing that light is an 
electromagnetic wave, by 1801 Thomas Young had established that light was a 
type of wave, with a specific range of wavelengths. 

16o2 Interference and Diffraction 

Although this chapter presents background material about optics in general, this 
section presents water wave experiments to illustrate the phenomena of interfer- 
ence and diffraction. These phenomena generalize to other types of waves, such 
as sound and light. 

We can directly observe the medium--the water surface~associated with 
a water wave. As Young demonstrated in his lectures to the Royal Institution 
(1802-1803), when a plunger in a ripple tank containing water oscillates up and 
down at a fixed frequency f, there is an expanding wave of wavelength ~ that 
has circular symmetry. At any instant of time there are maxima (peaks, or crests) 
and minima (troughs). Figure 16.1 presents a schematic of the top view of a 

Maximum amplitude 
(wave peak) 

Figure 16.1 Schematic of the top view of a ripple tank 
containing a plunger that oscillates vertically at a fixed 
frequency f. The dark circles indicate, at a given instant 
of time, the maxima, or wave peaks (crests). The distance 
between the peaks is the wavelength X. In water, Xf = v, 
where v is the wave velocity. 
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ripple tank. The circles denote the instantaneous locations of the wave peaks, 
which move radially outward with velocity v = f)~. Because water waves are 
dispersive, v varies with )~, rather than being a constant, as is the case for sound 
and light. 

16,2.1 Interference 

When two identical plungers within a ripple tank operate at the same frequency 
f, and therefore at the same wavelength X, they may produce a pattern of max- 
ima and minima on the water surface. If two maxima (or two minima) arrive 
at a point P at the same time (i.e., in phase), we say that there is constructive 
interference. See Figure 16.2(a). If a maximum and a minimum arrive at a point 
P at the same time (i.e., out of phase by 180~ we say that there is destructive 
interference. See Figure 16.2(b). 

Let the two plungers be separated by the distance d and let the wavelength be 
),. The overall pattern of maxima and minima depends on the relative phase of 
the plungers; for simplicity, consider only the case where at time t the plungers' 
vertical displacements A(t) have the same amplitude a and phase ~b: A(t)= 
a cos(cot + ~). As will be shown, the pattern of maxima and minima depends on 
the ratio of ~ to d and is independent of the common amplitude a and phase ~. 

Consider that the frequency f can vary, and that initially it is very low, which 
means that ~ is very large. In this case, the waves produced by the two plungers 
are very nearly in phase everywhere, giving a pattern much like that for a single 
plunger (Figure 16.1). Now let f increase, which decreases ;v. This causes de- 
phasing between the waves produced by the two plungers. Figure 16.3 depicts 
the case where d ~ 0.7)~, the open circles denoting the plungers. There, the two 
waves are in phase (denoted by closed dots, with an imaginary line C connect- 
ing the dots) only along the perpendicular bisector of the line connecting the 
plungers. As time passes, the maxima move outward, as do the dots. (The lines 
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(a) (b) 

Figure 16.2 (a) Constructive interference between waves produced by two sources 
with the same amplitude, wavelength, and phase. Minima (and a half-period later, 
maxima) arrive at the same time, giving a doubling of the net wave amplitude. 
(b) Destructive interference between two waves of the same wavelength and from 
sources that are in phase with one another. Minima of one and maxima of the other 
arrive at the same time, giving zero net wave amplitude. 
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Construct ive ~ x ~  D' 
interference. / 7 " , , /  / 

  structive 
interference ~ ~  

' ~ ~  D 

Figure 16.3 Interference between waves from two sources 
(the open circles) with the same amplitude, frequency, 
and phase, separated by d = 0.7)~. Constructive inter- 
ference occurs only along the line C. Destructive 
interference occurs only along the curves D and D'. 

D and D' correspond to minima, or destructive interference, to be discussed 
shortly.) 

If f is further increased, so that d > z, there are additional curves along 
which constructive interference occurs. Figure 16.4 depicts the respective cases 
where d = 1.5)~ and d = 4.5)~. For d = 1.5Z, in addition to the perpendicular 

Individual Constructive 
maximum interference 

1 

0 

Constructive 
interference 

1 3 

2 

1 

0 

-1 

-2 

2 -3 

a = 4.~x -4 

(a) (b) 

Figure 16.4 Interference between waves from two sources (the open circles) with 
the same amplitude, frequency, and phase. (a) Separation d = 1.5z, where there are 
three curves along which constructive interference occurs. (b) Separation d = 4.5Z, 
where there are nine curves along which constructive interference occurs. 



682 Chapter 16 ~ Optics 

bisector there is an additional pair of curves, one to each side of the perpendicular 
bisector, where constructive interference occurs. For d = 4.5~, there are four 
additional pairs of curves. 

Let the distances from any point P to the plungers be rl and r2. Construc- 
tive interference occurs when the separation r 2 -  rl is an integral number  of 
wavelengths, or 

r2 rl = m ~ ,  m = O, •  + 2 , . . .  

By definition, when the distances between a point P and two foci differ by a 
constant, the curve traced out is a hyperbola. Thus, the locus of points where 
the maxima occur trace out a series of hyperbolae, defined by the integer m and 
the ratio d/)~. The larger the wavelength X, or the smaller the source separation 
d, the larger the separation between maxima. This is seen in Figures 16.4(a) and 
16.4(b), where the number  to the right of each curve is the corresponding value 
of  m. 

Destructive interference occurs when the separation r2 - rl is a half-integral 
number  of wavelengths, or 

( m  1 )  1 1 3 (destructive i n t e ~ e ~ e )  r 2 -  rl = + ~, m + -~ = +-~, 4-~,  

Destructive interference corresponds to the local height of the water surface 
being undis turbed~st i l l  water. In Figure 16.3, where d ~ 0.7)~, the pair of curves 
D and D' correspond to m + 1 _ 4-�89 in (16.2), where there are minima. The 
larger the wavelength, the larger the separation between minima. In Figures 
16.4(a) and 16.4(b), between the maxima lie minima, which are not drawn. 

~ Interference maxima and minima 

Two plungers are separated by d = 25 cm. (a) What is the largest )~ for which 
there is a maximum corresponding to n r 0? (b) What is the largest ;~ for 
which there is destructive interference? 

Solution: (a) If the wavelength ;~ exceeds the largest value of r? - rl, which here 
is d = 25 cm, then (16.1) can be satisfied only for m -  0. Hence ~ _< 25 cm 
for a maxima with n r 0. When equality holds, only on the line defined by the 
two sources (and not in the region between the sources) is there constructive 
interference. (b) If one-half the wavelength )~ exceeds the largest value of r2 - 
rl, which here is d = 25 cm, then (16.2) for destructive interference cannot be 
satisfied, even for m -  0. Hence, for destructive interference )~ < 50 cm. When 
equality holds, so r2 - rl - (�89 only on the line defined by the two sources (and 
not in the region between the sources) is there destructive interference. 

~ Some details of interference an pattern 

Two plungers are separated by d = 25 cm. Along their perpendicular bisector, 
a distance D = 52 cm away, there is a maximum at y -  0. Normal to the 
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Figure 16.5 Schematic for analyzing the 
interference patterns of Figures 16.3 and 
16.4. Point P lies along a line parallel to the 
line of centers of the two plungers, but a 
distance D away. 

bisector at this distance, there is a second maximum at y - 12 cm. See Figure 
16.5. (a) Find the wavelength ~. (b) Find the position y of the first minimum. 

Solution: (a) Use r2 = v /D e + (y + d/2)  2 and rl = v /D e + (y - d /2)  2. Placed in 
(16.1), with m = 1 and y - 12 cm, this yields )~ = 5.48 m. (b) Using Z = 5.48 m 
in (16.2) with m = 0 gives 

v/D2 + (y + d/2) 2 - v/D 2 + (y - d/2) 2 = 1Z = 2.74 m. 

The solution, found numerically, is y = 5.90 cm. This lies about halfway between 
the maxima at y = 0 and y = 12 cm. 

16.2,2 Diffraction 

A ripple tank also can be used to demonst ra te  diffraction. Consider  a water  wave 
with  planar wavefront  of wavelength z incident  on a barrier wi th  an opening of 
width  d. For d >> )~ (i.e., for short  wavelengths),  as in Figure 16.6(a), the  wave 
tha t  passes through the barrier goes nearly in a straight line, as if the wave were  
a particle on a straight-line path. The  related case of scattering by an obstacle of 
length d is given in Figure 16.6(b).  

The  case where  d ~ )~ is depicted in Figure 16.7 both  for a barrier wi th  an 
opening and for an obstacle. 

Figure 16.6 (a) Scattering by a short-wavelength wave incident on a 
barrier. (b) Scattering by a short-wavelength wave incident on the 
corresponding obstacle. The dark lines represent instantaneous 
maxima. 
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Figure 16.7 (a) Scattering by an intermediate-wavelength wave 
incident on a barrier. (b) Scattering by an intermediate-wavelength 
wave incident on the corresponding obstacle. The dark lines represent 
instantaneous maxima. 

The case where d << 5~ (i.e., for long wavelengths) is depicted in Figure 16.8(a) 
for a barrier with an opening. The wave that passes through the barrier spreads 
out uniformly, as if the opening were a point source. In the corresponding case 
for an obstacle, just behind it the wave amplitude builds up. See Figure 16.8(b). 
At large distances from the obstacle, and out of the incident beam, the diffracted 
pattern is the same as for the corresponding barrier. This identical diffraction pat- 
tern for both cases is an example of what is known in optics as Babinet's principle. 
This says that, for any pair of scatterers with complementary geometries (e.g., an 
opaque screen with a star cut out, and the corresponding opaque star), outside 
the geometrical shadow of either, the patterns of scattered light are the same. 

To summarize, short wavelengths are associated with straight-line propaga- 
tion, and long wavelengths are associated with a more spread out propagation. 
Related to this are two phenomena associated with sound: (1) a cricket, with 
its high-pitched (short-wavelength) chirp, can be localized more readily than a 
bullfrog, with its low-pitched (long-wavelength) croak. (2) When the corner of 
a building separates them from us, the low-pitched bullfrog can be heard more 
readily than the high-pitched cricket. 

Figure 16.8 (a) Scattering by a long-wavelength wave incident on a 
barrier. (b) Scattering by a long-wavelength wave incident on the 
corresponding obstacle. The dark lines represent instantaneous maxima. 
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~ W a v e  spreading (diffraction) 
Radio waves of frequency 91.1 MHz and sound waves of frequency 440 Hz 
are incident on a metal wall with a circular hole of diameter 1.2 m. Take the 
speed of sound to be v = 340 m/s. Describe the extent of the spreading of 
the waves transmitted through the hole. 

Solution: The relation f;~ = v implies that ;~ = v/f.  For the radio wave, with 
v = c = 3.0 x 108 m/s, this gives )~ = 3.29 m. For the sound wave this gives 
)~ = 0.77 m. The radio wave, with larger wavelength (3.29 m) than the 1.2 m 
diameter circular hole (as in Figure 16.8a), should exhibit mostly spreading, with 
some localization in the forward direction. The sound wave, with shorter wave- 
length (0.79 m) than the 1.2 m diameter circular hole, should exhibit mostly 
propagation in the forward direction, with some spreading (as in Figure 16.6a). 

Sections 16.7.2 and 16.7.3 consider diffraction in more detail. 

16.3 Optics to the End of the 17th Century 

Surely primitive man knew that light travels (nearly) in straight lines, and that 
behind an illuminated object is a shadow. Euclid knew the law of reflection, 
as did the Romans, who used a metallic alloy called speculum for their mirrors. 
[This is the origin of the term specular reflection (e.g., off a mirror, or at a glancing 
angle for a less perfectly smooth surface, such as a piece of writing paper), as 
opposed to diffuse reflection (e.g., off a dully painted wall). ] Ptolemy, some 1800 
years ago, studied refraction, but he characterized it quantitatively only for small 
angles. Likewise, the ancients knew of the rainbow, and perhaps of the prism, 
but they had little understanding of these phenomena. Some viewed light as 
being generated by the eye, rather than taking the correct view, first stated by 
A1-Hasan (c. 1000), of the eye as a receiver of light whose source is elsewhere. 
Light here was considered to be particle-like, traveling in a straight line. 

De Dominus, around 1590, used a large water-filled spherical glass vessel to 
reproduce the halo shape of a rainbow, with a bright bow at 42 ~ to the incident 
sunlight. He showed that the primary (and secondary) rainbows involved one 
(and two) internal reflections in addition to the refractions on entering and exit- 
ing. Figure 16.9(a) presents a geometry where sunlight is incident from the left, 
directed along the x-axis. (The angle of incidence relative to the normal is 0, and 
the observation angle relative to the backward direction is ~b.) De Dominus could 
not explain, however, how the halo shape occurred, or why the colors separate 
to have a continuous distribution of bows. 

t6.3.1 The Law of Refraction (Snell's Law) 

Measured relative to the normal, let 0 be the angle of incidence in air, and let 0' 
be the angle of refraction into another medium. The law of refraction, in a form 
equivalent to 

sin 0 = n sin 0', (16.3) 
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Figure 16.9 (a) Path of a ray incident on a water-filled spherical glass vessel. It 
undergoes refraction on entering, one reflection within, and refraction on leaving. 
(b) Exit angle ~b as a function of incident angle O. Not drawn are the ray reflected 
on entering, nor the transmitted ray associated with internal reflection, nor the 
reflected ray on leaving. 

where the index of refraction n ,  was known to Snel (one 'T') by 1621. Since 
n > 1, we have O' < 0. The larger the n, the larger the magnitude of the angular 
deviation 0 - 0 ' .  For small angles, 0 - n O ' ,  as known by Ptolemy. 

(a) 

Theory of the Rainbow Angle 

From numerical ray tracing using Snell's law, and from experiments, Descartes 
(1637) studied the relationship between 0 and ~b in Figure 16.9(a). These results 
can be summarized by Figure 16.9(b). This is calculated on the basis of a ray 
subject to refraction on entering, an internal reflection, and a refraction on leav- 
ing, as in Figure 16.9(a). (Not drawn are the ray reflected on entering, nor the 
transmitted ray associated with the internal reflection, nor the reflected ray on 
leaving.) Figure 16.10 presents a detailed version of Figure 16.9(a), with light 
rays incident from the left, directed along the x-axis. 

bb. O ~ J  
\ 

. . . . . .  \ 

a " =  a" + a  = zc + 20 - 4 0 "  

= z c - a " =  40" - 20 

Figure 16.10 Details of reflection and refraction for Figure 16.9. 
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In Figure 16.10, a ray is incident on the raindrop at an angle 0 relative to the 
normal, and refracts at an angle 0'. The refracted ray deflects from a straight path 
along the x-axis by a clockwise angle 

= 0 - 0 ' .  (16.4a) 

The refracted ray travels along a straight path within the raindrop until it is 
internally reflected. The redirection on reflection can be described as an addi- 
tional clockwise rotation by Jr - 20'. Thus the internally reflected ray makes a 
clockwise angle relative to the x-axis of 

oe' = oe + zr - 2 0 '  = Jr + 0 - 30 ' .  (16.4b) 

This internally reflected ray then travels in a straight line until it hits the internal 
surface of the raindrop at an angle O' relative to the normal. There it refracts 
to an angle 0 relative to the normal. This corresponds to a net deflection by an 
additional angle ~ - 0  - O '  clockwise relative to the x-axis. The net effect is a 
clockwise angle of rotation by 

oe" = oe' + ol = zr + 20 - 4 0 '  ( ] 6 . 4 c )  

relative to the x-axis. Viewed by an observer relative to the rainbow, this corre- 
sponds to a clockwise angle relative to the x-axis of 

= Jr - o ~ "  = 4 0 ' -  20.  (16.5) 

The ~b versus 0 curve of Figure 16.9(b) is computed for n = 4/3, as appropriate 
for water. The maximum is near 42 ~ . No rays are deflected by more than 42 ~ , 
corresponding to the dark region observed outside a rainbow. Thus the primary 
rainbow is caused by a bunching up of rays at the maximum angle near 42 ~ When 
raindrops are present, a bow can be seen in the part of the sky that corresponds 
to this angle. See Plate 2 for a primary and a secondary rainbow. 

Ifwe use (16.5) for ~b and (16.3) relating O' to O, then setting d~/dO = 0 gives 
that ~b has a maximum for 

~ 4  - n 2 (rainbow angle) sin 0 - 3 " 

For n =  4/3 this yields sinO =0 .861 ,  so 0 = 59.4 ~ and then (16.1) gives 
sin O' = 0.645, so O' = 40.2 ~ Finally, (16.5) gives ~b = 42.0 ~ in agreement with 
the measured result and with the graph of Figure 16.9(b). 

Reflection, Refraction, and the Principle of Least Time 

Descartes gave a "derivation" of Snell's law. Although elsewhere Descartes 
argued that light propagated instantaneously, his mechanically based deriva- 
tion assumed that light has a finite velocity, whose component parallel to the 
surface is conserved on refraction. This reasoning yielded v~ sin01 = v2 sin02, 
rather than what we now know to be the correct result, given by (15.61): 
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Figure 16.11 Reflection and refraction of light from a source at A, incident on the 
surface S. (a) Reflection to point B, where point B' is the image of B. The path of 
least time is APoB'. (b) Refraction to point B. The general path APB is shown. 

sin 01/vl = sin 02/v2. To obtain agreement with experiment, Descartes had to 
assume that light travels more quickly in water and glass than in air. 

Unsatisfied with Descartes's derivation, Fermat undertook to determine for 
a particle of light the straight-line path from A to B that takes the least time. In 
1657, he showed that this ray satisfies a law of refraction equivalent to (15.61). 
(His derivation used a method he had developed earlier to find the tangents~ 
i.e., the slopesmto curves. Newton generalized Fermat's method to yield what 
we now know as the differential calculus.) Since the velocity of light was not 
measured accurately until Fizeau (1850), it was not possible at that time to 
verify Fermat's form of the law of refraction. Following Fermat, we now apply 
the principle of least time to study reflection and refraction. 

The law of reflection. Consider a point A in medium 1 where a ray of light 
is emitted, and a point B where light reflected from surface S is observed. See 
Figure 16.1 1 (a). Draw the image point B' associated with B, and a straight line 
from A to B', intersecting S at P0. Consider light that travels straight from A to 
a general point P on S, and then straight to B. The total distance that it travels is 
given by AP + PB, which equals AP + PB'. Figure 16.11 (a) shows that the point 
P giving the shortest total distance is P0. This corresponds to a straight line from 
A to B', and an angle of reflection 0~ that equals the angle of incidence 01" 

0~ - -  O1 (law of reflection) { 1 ! ! )  

Since the velocity is uniform in medium 1, this path is both the shortest path 
and the path of least time. 

The law of refraction. Let point A be in medium 1, with light velocity vl,  
and let point B be in medium 2, with light velocity v2. We first consider a ray 
of light that goes straight from A in medium 1 to a point P on the surface S, 
and then straight in medium 2 from S to the point B. We then find the point for 
which the travel time T is least. See Figure 16.11 (b). 

Let the nearest distance from A to the surface S be al, the nearest distance 
from B to S be a2, and let the distance along the surface from A to P be x. If the 
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total distance along x from A to B is l, then the distance along x from P to 
B is l -  x. Thus the total time T to go from A to B is the sum of the time 

AP/vl - v/a2 + x2 /v l  to go from A to P and the time BP/v2 - v/a2 + (l - x)2/v2 
i 

to go from P to B. Thus 

~ _  v/~2+~= 
721 

/ _ 
~/a~ 2r- ( l -  x)  2 

+ . (16.7a) 
V2 

The position x where T is minimized is the solution of d T / d x  - O. Noting 
that 

d ~/a~ + x2= x and d v/a2 ? + ( l -  x ) 2 = -  ( l -  x) 
dx , / 4  + x= m , / 4  + c~-x~= 

(16.7a) yields 

d T  1 x 1 l - x  1 1 
= = ~ sin O1 sin 02, 

dx  Vl v/a21 + x 2 v2 ~/a~ + (l - x) 2 vl v2 
(16.7b) 

where Figure 16.11 (b) has been used to obtain the sines. Setting (16.7b) to zero, 
the minimum time occurs for 

sin 01 sin 02 
= ~ .  (16.8) 

Vl V2 

This is precisely the same as (15.61) and leads to the law of refraction in the 
form 

i iiiiiiiiiiiiiii iii i iii l iiiii!i i iiiiiiiiii! ~ i i !~  il i i i!iiiiiii i i!ii i! 

Like Descartes's explanation of the rainbow, Fermat's derivation of the laws of 
reflection and refraction was a great triumph of the particle viewpoint of light. 

16~4 Late 17th-Century Discoveries about Light 

Considerable experimental progress was made in the second half of the 17th 
century, much of it incomprehensible from the particle viewpoint. 

1. Grimaldi (1616-1673) discovered and named diffraction (1665). Using 
a small hole through which sunlight passed, he noticed that (1) the shadow of 
objects on a nearby screen is slightly larger than would be expected geometrically; 
(2) on moving farther out ofthe geometrical shadow, there is a sequence of bright 
and dark fringes, getting narrower the farther they are from the shadow (within 
each bright fringe the center is white, the side nearest the shadow is bluish, 
and the side farthest from the shadow is reddish); (3) the center of the first 
bright fringe is noticeably brighter than the uniform illumination far outside the 
shadow. See Figure 16.12. 
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Figure 16.12 (a) Diffraction of a distant light around an edge, for an observer not 
so close that the geometrical shadow is completely obscured. Although first 
studied by Grimaldi, this is called Fresnel diffraction, after the man who first 
explained the phenomenon. (b) Intensity is plotted along the vertical and position 
along the horizontal. 

2. Hooke (1635-1703), using glass plates pressed together, in his Micrographia 
(1665) gave the first published studies of the colors seen in light reflected off 
thin films and plates. He noticed that the colors were related to the thickness 
d of the gap between the plates; the harder together he pressed the plates, 
the farther apart the colored fringes. He suggested that perhaps reflection off 
the front and back surfaces could explain the effect, but he didn't develop the 
idea quantitatively. See Figure 16.13. His geometries included plates of variable 
thickness, and lenses placed one upon another. However, he could not measure 

Figure 16.13 Interference patterns on reflection of monochromatic light from two 
lenses in near contact, first observed by Hooke. (a) Unpolished surfaces. (b) Surfaces 
polished flat to within a fraction of a wavelength, and slightly tilled relative to one 
another. 
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Figure 16.14 White light incident upon a prism, which separates the light into its pure 
colors (defined by their wavelengths), first studied by Newton. 

the thickness of the films or plates that corresponded to each colored fringe, 
leaving that as a challenge for future workers. 

3. Newton (1643-1727) performed experiments on the prism (1666), es- 
tablishing that light was composed of a continuum of many pure colors, and 
that once a beam of pure color was isolated from other colors, it retained its 
integrity. See Figure 16.14 and Plate 1. He realized that, in many cases, light that 
appeared to be of a certain color (e.g., orange) would, when analyzed with the 
prism, separate into various pure colors (e.g., red and yellow). With this idea, 
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Figure 16.15 Unpolarized light refracted by a calcite crystal, 
which splits it into two beams, one satisfying Snell's law (the 
ordinary, or O, beam), and one not satisfying Snell's law (the 
extraordinary, or E, beam). Also given are the electric field 
polarizations of these beams (the open circles denote field 
normal to the page). 

Newton explained the color separation of the rainbow as the consequence of 
the different colors having different indices of refraction in water. Newton also 
extended Hooke's work on the colors of thin films and plates, using a lens geom- 
etry that permitted him to measure the film thickness d. (We shall discuss this 
in more detail.) 

4. Bartholinus (1625-1698) discovered double refraction (1669), which oc- 
curs only for crystals with a preferred axis (such as what was known to him as 
Iceland spar, now known as calcite, or CaCO3). See Figure 16.15. When there is 
only one beam incident on the crystal--even if it is normally incident~typically 
there are two refracted beams. One of these (the ordinary, or O, beam) satisfies 
Snell's law; the other (the extraordinary, or E, beam) does not. (Figure 16.15 
also indicates the directions of polarization, as now understood; at the time, sci- 
entists were not aware that the two exiting beams had different properties.) For 
one particular direction of propagation in the crystal (the optic axis), the O and 
E beams coincide. 

5. Roemer (1675) showed that the times of eclipses of Jupiter's first moon, 
Io, depend on the motion of Jupiter relative to the earth (this is a form of the 
Doppler effect, where the frequency is determined by the period of Io's motion 
around Jupiter). See Figure 16.16, where in moving from A to B, Io's period 
decreases, and in moving from C to D, Io's period increases. This indicated that 
the speed of light is finite. From Roemer's data and the then best known value 
for the diameter of the earth's orbit about the sun (about two-thirds of its correct 
value), Huygens later estimated the speed of light c to be about 2 x 108 m/s. 

Figure 16.16 Schematic of the motion of the 
earth around the sun, and the motion of Jupiter's 
moon Io around Jupiter, with period Tio. When 
the earth moves toward (from) Jupiter, the period 
decreases (increases), in proportion to the ratio of 
the earth's velocity to the velocity of light. 
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6. One more figure of this time period must be mentioned: Kepler, more 
well-known for establishing, by 1618, the three laws of planetary motion. His 
1604 book Astronomia Pars Optica investigated image formation by the pinhole 
camera, explained vision as due to imaging by the lens of the eye on the retina, 
correctly described the causes of long-sightedness and short-sightedness, and 
explained how both eyes are used for depth perception. In 1608 Lippershey 
made a telescope with a converging objective lens and a diverging eye lens, 
which Galileo almost immediately improved upon and applied to terrestrial and 
astronomical studies, in 1610 discovering four satellites orbiting about Jupiter, 
and setting the stage for the Copernican revolution in our views of the universe. 
Kepler's 1611 book Dioptrice described total internal reflection for large angles, 
and founded modern geometrical optics using Ptolemy's small angle result 0 = 
n 0'. It described real, virtual, upright and inverted images and magnification. It 
explained the principles of Lippershey's telescope, and also proposed what has 
become the modern telescope, with a converging objective and a converging eye 
lens. To Kepler, who had spent years trying to explain planetary orbits as circles 
upon circles, and then as ellipses, the straight lines of geometrical optics must 
have been a piece of cake. 

Hence, by 1675, nearly all the basic phenomena of physical optics had been 
discovered. What lacked was a unifying explanation. 

Late 17th-Century Views of Light 

Robert Hooke and Wave Pulses 

Hooke argued that light is associated with rapid, small-amplitude vibrations of an 
unspecified medium called the "ether." He employed an analogy to sound in air, 
where the medium for the vibrations is air. He also developed a theory of light 
propagation where the source produces pulses at regular time intervals (rather 
than the more modern view where the source produces a continuous oscillation 

vefront 

Rays 

Figure 16.17 Rays and wavefront for a spherical 
source. 

whose period equals that regu- 
lar time interval). Such pulses 
propagate outward, by analogy 
to water waves, "like Rays from 
the center of a Sphere...  all the 
parts of these spheres cut the 
Rays at right angles." He studied 
reflection and refraction using a 
ray-and-wavefront construction. 
(A wavefront or- - to  use Hooke's 
word, a pulse--gives the simul- 
taneous position of many outgo- 
ing particles associated with dif- 
ferent rays emitted at the same 
time. See Figure 16.17.) Accord- 
ing to Hooke, the origin of colors 
lay in the pulse shape, and white 
light was a color unto itself. This 

view was not consistent with Newton's work with the prism, which showed that 
there is more than one way to obtain a given color. 
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With two assumpt ions~(1)  when a wavefront impinges on an interface, it 
initiates a new wavefront in the new medium; and (2) the new wavefront and 
the incident wavefront have the same velocities parallel to the in ter face~Hooke 
derived the same erroneous law of refraction as Descartes: Vl sin 01 - v2 sin 02. 

1 6 . 5 . 2  Christian Huygens and Huygens's Principle for 
the Addition of Wavelets 

Huygens, in his Treatise on Light (1678), developed a wave theory of light. "If, in- 
deed, one looks for some other mode of accounting for the [uniform speed] 
of light, he will have difficulty in finding one better adapted than elasticity 
[of the ether]." Thinking of light waves in the sense of pulses in time (just as did 
Hooke), he developed what we now know as Huygens's principle: Ifa wavefront is 
known at any instant of time, then at any future time the new wavefront is determined 
by the envelope of secondary wavelets that are produced at each point of the initial 
wavefront. (The secondary wavelets are taken to travel at the same speed as the 
primary wave.) 

Figure 16.18(a) depicts the propagation of light emitted as spherical waves 
at time t = 0 from position A. The dashed lines represent rays propagating ra- 
dially outward from A, yielding the outgoing spherical primary wavefronts HH'  
at time t, and JJ' at time 2t. (The value of t is immaterial; Huygens did not 
think of light as periodic either in space or in time.) At points C, D, and E on 
HH' at time t, secondary wavelets are generated that travel at the same speed 
as the primary wave, yielding secondary wavelets cc'c", dd'd", and ee'e" on JJ' 
at time 2t. The envelope of these secondary wavelets is a sphere that coincides 
with the primary wavefront. Similarly, Figure 16.18(b) depicts a primary wave- 
front that is a downward-directed plane at t = 0. It generates secondary wavelets 
whose envelope at time t coincides with the primary wavefront at time t. Hence, 
Huygens's construction permits spherical, planar, and even cylindrical wavefronts 
to maintain their shape. Considering only an envelope from the forward-moving 
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Figure 16.18 Huygens's principle. (a) The point source at A produces a wavefront 
HH'. C, D, and E on HH' are sources of secondary wavelets cc'c", dd'd", ee'e", 
whose envelope forms the new spherical wavefront JJ'. (b) A planar wavefront AA' 
has sources a l , . . . ,  producing the secondary wavelets bl . . . . . .  whose envelope forms 
the new planar wavefront BB'. 
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wavelets, Huygens's construction implicitly includes information about both the 
wave position and the wave velocity. 

Because Huygens's principle was a wave theory, by analogy to sound he could 
immediately justify how light waves can pass through one another independently 
(inexplicable in a particle theory, except on assuming extraordinarily low particle 
densities). He could explain shadows, qualitatively, by arguing that within the 
shadow the secondary wavelets "do not combine at the same instant [i.e., in 
phase] to produce one single wave." 

Huygens's Theory of Reflection and Refraction 

Most important, for a planar wavefront incident on a planar interface between 
two transparent media, Huygens developed Hooke's arguments to obtain the 
laws of reflection and refraction. Like Fermat, Huygens took the velocity of 
light in glass to be less than in air, rather than greater than in air, as erroneously 
assumed by Hooke and Newton. 

Consider Figure 16.19. This depicts two media with different indices of 
refraction (in fact, with nl > n2, so 01 < 02, as occurs when light is incident from 
water to air). Incident rays in medium 1 yield both reflected rays in medium 1 
and refracted rays in medium 2. The incident rays make an angle 01 to the 
normal N, so their wavefronts (e.g., the dashed line AA') make an angle 01 to the 
interface SS. At t = 0, the wavefront AA' is planar, with its edge at A just making 
contact with the interface. Spherical wavelets, depicted at time t, are generated 
at t - 0  in both media. Also at time t a second incident ray hits the interface 
at B, which begins to initiate another secondary wavelet. To find the time t 
envelope of wavelets in each medium, draw the common tangents to all the time 
t wavelets. Figure 16.19 shows only the infinitesimal radius wavelet (i.e., a point) 

Incident rays 

\ /  N ~ \  Reflected rays , \ ~ . .  . .  Incident 
Reflected ~ " .1~ ,~ ] ,~. ) ( "  ~ .. " wavefront at t= 0 
wavefront ~ V ' ' /  at t " ~ /  ~ ? / - "  

[ V-" o,/o9 "V/' 

t 

" ~-- Refracted rays~N Refracted----- " f 

wavefront at t 

Figure 16.19 Application of Huygens's principle to reflection and 
refraction. Incident rays from 1 intersect surface S at A and B, 
producing secondary wavelets in both 1 and 2. The secondary 
wavelets originating at A are shown; at time t the waveffont has just 
reached B, so the secondary wavelets originating at B have zero radius. 
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16.5.4 

at B, and the wavelet produced at A. In medium 1, the tangent to the wavelet 
produced at A is at B'. In medium 2, the tangent to the wavelet produced at A 
is at B". Let us see how this leads to the laws of reflection and refraction. 

Reflection. In Figure 16.19, consider the right triangles AA'B and BB'A, with 
common side AB normal to their common angle of 90 ~ Because sides AB' and 
BA' correspond to the same time interval, AB'=  BA'. Hence AA'B and BB'A are 
similar triangles. Therefore the angle 0~ made by the outgoing wavefront to the 
interface equals the angle 01 made by the incoming wavefront to the interface, or 

0{ --  01. (16 .10 )  

Because the angle between the normal and a ray equals the angle between the 
interface and a wavefront, we have thus established the taw of reflection: the 
angle of reflection equals the angle of incidence. This has the same form found by 
Fermat, derived earlier as (16.6). 

Refraction. In Figure 16.19, consider the right triangles BB'A and BB"A. These 
satisfy the relationships 

AB" - AB sin 02 and AB' = AB sin 01. (16.11 a) 

Taking the ratios of the left- and right-hand sides of these equations then yields 

AB' sin 01 
= . (16.11b) 

AB" sin 02 

The distances AB' and AB" are proportional to the velocities vl and v2, so 

AB' vl 
~ -  ~ o  

AB" v2 

Equating the right-hand sides of (16.11 b) and (16.11 c) yields 

sin 01 Vl 
,, , ! 

sin 0z v2 

o r  

(16.1 lc) 

(16.12) 

nl sin 01 = n2 sin 02, 
r 

nl,2 = �9 (16.13) 
Vl,2 

This is the same form found by Fermat, derived earlier as (16.9). Hence, both 
the particle and the wave viewpoints yield the laws of reflection and refraction. 

Isaac Newton's Experiments and Views of Light 

Newton began his researches on light in the mid-1660s and published papers 
on this work in the 1670s. However, he did not publish his Opticks until 1704, 
after the deaths of his rivals Hooke and Huygens. Some historians attribute 
this to his desire to avoid disagreements with these scientists, neither of whom 
initially accepted that Newton's prism experiments established that sunlight is 
a superposition of many pure colors. 

Newton rejected the view that light is a wave because he could not see 
how it could lead to nearly straight-line propagation with pronounced shadows. 
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To avoid having his comprehensive work subject to misinterpretation, Newton carefully 
tried to distinguish experimental facts from theoretical hypotheses. Book l presents his 
experiments on the color separation of sunlight by a prism, and his experimentum crucis 
(crucial experiment) showing that these colors, once separated by a prism because of 
their (slightly) different indices of refraction, retain their integrity and their index of 
refraction afterward. He also showed that a beam of white light whose colors have 
been separated by a prism can be recombined by passing the separated beam through 
a second prism to produce another beam of white light, thus establishing that white 
light is composite. Book II extends Hooke's work on the colors of thin plates and thin 
films (e.g., oil slicks and soap bubbles). By studying the positions of the colors associated 
with a convex lens placed on flat glass (Newton's rings), Newton found that maxima 
occur in reflection when a certain condition held. Had he written the equation for the 
case of normal reflection, it would have read 

mI 
d -- (fits of reflection) 

2n 

Here d is the thickness of the film, n is the index of refraction, m is an odd integer; 
the length /, which is specific to a given color, is what in 1704 Newton called the 
"interval of the fits" but in earlier work of 1675 he called "bigness." Book III presents 
his experiments and ideas on diffraction, which Newton called "inflection" because he 
thought of it as a disturbance in the paths of particles of light that pass by an edge, 
caused by forces associated with the edge. 

Nevertheless, at least initially, his physical picture of light did not involve light 
particles alone. In the 1670s he wrote: "the rays of light... . excite vibrations in the 
ether; . . ,  with various colours, according to their bigness and mixture; the biggest 
with the strongest colors, reds and yellows; the least with the weakest, blues 
and violets.., much as nature makes use of several bignesses to generate sounds 
of divers tones." Thus, to Newton, the vibrations of the "ether" had certain wave pro- 
perties, even if the light rays themselves did not. Newton indicated the "bigness" of 
light: "it is to be supposed that the ether is a vibrating medium like air, only the 
vibrations are far more swift and minute; those of air, made by a man's ordinary 
voice, succeeding one another at more than half a foot, or a foot distance; but of 
ether at a less distance than the hundred thousandth part of an inch." Because 
Newton could not draw on the word wavelength, his verbal definition of "interval 
of fits" to the modern reader could correspond to either a wavelength or half a 
wavelength. However, Newton states that yellow-orange has an interval of fits 
of 1/89,000 of an inch, or 285 nm, which is half of yellow-orange's 570 nm 
wavelength. 

Newton studied sound and obtained a value for its velocity in air that was about 25% 
below the measured value. He also studied water waves with well-defined wavelengths, 
presenting an argument equivalent to )~ f = v [but more like (~)~)(2 f ) =  v]. Had he 

1 of light, and his considered light to be a wave, then from his estimate of the bigness ~)~ 
own estimate of its speed v (700,000 times the speed of sound, or about 2.4 x 108 m/s), 
Newton could have estimated the frequency f of light to be on the order of 1015 Hz. That 
would have been consistent with the view of light as a rapid, small-amplitude oscillation. 
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16.6 Thomas Young--Interference 

Newton's reputation continued to grow following his death, in large part be- 
cause of the success of his Principia, relating force to motion, in stimulating 
quantitative scientific development. But to nontechnical readers like Benjamin 
Franklin, Newton's Opticks was the more accessible. Whoever was to carry 
optics forward was going to need the confidence to break with Newton's op- 
position to light as a wave. Around 1800, Thomas Young (1773-1829), edu- 
cated broadly but by profession a physician specializing in the eye, entered the 
picture. 

Among other things, the polymath Young (known to his contemporaries as "The Phe- 
nomenon") explained visual accommodation (muscles attached to the lens change its 
shape, thus enabling the eye to focus at different distances); proposed the three-color 
theory of color vision (the first theory to propose that our perception of colors occurs 
within the eye, rather than being an intrinsic property of light); and made the first study 
of astigmatism (eyes that when viewed head-on have an elliptical shape also have two 
focal points, one for each axis of the ellipse). He also introduced the term energy (in 
the context of kinetic energy), was responsible for what is now known in elasticity as 
Young's modulus, and analyzed the effect of surface tension on the wetting angle of 
fluids. He knew over ten languages and made major contributions to deciphering the 
two unknown Egyptian languages accompanying the Greek on the then recently discov- 
ered Rosetta stone. Nevertheless, in his own judgment, Young's most important work 
was in establishing the wave nature of light. Young's works on light as a wave included 
two enduring demonstrations: (1) the previously discussed ripple tank, for demonstrat- 
ing the interference of water waves; and (2) the two-slit experiment (to be discussed 
shortly), for demonstrating the interference of light waves. His work was not immedi- 
ately recognized, ultimately due to his "unduly concise and obscure" presentation of 
mathematical detail. 

Light  as a Wave 

In 1800, to argue in support of light as a wave, Young quoted Newton's analogy 
between the tones of sound and their wavelengths, and between the colors of 
light and their wavelengths. To argue that waves can be localized in direction 
(so as to produce shadows) Young countered Newton's view that sound waves 
"diverge equally in all directions" by noting that (1) the sound of cannons is much 
larger in the forward than the backward direction; and (2) "speaking trumpets" 
(megaphones) by design produce sound that is localized in direction. Further, 
to argue against "the Newtonian system" of light as an emitted particle, Young 
noted that (1) as observed by Huygens, it does not explain why the velocity 
of light is independent of the intensity of its source (the harder a ball~a type 
of particle~is thrown, the faster it goes); and (2) both partial reflection and 
refraction occur. Both of these phenomena are easily explained by the analogous 
behavior of sound waves. 

In Theory of Light and Colours (1801), Young stated the principle of inter- 
ference, quoted at the chapter heading: When two Undulations [waves], from 
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16~6~2 

Different Origins, coincide either perfectly or very nearly in direction, their joint effort 
is a Combination of the Motions belonging to each. 

The implications of this principle were worked out previously, in Section 
16.2. Figure 16.2 illustrates the addition of two waves of the same amplitude 
and wavelength, when completely in phase and when completely out of phase. 
These cases correspond to (16.1) and (16.2). 

Coherence 

Young applied the principle of interference to two light waves only when they 
had the same wavelength and only when they had the same source, so they were 
in phase relative to one another over a time long compared to the resolution time 
of the eye. (This time is about 1/30 of a second, a fact used when moving pic- 
tures fool the eye into thinking that a rapid succession of individual photographs 
is a continuum of images.) Such "in-phase-ness" is known as coherence. A typical 
light source has a coherence time T~ of about 10 -9 s, corresponding to about 106 
oscillations of the light, with characteristic frequency f ~ 0.5 • 10 is Hz. Since 
light travels at 3 • 108 m/s, this r~ corresponds to what is called a longitudinal 
coherence length l~-  cT~ of about 0.15 m. A "photograph" of such a wave would 
show that, starting from a given wave peak, within the longitudinal coherence 
length the other wave peaks would be approximately an integral number of 
wavelengths from the given wave peak, but 10 ~ peaks away there would be sig- 
nificant dephasing. A light wave also has a transverse extent given by its transverse 
coherence length. Both types of coherence provide limitations on interference phe- 
nomena. Typical commercial lasers have r~'s on the order of 10 -8 s. Lasers with 
very well-defined frequencies can in principle have r~ on the order of 102 s, but 
mechanical stability of the laser cavity reduces this to on the order of 10 -s s. By 
comparison, a bell with f -  500 Hz might have T~ on the order of 2 s, corre- 
sponding to about 1000 oscillations, or a Q~see  Section 14.3~of  about 1000. 
Figure 16.20 gives schematics of wavefronts with good transverse and longitudi- 
nal coherence, with good longitudinal coherence only, and with good transverse 
coherence only. 

m ~  

I I 

(a) (b) (c) 

Figure 16.20 Examples of wavefronts with varying degrees of coherence: (a) good 
longitudinal and good transverse coherence, (b) good longitudinal coherence but 
weak transverse coherence, (c) good transverse coherence but weak longitudinal 
coherence. Dashed lines in (b) and (c) indicate, for comparison, good longitudinal 
and good transverse coherence. An even better representation would vary the 
thickness of the dark lines at the wave peak to indicate variations in amplitude. 
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16.6.3 Colors of Striated Surfaces 

Young's first detailed application of the principle of interference was to the 
colors somet imes seen when  light from a small distant light source is reflected off 

82" I.. ~ Sl'br 

- P2/? "d-. / 
"-/ .. 12 

a = (n/4)-0 el 

Ray 
(zl/4) / 

$2 

Figure 16.21 Normal intersection with the page 
at P1 and P2 of a pair of lines scratched on 
Young's micrometer. The incident wavefront 
$1-$2 scatters to the wavefront S'I-S ~. The 
point P is for purposes of comparison. In the 
experiment, 81-S2 and S' 1-S~ were fixed, and P2 
was rotated about P1. 

a surface inscribed with  two 
nearby narrow, parallel grooves. 
He exper imen ted  with a mi- 
c rometer  for which each in- 
scribed line was actually a pair of 
lines separated by 0.0001 inch, 
so d = 2.54 x 10 -4 cm in Figure 
16.21. (The pair-to-pair separa- 
t ion of 0.002 inch, which Young 
noted, was not  relevant to the  
observed effects.) For sunlight 
at glancing incidence (~ = 0, or 
P1-P2 along the x-axis in Figure 
16.21), he saw only bright  red. 
Wi th  ~ = Jr/4 - 0, this corre- 
sponded to 0 = ~r/4. O n  rota- 
tion of the mic romete r  by a, 

thus decreasing O, he also observed bright  red for angles 0 of 32 ~ 20.75 ~ and 
10.25 ~ . 

~ Young's micrometer 

(a) For Young's micrometer experiment, relate the difference in path length 
r2 - rl to the line separation d and the angle 0. (b) From the data, determine 
the wavelength ;v. (To Young, the "length of an Undulation.") 

Solution: (a) Consider a general rotation angle a, with points P1 and P2 separated 
by d. By Figure 16.21, the difference in path length r2 - rl is given by 

) r2 -- rl = P2 P - P1P = d(cos a - sin a) = d sin ~ cos a - cos ~- sin cz , 

where sin{ = cos~ - ~ has been employed. With s in (A-  B ) -  sin Acos B -  

cos Asin B and 0 = zr/4 - ~, this becomes 

r2 rl = d~/2sin ( 4 )  - - a = , /2d sin O. 

(This gives r2 - rl = d for 0 - rr/4, as expected.) (b) For constructive interfer- 
ence, using this r2 - rl in (16.1) yields 

~/2d sin 0 = m)v. 

Taking d - 2.54 x 10 -4 cm, and m = 1, 2, 3, 4 to correspond to 10.25 ~ 20.75 ~ 
32 ~ and 45 ~ this gives )v = 639 nm, which indeed lies in the red. (Character- 
istically, Young merely stated without proof that the extra path difference was 
proportional to d sin 0.) Note that shorter wavelengths )~ (e.g., toward the blue) 
give interference at smaller angles 0. 
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Colors of  Thin Films and Thin Plates 

Consider light of wavelength s at near normal incidence on a plate of thickness d 
surrounded by air. In Figure 16.22, two reflected rays are represented, one from 

the front surface and the other from the back 
surface. Our goal is to understand the colors 
seen in reflection. As recognized by Newton, to 
the extent that light is not absorbed within the 
film, maxima in reflection correspond to min- 
ima in transmission, and vice versa. 

In analyzing this situation, Young first noted 
that, for motion in one dimension, a light ob- 
ject colliding with a massive object will con- 
tinue forward in the same direction, as in Figure 
16.23(a), whereas a massive object colliding 
with a light object will bounce back (i.e., re- 

Figure 16.22 Paths of two rays  verse direction), as in Figure 16.23(b). If the 
reflected to the eye at near velocity is represented as a positive amplitude 
normal incidence, times a sine or cosine, this reversal in direction 

in the first case may be interpreted as a phase 
shift of 180 ~ Young then argued (correctly) that a similar phase shift occurs on 
reflection when light is incident on a more optically dense material (higher index 
of refraction). Thus, in Figure 16.22, of the two reflected rays, ray 1 involves a 
180 + phase shift and ray 2 does not. This phase shift corresponds to half a wave- 
length s in the medium. With n the index of refraction, (15.59) gives s - s 
so s  s  

Because of this extra phase shift, at near normal incidence the condition that 
the two reflected waves must yield constructive interference is that the extra 
path length r2 - r ~  - 2d must correspond to a half-integral number m + �89 of 
wavelengths A ' =  A/n. Thus, for constructive interference on reflection, 

Figure 16.23 (a) Scattering of a light object off a heavy object. (b) Scattering of a 
heavy object off a light object. 
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Similarly, the condition for destructive interference is 

!iiill !!!!,iiiiiiii~iiiii~ii! ii~iiiii!!~i! ~!i~,~!!i(i!~ ill ~ i i!~!i!!ii~i~iii!i ~ (~ii~ii!~i~i~ii!~(i~?(ii~iiii,. : ! i~ ~ ) ~  ~ ~,~ .~ 7% ii~i( ~iil �84 i~!i!)~i~ �84 �84 ~~~%~~~iiiiii~!ii~iii~i~i!~i~i~ 

2d :m = O, 1 , , i i  ~ (des t ru~ve  ~ii~!i~~iii!~!ii:i!!i~;ii!i 

�9 i!ii!i!! 

These equations are consistent with Newton's studies, but go beyond them in 
that wavelength appears, rather than interval of fits. Even Young did not use the 
word wavelength, but clearly he had that idea in mind. 

Equations (16.14) and (16.15) apply to the colors of thin plates (Figure 
16.13), soap films, and oil slicks on water. It explains why, when such films 
are very thin, so d (()~, they reflect no light at all [m = 0 in (16.15)], but at 
intermediate thicknesses the color they reflect depends upon film thickness. In- 
terference of this sort explains the irridescent colors of the wing cases of beatles, 
of peacock and hummingbird feathers, and of mother-of-pearl. For a given order 
m, the larger the thickness d, the larger the wavelength ;~ needed for the char- 
acteristic interference maximum or minimum. Figure 16.24 illustrates a charac- 
teristic thin-film interference pattern when the thickness of the film varies, so 
the wavelength leading to enhanced reflection varies. Plate 3 shows the same 
figure in color. Plate 4 shows soap bubbles. Plate 5 shows peacock feathers. 
Enjoy. 

From his values of the wavelengths of the different colors of light, Young was 
able to determine the corresponding frequencies (on the order of 10 is Hz), via 
)~f = c (which did not appear in his paper), finding that "the absolute frequency 
expressed in numbers is too great to be distinctly conceived." 

Figure 16.24 Oil slick, illustrating the different colors that can be seen on reflection as 
the film thickness changes. 
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Young also noted that  if a material of intermediate index of refraction is placed 
between the air and the first medium, then both reflections involve phase shifts 
of 180 ~ and the conditions for constructive interference and destructive inter- 
ference switch. (Placing sassafras oil, with index of refraction 1.535, between 
flint glass and crown glass, with indices of refraction 1.66 and 1.52, Young later 
established that  such a phase shift does occur.) 

~ Soap film interference 

Consider a soap film (n = 1.33) of thickness 540 nm, supported on a circular 
hoop. (a) For white light (from 400 nm to 700 nm) at normal incidence, 
find the reflected colors that are intensified and those that are weakened by 
interference. (b) Repeat for transmission, assuming that the light is neither 
scattered nor absorbed in the film. (c) Repeat for reflection, if the soap film 
is floating on a surface of sassafras oil (n = 1.535). 

Solution: (a) For constructive interference (16.14) gives m+�89 
where in our case 2dn = 1436 nm. For )~ = 400 nm this gives m + �89 = 3.59, sug- 
gesting that m = 3 will give a solution for some value of X in the visible. Indeed, 
m = 3 corresponds to 410 nm (violet). Further, m = 2 corresponds to 574 nm 
(yellow). (Larger m's correspond to ~'s in the ultraviolet, and smaller m's to X's in 
the infrared.) For destructive interference, (16.15) gives m = 2dn/)~. For m = 3 
this gives ~. - 479 nm (blue-green). (Again, larger m's correspond to ~'s in the 
ultraviolet, and smaller m's lead to )~'s in the infrared.) Thus, in reflection the film 
will appear to be a mixture of violet and yellow, with blue-green absent. (b) In 
the absence of absorption and scattering in the film, the colors that are reflected 
strongly will be missing from the transmitted light (thus violet and yellow are 
absent from transmission), and the colors that are least reflected will be enhanced 
in transmission (thus the film will appear to be blue-green in transmission). (c) 
With sassafras oil in place, there is an extra 180 ~ phase shift, so 2d = m)~/n gives 
constructive interference, and 2d = (m + �89 gives destructive interference. In 
reflection, this will give an enhancement of blue-green and a weakening of vi- 
olet and yellow. Thin-film antireflection coatings, having an index of refraction 
intermediate between that of air and glass, use this effect. 

For thick films, the number of wavelengths giving constructive interference is 
large, and they are so close together in wavelength that, effectively, all wavelengths 
are observed. As a consequence, interference effects become less noticeable to the 
eye. 

~ Newton's rings: versus thickness radius 

Young analyzed Newton's original data for thin films and thin plates. Figure 
16.25(a) depicts a convex lens on a flat plate of glass. There are three reflec- 
tions: off the flat top surface of the lens (not drawn), off the round bottom 
surface of the lens, and off the flat plate of glass. Only the latter two have 
reflected beams close enough to exhibit interference. The effective film thick- 
ness d of the air layer varies with distance from the center of the lens so that 
the colors change as this distance changes. 

(a) For a given wavelength )~, find d as a function of the axial distance r 
from the center of the lens, of radius of curvature R. (b) Find the equations 
giving the positions of the maxima and minima. 
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Figure 16.25 Newton's rings. (a) Paths of two rays reflected to the eye at near 
normal incidence. (b) Details of geometry. Newton measured r and deduced d. For 
small d, d varies quadratically with r. 

Solut ion:  (a) Figure 16.25(b) illustrates the lens geometry. At a distance r from 
the axis of a lens of radius of curvature R, the effective thickness d is given by 

r2)�89 
d - R - v / R  2 - r  2 - R - R  1 - ~ - ~  . 

For r / R  << 1, (1 - rE~R2)�89 ,~ 1 - r E / 2 R  2, from (4.35) with x - - r 2 / R  z and ex- 
ponent �89 Then 

r2 ) r2 
d.~, R -  R 1 -  ~-~ = ~ .  

Newton used this result to deduce the (for him) immeasureably small distance 
d that corresponds to the measureably large r. (b) According to Young, 2d must 
be set to (m + �89 for maxima, and m)~ for minima. Note that m = 0 gives a 
minimum, corresponding to the dark spot at the center of Figure 16.26. 

Figure 16.26 For a given wavelength 
)~, intensity observed on reflection in 
Newton's rings geometry of Figure 
16.25, plotted as a function of 
position r. 
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~ Newton's rings 

Consider a Newton's ring apparatus with R = 2.5 cm that is illuminated 
with red light of )~ - 639 nm. (a) Locate the first two minima and the first 
maximum. (b) Repeat assuming that the gap between the lens and the plate is 
filled with sassafras oil, whose index of refraction (n = 1.535) is intermediate 
between that of the lens and the plate. 

Solution: (a) r = 0 corresponds to the central minimum on reflection. For the 
other minima, 2d = r2 /R = m)~ gives r = ~/mRX, so the next minimum occurs 
for m - 1 ,  or r~aX--V/(1)(01025)(639 x 10 -9) m =  1.264 x 10 -4 m. Similarly, 

for the maxima, r - v/(m + �89 For m = 0 this gives rg in - 0.894 x 10 -4 m. 

(b) Addition of sassafras oil, of index refraction n intermediate between that of 
the lens and the glass plate, interchanges the equations for minima and max- 
ima. It also shifts the positions because the wavelength becomes ;~' = ,~/n. Thus 
r = 0 corresponds to the central maximum. Using r = ~/mRX/n with m = 1 gives 
r - 1 . 0 2 0  x 10 -4 m for the second maximum. For the minima, r = 
/ - -  

�89 
, 

V/(m + with m - 0 gives the first minimum at o.721 • l o  -4 m, and with 

m = 1 gives the  second m i n i m u m  at 1.249 • 10 -4 m. 

16~6~5 Young's Two-Slit Experiment 

Like his ripple tank demonstrat ion,  the two-sli t  exper iment  appears only in 
Young's published lectures to the Royal Institution. It uses a single light source 
(to ensure temporal  coherence) and three screens. The first screen contains a 
single slit narrow enough to ensure that  it behaves like a line source; hence the 
wavefronts leaving the first screen are cylindrical in shape. The second contains 
two identical slits narrow enough to ensure tha t  they behave like line sources 
driven by the light passing through the first screen. The third is the observation 
screen. See Figure 16.27. As Young writes, "In order tha t  the effects of two por- 
tions of light may be thus combined,  it is necessary that  they be derived from 
the same origin, and that  they arrive at the same point  by different paths." W h e n  
light of only a single pure color is used, the result on the observation screen is a 

Screen with 
narrow slit 

L~ht source 

Screen with 
two narrow slits \ I 
of separation d ~ 1  01 r ri2 

m 

Observat ionj l  
s i n O = y / D  1 dsin0 D creen [ 
r = {D 2 + y2]T ~ _ 

Figure 16.27 Geometry of Young's interference experiment. The first 
narrow slit, on the left, assures that the light from the light source is 
coherent (loosely, in-phase) as seen by the second set of narrow slits. 

P 
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Figure 16.28 Interference pattern for Young's interference experiment of Figure 16.27. 

series of light and dark bands, or fringes. See Figure 16.28. (If the light consists 
of many colors, the pattern on the screen is a superposition of the patterns of 
each color, weighted in proportion to their individual intensities. 

These results can be explained in a manner similar to our earlier discussion 
of the constructive and destructive interference of water waves, summarized by 
(16.1) and (16.2). For the geometry of Figure 16.27, the slit separation is d and 
the distance between the slits and the observation screen is D. A distance y along 
the observation screen corresponds to the angle O, at a distance r - v/D 2 + y2 
from the midpoint between the slits. As in Example 16.2, 

r2 = v/D2 + (y + d/2) 2 - v/D 2 + y2 + y d  + d2 /4 ,  

but for D >> d, 

r2 .~ v / D  2 + y2 + y d  - v/r 2 + y d  - rv/1 + y d / r  2 .~ r + y d / 2 r .  

In that same limit, r~ .~ r - y d / 2 r .  Hence r2 - rl ~ y d / r  - d sin 0. Placing this 
into (16.1) and (16.2) gives 

dsinO = mX, m = O, 4-1, +2, . . .  

(two-slit constructive interference) (16.16) 

d s i n O =  m + ~  ~. m - 0 , + 1 , : t : 2 , . . .  

(two-slit destructive interference) (16.17) 

For a given index m and fixed d, larger )~ implies larger 0; for a given index m and 
fixed ;~, larger d implies smaller 0. The results of a two-slit interference experi- 
ment, as in Figure 16.28, analyzed with (16.16) and (16.17), can be used to deter- 
mine the wavelength of the incident light. Using these equations, Young found 
the wavelengths of the colors of the visible spectrum, in essential agreement 
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with modern results. Two-slit interference cannot be explained from a particle 
viewpoint. 

~ Two-slit interference 

Consider a double-slit interference experiment with a light source having 
s = 480 nm, a slit separation of 0.08 mm, and an observation screen 42 cm 
away. (a) Find the number of maxima with 0 _< 30 ~ (b) Find the angular posi- 
tion and the position on the screen of the third minimum. (c) Find the angular 
position and the position on the screen of the fourth noncentral maximum. 

Solution: (a) In (16.16), setting 0 = 3 0  ~ so sin0 = �89 yields m=d/2s 166.7. 
Hence there are 167 maxima out to 0 = 30 ~ from m = 0  to m = 166. (b) For 
m=2 ,  (16.17) yields sinO=5s so 0=0.015 rad=0.859 ~ Since 
y =  Dtan0, this gives y = 4 2  tan0.015 ~ 42(0.015)=0.63 cm. (c) For m=4 ,  
(16.17) yields sin0 = 4s = 0.024, so0 =0.024 rad= 1.375 ~ Since y =  Dtan0, 
this gives y =  42 tan 0.024 = 1.008 cm. 

Young and Diffraction 

Young also performed two important  diffraction experiments: (1) He showed 
that  the width of the diffraction pattern produced by fibers (e.g., from cloth) is 
inversely proportional to the fiber diameter. (2) He studied the diffraction pat- 
tern produced by an obstacle, a strip of paper 1/30 inch wide, analogous to Figure 
16.8(b). At large enough distances from the strip, in addition to Grimaldi 's dark 
fringes outside the geometrical shadow, Young observed bright fringes within 
the shadow, and a bright fringe at the center of the shadow. See Figure 16.29. 

Figure 16.29 Diffraction fringes observed behind an opaque strip of paper. 
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Moreover, when with a card he cut off the light to one side of the strip, 
the bright fringes within the shadow disappeared, but the dark fringes out- 
side the shadow remained, just as seen by Grimaldi. This effect of one edge 
on the pattern near the other edge was inexplicable from a particle emission 
viewpoint. 

16.7 Augustin Fresnel~Theory of Interference 
and Diffraction Intensity 

Fresnel's talents were evident at the age of nine; by systematic study of the best 
woods for popguns and archery bows, he made these toys so dangerous that they 
were banned by his friends' parents. As a civil engineer, beginning in 1814, Fres- 
nel took time from his duties to undertake experimental and theoretical research 
on diffraction. Unaware of Young's work, he reproduced Young's experiments 
on diffraction by an obstacle. His first attempt at theory, like a similar attempt of 
Young, considered only interference between light bending around the far edge 
of the fiber and light reflected off the near edge. To obtain quantitative agree- 
ment with the data, Fresnel had to add, in an ad hoc manner, a half-wavelength 
phase shift at the edge. Moreover, this approach failed completely within the 
geometrical shadow. Fresnel's paper was read by Arago, who informed Fres- 
nel of Young's prior work, but encouraged Fresnel to continue work on the 
problem. 

By blackening one side of a knife (used in place of a fiber), Fresnel estab- 
lished that reflections off the diffracting edge had no effect on the diffraction 
pattern; hence the approach he and Young had taken was incorrect. In 1816, 
Fresnel went far beyond Young. Examination of his data showed that the po- 
sition in space of each bright fringe, as the position of the observation screen 
was varied, traced out a hyperbola (as found by Young and Newton). Fresnel 
then showed that, in contradiction to the opinion expressed in Book III of 
Newton's Opticks, such a hyperbola could not be caused by particles of light 
being scattered by a short-range force associated with the edge of the diffracter. 
More important, using Huygens's principle and the principle of interference ap- 
plied to the entire wavefront surrounding the edge (i.e., an infinite number of sec- 
ondary wavelets), Fresnel showed that the wave theory could explain the observed 
hyperbola. 

In 1818, the French Academy held a competition on the nature of light. Poisson, a 
reviewer who also was a zealous supporter of the particle nature of light, noted that 
according to the wave theory all the Huygens's wavelets originating at the edge of 
an opaque disk should arrive at the center of the shadow with the same phase. He 
thus came to the "absurd" conclusion that a bright spot should be at the center. (A 
century-old observation of this spot had been forgotten, and the analogy to Young's 
bright fringe at the center of the shadow of an opaque strip was not made.) Arago 
promptly observed the effect. This convinced most of the remaining doubters of the 
wave nature of light, and helped win for Fresnel the prize. 
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Fresnel's approach permits quantitative calculations of both interference pat- 
terns and of diffraction patterns. Diffraction viewed by an observer near the 
diffracter, as studied by Grimaldi, Newton, Young, and Fresnel (and called near 
field, or Fresnel diffraction), requires a relatively complex theory. We will consider 
only the more easily analyzed case offarfield, or Fraunhofer diffraction, where the 
observer is relatively far from the diffracter. Fraunhofer diffraction is included 
as a limit of the more general and significantly more complex theory of Fresnel 
diffraction. 

I6,7~I Theory of Two-Slit Interference Pattern Intensity 

Consider light of frequency ~o = 2;r f, where )~f =c,  that passes through the 
two narrow, identical slits in Figure 16.27, separated by d, and proceeds to an 
observation screen at a distance D. Assume that on the observation screen the 
wave amplitudes (of the ether, according to Fresnel; however, we know them to 
be of the electric field) from each slit are approximately equal, so d << D. If the 
phase ofthe wave from the first slit is ~o(t - rl/c) = a)t - rl (a)/c) = o)t - 2rcrl/)~, 
then the phase ofthe other is o)(t - r 2 / c )  = o ) t  - 2rrr2/X, where rl and r2 are the 
distances between the observation point and the slits. By Huygens's principle, the 
amplitude at the observation screen is proportional to the sum of the amplitudes 
from each slit. Thus the amplitude is proportional to 

( r l )  ( r 2 )  [ r l + r 2 ] ( r 2 -  
coso) t - - -  +cosco t - - -  - -2coso)  t -  coso0 

c c 2c 2c 

r l ) ,  

(16.18) 

which follows from the trigonometric identity 

IA+ B] lAB 1 cos A + cos B - 2 cos 2 cos 2 " (16.19) 

This gives the expected amplitude doubling for B = A, and the expected zero 
amplitude for B = A + zr. 

Let each of these waves alone have a time-averaged intensity I0 proportional 
to the square of the amplitude. Then the combination, with amplitude propor- 
tional to (16.18), has instantaneous intensity 

[ r l+r2] [ ( r 2 - r l ) ]  (16.20) I( t)-8Iocos2a) t -  2c cos 2 a) 2c " 

This includes an extra factor of 2 that will be compensated by a factor of 1, on 
time-averaging the first cos 2 term in (16.20). Hence, denoting time averaging by 
an overbar, 

'--4Iocos2E (r22cr1)] (16.21) 
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Figure 16.30 Geometry for single-slit diffraction by a distant light source. On the right 
is a characteristic diffraction pattern observed on the screen. 

With r2 - rl ~ d sin ~) and 02 - 2zrc/)~, this becomes 

:r d sin ~) 1 i - 4 I0 cos 2 �9 (16.22) 

This has a pattern that oscillates from bright to dark as one moves across the 
observation screen, as observed in Figure 16.28. Moreover, averaged over the 
screen, the intensity is 2/0, double that for a single slit. Equation (16.22) repro- 
duces the pattern of maximum and minima described by (16.16) and (16.17). 

Basic Theory of Diffraction by a Slit 
(Fraunhofer Diffraction) 

Diffraction may be thought of as due to interference between an infinite number 
of waves or wavelets. 

For simplicity, consider diffraction by a narrow aperture (a slit), rather than 
diffraction by a narrow opaque body. Let light of wavelength )~ be normally 
incident on a single slit of width w, as in Figure 16.30. Let rl and r2 denote the 
distance from the edges to the observation point on the screen. At infinitesimally 
short wavelength ()~ ~ 0), the light travels in a straight line from the source, to 
the slit, to the observation screen. This yields a bright region corresponding to the 
slit, and a sharply defined geometrical shadow. At finite wavelength, the pattern 
expands and changes shape, due to diffraction, but  is still centered about the 
position of the pattern for X -~ O. 

By Huygens's principle, the total amplitude at the screen equals the integral 
of the amplitudes from all the wavelets produced in each part ("slitlet") of the 
slit. For simplicity, we take the source at infinity. Thus, the incident light has the 
same phase at all points of the slit. (Alternatively, there can be a lens at the slit, 
of focal length equal to the distance to the source, so that the source is effectively 
at infinity.) We also assume that the distance D from the slit to the observation 
screen is much larger than the slit width w: D ))  w. Without  doing any fancy 
mathematics, let's extract as much physics as possible. 

1. If the slit width w is small enough (actually, less than a wavelength )~), then 
nowhere on the observation screen S will there be any perfectly dark fringes; 
wavelets from different parts of the slit are too much in phase to cancel the 
wavelets from other parts. Indeed, a narrow enough slit appears to be a line 
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source, which illuminates uniformly in all directions, as in Figure 16.8(a). (Sim- 
ilarly, a narrow hole appears to be a point source.) 

2. As the slit width grows, becoming com- 
parable in extent to a wavelength, it becomes 
possible to find points on S where phase can- 
cellation occurs. Following Fresnel, for a wide 
enough slit (w > )~) let us locate where on the 
screen such cancellation occurs. These posi- 
tions correspond to dark fringes, or minima, in 
the diffraction pattern. 

For the diffracted beam making an angle 0 
to the forward direction, let the ends of the 
slit produce wavelets that  are out of phase by a 
full wavelength, or r2 - rl = )~; that  is, in Fig- 
ure 16.31 the distance from E to E' is ~. Then 

Figure 16.31 Illustration of how the slit can be decomposed into two equal half- 
secondary wavelets produce slits, where any part of the near half-slit is half a 
zero net amplitude at certain wavelength out of phase with the correspond- 
observation angles 0. In this ing part of the far half-slit. That is, on the obser- 
case, the sources from A to C vation screen the wavelets from C to E cancel 
produce secondary wavelets that those from A to C, so the sum is zero. (Equiv- 
completely cancel those from C alently, the area under a full period of a cosine 
t o  E .  

is zero.) 
More generally, there is a min imum of the total wave amplitude when 

/'2 - - / ' 1  - -  m)~, m = + l ,  + 2 , . . .  (diffraction minima) (16.23) 

For the geometry of Figure 16.31, r2 - rl ~ w sin O, so that  

........................................................................................................................................................................................................................... -  II-i ' ii i i  !i  iiiiiii!i ....................... ! '�84 '�84 '�84  i-i '�84 �84 ii �84 

3. Approximately midway between the positions of. the minima are the po- 
sitions of the secondary maxima. Caution: Since the central maximum, rather 
than a minimum, corresponds to m = O, there is no secondary maximum near 
r2 - rl = )~/2. Near the secondary maxima, the largest phase difference between 
secondary wavelets is an integral number  of half-wavelengths. For m = 1 this cor- 
responds to r2 - r~ = (3/2))~. Since 2/3 of the  slit corresponds to a net dephasing 
of a wavelength, whose amplitudes sum to zero, only 1/3 of the slit (correspond- 
ing to a net dephasing of a half-wavelength) has an amplitude that  sums to a 
nonzero value. The next maximum corresponds to 5/2 wavelengths. Here only 
1/5 of the slit has an amplitude that  sums to a nonzero value. Hence the sec- 
ondary maxima become weaker on moving away from the central maximum. 

~ Diffraction minima 

Yellow light ()~ = 580 nm) shines on a narrow slit of width 1562 nm. (a) Find 
the angle for the second minimum. (b) Find the number of minima. 
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Solution: (a) By (16.24), for the second minimum sin0 = 2k/w = 0.743, so0 = 
0.837 rad = 48.0 ~ (b) Setting sin 0 = 1 in (16.24) gives the largest value of m as 
m = w/k = 2.69. Hence there are only two minima. 

By Babinet's principle (see Section 16.2), (16.24) also applies to diffraction 
by an obstacle (e.g., a narrow opaque body, such as a fiber or a wire) outside the 
incident beam, as in Figure 16.8(b). 

~ The er iometer  

For given m and k, and small 0, the angle 0 is inversely proportional to w, 
as observed by Young. He used this fact to construct a device he called an 
eriometer, initially used to measure the diameter of wool fibers, but later to 
measure the diameter of small particles within pus and blood. (Young was, 
after all, a physician.) (a) For k = 660 nm (red), a fiber has its first minimum at 
25 ~ Estimate the fiber width. (b) For blue light, indicate qualitatively where 
the first minimum will be located. (c) For a wider fiber, indicate qualitatively 
where the first minimum will be located. 

Solution: (a) By (16.24), for the first minimum we have a width w = 
(1)(660)/sin(25 ~ = 1562 nm. (b) For a shorter wavelength (e.g., in the blue), 
the first minimum would be at a smaller angle. (c) For a wider fiber, the first 
minimum would be at a smaller angle. 

I6~7.~3 Theory of Slit Diffraction Pattern Intensity 

By Huygens's principle, the total amplitude equals the integral of the amplitudes 
of all the wavelets produced in each part (slitlet) of the slit. Let Ao(dy'/w) be 
the max imum wave amplitude clue to a slitlet of width dy'. Then summing over 
all the slitlets, including their phase o)(t - R/c), yields a total amplitude 

1 [ +w/2 ( 
A -  Ao-- . dy' cos cot 

W a-w~2 

2zrR)k , (16.25) 

where R = v / D  2 + ( y -  y ')2 is the distance between the slit at y' to the obser- 
vation screen at y. 

Set r - v/D 2 + y2. Then, with the observer at an angle 0 to the center of the 
screen, R - v/D 2 + ( y -  y,)2) ~ v/r2 _ 2y'y ~ r - yy ' /r  = r - y' sin 0. Hence 
(16.25) becomes 

I f  + w / 2  ( y ' ) r  sin 0 
A - Ao-- dy' cos cot - 2zr 

w a-w~2 k + 2 r c ~ k  

= A ~ 1 7 6  s in(rcws inO/X)k  (ztw sin 0/k)  (16.26) 



16.7 Augustin Fresnel-- Theory of Interference and Diffraction Intensity 713 

The time-averaged intensity, proportional to the square of (16.26), is 

I -  lo(Sin(ztw sin O/)O ) 2 
(rc w sin O / )~ ) ' 

(16.27) 

where I0 is the time-averaged intensity at the center of the slit. 
Let us examine (16.27). First, if w/)~ < 1, the trigonometric function in the 

numerator never goes to zero, so there is no minimum, as expected for a narrow 
slit. Indeed, for w << )~, there is no appreciable dependence on angle. Second, 
(16.27) yields minima at the expected positions, given by (16.24), in good agree- 
ment with the pattern shown on the right-hand side of Figure 16.30. Finally, the 
fact that sin x --+ x as x -+ 0 implies / -+ I0 as 0 -+ 0, as expected. 

Let Im, m+l be the amplitude of the secondary maximum between the m-th 
and (m + 1)-th minima. By the previous subsection, the maxima are located 
approximately at w sin 0/)~ - m + �89 and thus (16.27) yields 

/m,m+l ~'~ 
/0 

[(m+�89 2] 
(intensity of secondary maxima) 

This gives a quantitative measure of the falloff of intensity of the secondary 
maxima. 

t6o7~4 The Rayleigh Criterion for Resolution 

Consider two distant point sources, with angular separation (~Osep relative to an 
aperture leading to an observation screen. In the limit of small wavelength (i.e., 
the particle emission viewpoint), waves travel in straight lines. Hence the an- 
gular separation (~Osep between the sources gives the same angular separation 
in the image on the observation screen. This is the principle of the pinhole 
camera. 

For finite wavelength, light from a distant point source passing through an 
aperture spreads out, due to diffraction. Let ~0R be the angular spread between 
the central diffraction peak and the first diffraction minimum. The Rayleigh 
criterion states that to resolve two sources their angular separation ~0sep must 
be greater than or equal to the angular spread ~0R of a single source due to 
diffraction, or 80sep >_ ~OR. As is conventional in discussing the Rayleigh criterion, 
we call the slit width d rather than employ w of (16.24). With this modification, 
and the small angle approximation sin 0 ~ 0, (16.24) yields the angle between 
the central maximum and the first minimum (m = 1) to be 

~0s~p _> ~. (Rayleigh observability criterion, slit width d) (16.28) 

For a circular aperture of diameter d (e.g., a camera or eye lens), the effective 
width for diffraction effects is less than for a slit of width d. In this case (16.28) 
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Figure 16.32 Diffraction pattern from two circular apertures: (a) pattern from a single 
aperture, (b) pattern from two well-separated apertures, (c) pattern from two 
apertures satisfying the Rayleigh criterion. 

is replaced by 

(~tgsep ~> (~OR- 1.22~. 

(Rayleigh observability criterion, circular aperture of diameter d) (~6.29) 

The factor of 1.22 comes from an analysis that generalizes (16.26), for a slit, to the 
case of a circular aperture. Larger telescopes give both smaller angular resolution 
(~Osep and larger intensity ~d  2. Figure 16.3 2 gives the diffraction pattern associated 
with a circular aperture, two well-separated circular apertures, and two apertures 
satisfying the Rayleigh criterion. 

The spacial resolution of an image is determined by at least three factors: 
(1) time variations in the medium through which the light propagates, (2) the 
resolution of the receptors on the observation screen, and (3) the diffraction- 
limited resolution on passing through the aperture to the observation screen. 
The first factor is significant for astronomical observations through the earth's 
atmosphere, and is the major reason for having earth-orbiting telescopes. The 
second factor is significant both for film, where the photosensitive grains have 
a finite size, and for the eye, where the photosensitive rods and cones have a 
finite size. Whichever of the three factors produces the greatest angular spread 
dominates in determining the spatial resolution. In what follows, we shall assume 
that diffraction dominates. In the human eye, photoreceptor widths provide 
about the same limit on spacial resolution as does diffraction. 

~ T h e  telescope and the mouse 

An amateur telescope with diameter 0.16 m is focused on a mountain that 
is 3 km away. (a) For green light ()~ = 500 nm), find the angular resolution 
of the central maximum. (b) Consider two beams of light reflected from a 
mouse, one from the tip of its nose and one from the tip of its tail 12 cm 
away. Find the angular separation of the two beams at the location of the 
telescope. (c) Determine if the mouse can be detected. 

Solution: (a) By (16.29), fOR = 1.22X/d = 3.81 • 10 -6 radians. (b) Think of 
each end of the mouse as a point source that sends a plane wave toward the 
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telescope. Relative to the telescope, the angular separation of the two ends of 
the mouse is 80sap = 12 cm/3 km = 4 x 10 -s radians, and this is also the angular 
separation on the screen between the diffraction patterns of the two ends of the 
mouse. (c) The angular separation 80sep is over ten times the diffraction-limited 
angular spread ~0R of (16.29), so a 12 cm long mouse can be detected easily. 

15,8 Polarization by Crystals 

Crystal optics has an honored place in the history of physical optics in part 
because for many years it was only via crystals that polarization effects could 
be studied. The phenomena we are about to describe are complex, and we will 
not explain them in detail. Such explanations, however, would involve only 
the physics of polarization and phase shift, and the mathematics of algebra, 
geometry, and trigonometry. (One way to think about polarization is that it 
is a manifestation of the internal angular momentum of light, and thus it is a 
quantum phenomenon. It would be disappointing to find that the mathematics 
of a quantum phenomenon is completely trivial. Not to worry.) Crystal optics, 
straightforward in principle but complex in practice, is indispensible in modern 
optics for the manipulation of beams of light. Here the beams are very often 
nearly monochromatic, produced by a laser (light amplification by stimulated 
emission of radiation). The operation of a laser requires the introduction of so 
many new physical ideas that it is beyond the scope of the present work. 

Early Experiments 

In Bartholinus's original studies on birefringent (i.e., doubly refracting) crys- 
tals, for a single beam of sunlight normally incident on the crystal, two beams 
emerged. The ordinary (O) beam (which satisfies Snell's law) passed straight 
through, but the extraordinary (E) beam was deflected. See Figure 16.15. 
Huygens was the first to analyze the two emerging beams, by passing them 
through a second birefringent crystal (called an analyzer, the first crystal being 
called the polarizer.) In our discussion of such an experiment, the incident light 
and the polarizer will be fixed, but the analyzer will be rotated. We take the 
polarizer to be thinner than the analyzer; thus it gives a smaller deflection than 
the analyzer. 

In Figure 16.33(a), the crystal axes of the polarizer and the analyser are 
aligned. Then the incident O and E beams, respectively, yield only O and E beams 
on passing through the second crystal. It is as if the combination is the same as 
a crystal of thickness equal to the sum of their thicknesses, with two beams 
emerging from the analyzer. (The X in the "intensity box" indicates the position 
of the O beam exiting the polarizer. The larger the dot, the larger the intensity.) 

Now let the second crystal (the analyzer) be rotated about the propagation 
direction (here)~), the rotation being reckoned positive when counterclockwise 
as seen looking at the incoming beam. The beams emerging from the analyzer 
now become more complex; typically, each beam entering the analyzer splits in 
two, one of type E and the other of type O, so that a total of four beams emerge 
from the analyzer. For a rotation angle of 45 ~ see Figure 16.33(b). Note the 
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Figure 16.33 Polarization and analysis of unpolarized white light. The polarizer and 
analyzer have different thicknesses. The optic axis, in the page for (a), is rotated 
counterclockwise about the x-axis by 45 ~ in (b), by 90 ~ in (c), and by 180 ~ in (d). The 
"intensity boxes" give the intensity patterns, where the X marks the position of an 
undeflected beam. The intensity patterns rotate successively by 45 ~ 90 ~ and 180 ~ 
while the intensities change and the states of polarization change. 

deflections in the intensity box. For an arbitrary angle of rotation, the polarization 
of each outgoing beam is more complex than can be described with linear po- 
larization. Note, however, that for all rotation angles there is an O102 beam. 
Figures 16.33(c) and 16.33(d) give the results for rotations of 90 ~ and 180 ~ 

For simplicity, first consider the case of a 180 ~ rotation of the analyzer, as in 
Figure 16.33(d). Here the E beam bends back toward the O beam. It is as if the 
combination is the same as a crystal of thickness equal to the difference of their 
thicknesses, with two beams emerging from the analyzer. 

For a 90 ~ rotation of the analyzer, Figure 16.33(c) shows that the E and O 
beams interchange. This can be understood by arguing that the polarizer polarizes 
the O1 and E1 beams, but that to the rotated analyzer they appear to be E 
and O beams, respectively. The E102 beam is deflected only by the amount the 
E1 beam is deflected, and the O1 E2 beam is deflected only by the amount the 
E2 beam is deflected. 

Figure 16.33(b) presents the most complex case, where the polarizer has 
been rotated by 45 ~ In this case, both the incident 02 and E2 beams are, relative 
to the analyzer, mixtures of both types of beams, and this leads to two exit 
beams from each beam incident on the analyzer. Note that the E102 beam is 
deflected only by the polarizer, and the O1E2 beam is deflected only by the 
analyzer. 

Huygens developed a wave theory that successfully describedmbut did not 
explain~the directions of both the O and E beams. In 1717, Newton interpreted 
these phenomena to be an indication that light has "sides"~his word for what 
we now call polarization. 
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16~8,2 Eighteenth-Century Experiments 

Young's and Fresnel's wave theory was based on an analogy to sound, where 
there is only a single type of wave, associated with motion of the air along the 
direction of propagat ion~a longitudinal wave. However, the two beams seen 
in double refraction indicate more than just a single (longitudinal) degree of 
freedom. In the 1820's, die-hard advocates of the particle theory of light would 
not cease their criticism until the wave theory could explain the various crystal 
optics phenomena that were starting to accumulate. 

In 1809, Malus discovered that ordinary light could be polarized by reflection, 
when he accidentally passed light, first reflected off window glass, through a 
birefringent crystal. The E and O waves had very different intensities, according 
to the angle of incidence on the window. Moreover, for one particular angle only 
one ray of light emerged. He named the associated property of light polarization. 
In 1815, Brewster discovered that, at the angle of complete polarization, the 
reflected and refracted rays are normal to one another. Combined with Snell's 
law, (16.9), this gives the Brewsterangle Op of (15.65). In that same year, Brewster 
also discovered biaxial crystals, which are birefringent, but for which neither of 
the two emergent rays is "ordinary." 

In 1816, Arago began to investigate the effect of polarization on diffraction. 
He first showed that a narrow light beam from a polarized source gave the same 
diffraction patterns as for ordinary light. Next he considered light from a single 
source, split by a birefringent crystal into two narrow light beams of different 
polarizations and directed to the opposite edges of a narrow opaque card. It 
yielded diffraction fringes at the edges of the shadow but no fringes near the 
center of the shadow. Further, he and Fresnel showed that two light beams with 
different sources would not produce interference patterns. These experiments 
suggested to Fresnel that light is a tranverse wave, and that the two beams are 
polarized in the two transverse directions. However, he could not convince Arago 
to include this idea in their joint publication. 

~ Interference and polarization 
In a two-slit interference experiment using unpolarized light, let the time 
averaged intensities be 4 I0 at the maxima, and zero at the minima. A linear 
polarizer is placed over slit 1, so that it accepts light polarized along ~, but 
it absorbs light polarized along 3)- (a) Find the new intensities of the maxima 
and minima. (b) If the linear polarizer has thickness 150 nm and has index 
of refraction n = 1.42 for the transmitted light, discuss how the positions of 
the maxima and minima will shift. See Figure 16.34, where only up-down 
polarization leaves slit 1, but both types of polarization leave slit 2. 

Solution: (a) Without the linear polarizer, the intensity averaged over the screen 
is 210, with I0 coming from each type of polarization. With the polarizer, the 
average intensity of polarization along 57 will be halved because it comes only from 
slit 2. Hence the pattern on the screen will be the sum of uniform illumination of 
polarization along 51 from slit 2, with intensity lo/2, and ofthe interference pattern 
from polarization along ~ from both slits, with intensity 210 at the maxima. Hence 
the new maxima and minima have intensities 510/2 and lo/2. The average over 
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Figure 16.34 A two-slit interference experiment 
where a perfectly absorbing linear polarizer has 
been placed in front of one of the slits. 

the screen is 3 lo/2, as expected if one-fourth of the incoming light is absorbed 
by the linear polarizer. (b) Because the wavelength within the polarizer is Z/n, 
rather than ~. in air, the beam passing through the polarizer is subject to a larger 
phase shift than the beam passing through air. We say that the light transmitted 
through slit 1 has a greater "optical thickness." On the observation screen, the 
central maximum shifts toward slit 1 so that the light from slit 2 can make up the 
extra phase shift gained by the light passing through slit 1. 

Young learned of Arago's work and began to think that  light involved trans- 
verse vibrations. He developed an analogy to the two transverse directions of 
vibration of a string (a string stretched along x can vibrate along both y and z). In 
1821, Fresnel developed a theory for light in crystals, using the idea of transverse 
vibrations, which worked so well that  it overcame nearly all objections to the 
idea that  light is a wave. Nevertheless, a fundamental  understanding of what  was 
"waving" was still lacking. 

That  same year, Fresnel also proposed that  sound in solids could have trans- 
verse waves. Navier then developed a dynamical set of equations describing 
solids. Refined by Cauchy in 1828, they were solved later that  year by Pois- 
son, who found three types of modes, one longitudinal and two transverse, in 
agreement with experiments on sound in solids. However, there was no evidence 
of a longitudinal mode for light in any material. Not  until Maxwell 's equations 
for the electromagnetic field was it understood how it is that  for light there is no 

Diffraction gratings are used to study the spectral components (i.e., the intensities of 
the different wavelengths) of light. This permits study of unknown light sources on the 
earth, sun, or stars. Diffraction is also used as a tool to study the structure of matter; 
diffraction of x-rays off crystals is used to determine the structural arrangements and 
identities of the atomic constituents. As indicated earlier, diffraction is a subset of 
interference where many waves or wavelets interfere. 
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longitudinal degree of freedom, and thus no longitudinal mode. Maxwell's 
theory of light, when crystal polarization and magnetization effects are included, 
also encompasses crystal optics. 

16o9 Multiple Slits and Diffraction Gratings 

Diffraction gratings consist of a series of equally spaced parallel lines that ei- 
ther reflect or transmit light. (Fraunhofer, in the 1820s, developed techniques 
to make fine and accurate gratings. This enabled more precise analysis of the 

wavelengths of light than is possible 
by two-slit interference or by single- 
slit diffraction. Young's micrometer, of 
Example 16.4, can be thought of as a two- 
slit reflection grating.) Consider N nar- 
row slits of width w, with center-to-center 
separation d. Let w (()~, so that each slit 
diffracts uniformly in all directions, and 
let w ((  d to reduce the analysis to that 
of multiple slits with spacing d. Thus re- 
place the single-slit of Figure 16.30 by a 
transmission diffraction grating, to obtain 
Figure 16.35. As for two-slit interference, 
take the light source to be either very far 
away or at the focal length of a lens just 

Figure 16.35 Geometry of a before or behind the slit. A typical pat- 
diffraction grating (here, N= 4). tern is shown on the observation screen in 

Figure 16.36. 
For a diffraction grating, the conclition for constructive interference of light 

of wavelength )~ is the same as for two-slit interference, or 

i iiliii ii iiiiiiii iii i iiiiiii iiiiiJii ii i i iiiiiii ii!ii ill iiiii i i iliii ii ilii iii iiliil iiiiiiii i iiiiii iiiiiiiiiii!iiii!iiiii i iii  

For each value of m, the angle that corresponds to the peak intensity is called 
the m-th order maximum. Peaks occur because the N scattered electric field 
components are in phase, yielding a net amplitude that is N times as large as 
for an individual vector. The peak intensity, which Fresnel correctly concluded is 
proportional to the square of the amplitude, is N 2/4 times larger than given by 
(16.22) for two slits. However, as seen in Figure 16.37, and as we derive shortly, 
the angular width of the maxima are much narrower than for two slits. This 
narrowing of the line is required by energy conservation; N lines give N/2 times 
as much overall intensity at the same angles as for two slits, but each line is N 2/4 
times as intense and only (N/2) -~ times as broad. The narrowness of their lines 
makes diffraction gratings a powerful diagnostic tool for the precise analysis of 
light. See Figure 16.38, which shows spectra of light emitted by various types of 
atoms and molecules, and has then passed through a diffraction grating. 
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Figure 16.36 Experimental intensity pattern for a diffraction grating, showing the 
steepening in intensity and narrowing in angular spread of the maxima. (a) N =  2. 
(b) N =  5. 

A 

(b) 

[ Relative intensity 

0 ~  

Figure 16.37 Theoretical intensity pattern for a diffraction grating, showing the 
steepening in intensity and narrowing in angular spread of the maxima. There are 
also weak secondary maxima of negligible intensity for large N. (a) N =  2. 
(b) N = 5 .  
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Figure 16.38 Spectra of light, for Hg, Na, He, Ne, H, and H2, as analyzed with a diffraction 
grating. The lines are wider than the angular width of the grating. Thus we are observing the 
intrinsic linewidth rather than instrumental broadening. 

~ Diffraction maxima 

Let a diffraction grating have slit separation 4000 nm. For a wavelength of 
589 nm, find the angles that correspond to all the diffraction maxima. 

Solution: By (16.30), the largest-order maximum occurs for the largest m sat- 
isfying m 5 d/A. Here d/s = 6.79, so the largest-order maximum occurs for 
m = 6. Specifically, (16.30) gives 01 = 8.47 ~ 02 = 17.1 ~ 03 = 26.2 ~ 04 = 36.1 ~ 
0s = 47.4 ~ and 06 = 62.1 ~ 

There are three measures of the quality of a diffraction grating, only two of 
them independent:  (1) the angular width AOm of the m-th order maximum; (2) 
the dispersion D= AOm/As a measure of the angular spread AOm of the m-th 
order max imum for a given separation As in wavelength of the incident light; 
(3) the resolving power R = A/AA, a measure of the number  of lines that  can be 
observed distinctly. Each of thesedepends  upon the order m of the maximum. 

In what  follows, w h e n  we become specific, we will consider a diffraction 
grating with N = 500, d = 4000 nm, and the so-called sodium doublet, which 
consists of two closely spaced spectral lines at 589.00 nm and 589.59 nm, 
so s = 589 nm and As = 0.59 nm. To the eye the sodium doublet  appears 
yellow. 

Angular Width ~Om 

Consider an angle A00 slightly off the central max imum (m = 0), such that  the 
first and N slits are out of phase by A (thus for large N the first and second slits 
are out of phase by s  1 ) ~  X/N). Summing over all the slits will give a 
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net ampli tude that  is essentially zero. [This is like what  happens for diffraction, 
where the integral (16.25) appears, rather than a sum.] The corresponding angle 
A00 satisfies, not (16.30) for m -  0, but  rather 

A 
d sin A00 -- - - .  (16.31) 

N 

For small A0o, where sin A0o ~ A0o, we may rewrite (16.31) as dAOo ~ A/N,  so 

A 
AOo ~ Nd" (16.32) 

Thus the central m a x i m u m  is spread over an angular range that  is inversely 
proportional to N, a narrowing that  is consistent with experiment.  For N -  500, 
d - 4000 nm, and for )~ - 589.00 nm, (16.32) yields A00 -- 2.945 x 10 -4 tad - 
0.01687 ~ . 

More generally, for the m-th order max imum the angular width AO m satisfies 

A 
d sin(0m + AOm) - - m A  + ~I" (16.33) 

Since, for small AOm, COS AO m ~ 1 and sin AO m "~, AOm, for small AO m w e  have 

sin(0m + AOm) --  s in  0m cos  AOm -Jr- cos  Om s in  AOm ~ s in  Om -]- AOm cos  0 m. 

Thus (16.33) yields 

A 
d(sin Om+ AOm COS 0m) - - m A  + ~ .  (16.34) 

Subtracting (16.30) from (16.34) yields 

A 
AOmd cos  0 m -- "T-~, 

SO 

k 
AOm --  Nd cos  0 m " (16 .35)  

For m - 0, where cos00 - cos0 - 1, (16.35) agrees with (16.32). For N -  500, 
d -  4000 nm, and A - 589.00 nm, (16.35) yields A01 -- 2.977 x 10 -4 r a d =  
0.01706 ~ . 

Equation (16.35) shows that  to obtain a sharp line (narrow angular width), 
the diffraction grating should have a large total width Nd. Further, because of 
the cosine factor, lines at larger angles have a larger angular width AOm. Note 
that, for small Ore, where cos Om ~ 1, AO m is nearly independent  of m. 

~ 6 c} 2 Dispersion D: Angular Width per Wavelength Interval 

Differentiation of (16.30) with respect to A, at fixed m and d, gives 

dora 
dcos0mdA = m' 
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which yields the dispersion 

dOm m 
D ~ = ~ .  (16.36) 

d)~ d cos Om 

The dispersion is a measure of the sensitivity of changes in angle Om of the m-th 
max imum to changes in wavelength )~. For an angular width AOm, the detectable 
wavelength interval AX is given by 

d)~ AOm 
~ .  (16.37) A )v -- - ~ m  A O m -- D 

The larger the dispersion, the smaller the separation A)~ between observable 
lines. 

Dispersion of a diffraction grating !xample 16. lZ 

Consider a diffraction grating with N - 5 0 0  and d -  4000 nm, and the 
sodium doublet, with ~ - 589.00 nm, and A~ -- 0.59 nm. (a) Find the disper- 
sion D for m -  1. (b) For m -  1 and m = 2, determine if the sodium doublet 
can be resolved. 

Solution: (a) For m = 1, Example 6.13 gives 01 = 8.47 ~ Then (16.36) yields D = 
2.5  x 10 -4 rad/nm. (b) Since A01 = 2.977 x 10 -4 rad = 0.01706 ~ by (16.37) a 
wavelength separation as large as A)~ = 1.19 nm can be measured. This is about 
twice the separation of the two lines of the sodium doublet, so study of the m = 1 
maximum cannot resolve them. However, for m = 2, the doublet is just barely 
resolvable. 

Resolving Power R 

Consider two lines of wavelength )~ and )~ + AX that  are just barely resolvable. 
We define resolving power R via 

)v 
AX = --.  (16.38) 

R 

Resolving power R is a measure of the number  of lines that  can be distinctly 
observed within the vicinity A), of a given wavelength ),. From (16.38), the 
larger the resolving power R, the smaller the separation AX between observable 
lines. From (16.38), 

X 
R - ~ .  (16.39) 

AX 

Applying (16.37) to introduce AOm, and then employing both (16.35) and 
(16.36) to eliminate AOm and D yields 

,~ ~ m 
R - ~ D = = Nm.  (16.40) 

A Om )~ / ( N d  cos 0) d cos 0 
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• Resolving power a grating of diffraction 

Consider a diffraction grating with N = 500 and d = 4000 nm, and the 
sodium doublet, with ), = 589.00 nm, and A), -- 0.59 nm. (a) Find the resolv- 
ing power R of the grating, for m = 1. (b) Find the resolving power needed 
to resolve the sodium doublet. 

Solution: (a) By (16.40), R -- Nm = 500. (b) By (16.39), the necessary resolving 
power is R---),/A), = 589/0.59 = 1000. This is about twice what is available 
from the m-- 1 line. For m = 2, the R of (16.40) can be increased to 1000, 
making the line just barely resolvable, consistent with Example 16.14. 

Equation (16.40) shows that, to be able to distinguish many lines, the grating 
should have a large number of parallel lines and large order m should be studied. 
Note that R is independent of d and ),. 

16.10 X-Ray Scattering off Crystals 

X-rays were discovered by Roentgen in 1895. He found that fresh photographic 
plates became exposed after elsewhere in his lab he accelerated high-energy 
cathode rays (now known to be electrons) onto a positively charged anode. X-rays 
were found to have no charge. It was suspected that x-rays were electromagnetic 
radiation of very short wavelength, and there were indications that x-rays had 
wavelengths that included the O. 1 nm range. At the same time, there was evidence 
that the distance between atoms was about O. 1 nm, and there were suspicions 
that crystals were regular arrays of atoms. Since x-rays primarily pass through 

(~ 

, Y  
rz/~ 

Figure 16.39 Schematic of NaC1 
crystal. 

most materials, the probability that an x-ray 
interacts with matter is relatively low (al- 
though the energy deposited can be signif- 
icant when there is such an interaction). 

As shown in Section 16.2, if the dis- 
tance between wave sources is large enough 
compared to the wavelength, interference 
can occur. In 1912, Laue and his colleagues 
Friedrich and Knipping scattered an x-ray 
beam off the atoms in a crystal, finding a pat- 
tern of spots that indicated a regular array 
of atoms in the crystal. W. L. Bragg quickly 
came up with an interpretation. A crystal can 
be thought of as containing planes of atoms 
with separation d that varies with the orien- 
tation of the plane. See Figure 16.39. Note 
that d typically is less than the separation be- 

tween atoms. X-rays can scatter off each plane with an angle of incidence equal 
to the angle of reflection. There is momen tum transfer but  no energy transfer in 
such scattering. 

We use the x-ray scattering convention that the angle is measured with respect 
to the plane (rather than with respect to the normal to the plane). Then, both 
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Figure 16.40 Geometry for Bragg scattering off a crystal. 
The crystal has an infinite number of planes and 
corresponding distances d. 

coming in and going out, the extra distance on traversing an extra plane of atoms 
is d cos(�89 - 0) - d sin 0. See Figure 16.40. 

For constructive interference, this total extra distance must correspond to an 
integral number of wavelengths. This leads to the Bragg condition 

2d sin 0 = m),. m = 1, 2, 3 . . .  (16.41) 

The angle 0 is called the Bragg angle, and the scattering angle by which the 
scattered radiation deviates from the incident radiation is 20. Three methods are 
used to study crystals with x-rays, using (16.41). 

1. Bragg's method uses monochromatic radiation incident on a single crystal, 
and rotates that crystal about a fixed axis. In Figure 16.40, that fixed axis can be 
considered to be normal to the page, so that rotation changes 0. For a given m, 
)~, and d, only for certain Bragg angles 0 will scattering be observed. 

2. Laue's method uses nonmonochromatic radiation incident on a single crys- 
tal, for which some wavelengths will satisfy the Bragg condition. See Figure 
16.41 (a). In terms of Figure 16.40 and Equation (16.41), the plane separation 
d and the Bragg angle 0 are fixed, and for fixed m only at certain wavelengths )~ 
will scattering be observed. 

3. The Debye-Scherrer method uses monochromatic radiation incident on 
a powder of many identical crystals. In terms of Figure 16.40 and Equation 
(16.41), m and ), are fixed, but because each crystallite has its own orientation, 
only a fraction of them have their planes with separation d in the correct orien- 
tation for Bragg scattering. On the other hand, the ensemble of crystallites will 
scatter with symmetry about the axis of the incoming radiation so that there is 
a scattering cone. See Figure 16.41 (b). 

• X-ray scattering 

Consider that x-rays with ), = 0.4 nm are scattered off a hypothetical crystal 
at a scattering angle of 130 ~ and that this is the smallest scattering angle for 
this crystal. Find the planar separation within the crystal corresponding to 
this scattering angle. 
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Figure 16.41 X-ray scattering of a crystal: (a) Laue patterns (non-monochromatic 
radiation incident on a single crystal), (b) Debye-Scherrer patterns (monochromatic 
radiation incident on a powder of small crystals). 

Solution: The Bragg angle is half the scattering angle, so ~) - 65 ~ Then (16.41), 
with m -  1, yields d- -0 .22  nm. The atomic separation must be at least this 
large. 

Application of (16.41) gives the location of atoms in the unit cell of a crystal. 
Detailed analysis of the intensity of each peak permits each atom to be identified. 
X-ray diffraction has been used to study the arrangement of atoms in crystals, 
even crystals consisting of complex biological molecules. 
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Problems 

16-2.1 In a ripple tank, two plungers 80 cm apart 
pulse at the same frequency f and are in phase. On 
a plane 1.4 m away, the distance between the first 
and second maxima is 140 mm. (a) Find the wave- 
length. (b) For a wave speed of 22 m/s, find f .  

1 6 - 2 . 2  (a) Consider a ripple tank where two 
plungers have the same frequency, but are out of 
phase by 180 ~ Find the condition on r 2 -  rl for 
maxima and minima to occur. (b) Repeat for 90 ~ 
(c) Repeat for arbitrary relative phase ~b. 

1 6 - 2 . 3  Consider two plungers in a ripple tank, as 
in Figure 16.5, where r 2 = D z + (y + d /2)  z, and 
r 2 - D 2 + ( y -  d /2)  2. Show that Equation (16.1) 
leads to a set of hyperbolae if Iml)~ < d. (Hint: Use 
coordinates x = D and y.) 

1 6 - 2 . 4  Two in-phase radar transmitters at wave- 
length 0.4 rn are 3 m apart. The perpendicular bi- 
sector to the transmitters is normal to a plane that is 
2.5 m from the midpoint between the transmitters. 
(a) Locate on this plane the positions of the first 
two maxima and the first two minima to one side 
of the central maximum. (b) On a circle of radius 
2.5 m, centered at the midpoint, locate the maxima 
and minima. 

16-2 .5  Two speakers driven by the same amplifier 
are directed toward and are each 8 m from a wall, 

as in Figure 16.5. They are separated by 0.4 m. At 
y = 0, the intensity is a maximum. As y increases, 
the intensity decreases. At y = 2.2 m, the intensity 
is zero. Find the wavelength and frequency of the 
sound, for v = 340 m/s. 

16-2.6 Two plungers, driven in phase at the same 
frequency, are separated by 2.5 cm. See Figure 16.5. 
Along an infinite line parallel to their connecting 
line, but 14 cm away, there are five maxima, one 
along the perpendicular bisector. Give the range of 
values that the wavelength can take. 

16-2.7 (a) For two in-phase sources separated by 
d = 4 cm, if ~ = 18 cm, how many curves giv- 
ing constructive interference (maxima) are there? 
Curves giving destructive interference (minima)? 
(b) For d = 4 cm and )~ = 6 cm, how many curves 
giving maxima are there? Curves giving minima? 
(c) For d = 4 cm and X = 1.4 cm, how many 
curves giving maxima are there? Curves giving 
minima? 

16-2.8 (a) Sketch the scattering pattern for sound 
waves in air, of frequency 238 Hz, incident on an 
obstacle of dimension 12 m. Take the sound beam 
to be much wider than 12 m. (b) Repeat for an ob- 
stacle of dimension 1.2 m. (c) Repeat for an obstacle 
of dimension 0.12 m. 
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16-2.9 (a) Sketch the scattering pattern for sound 
waves in air, of frequency 238 Hz, incident on a 
slit of dimension 12 m. Take the sound beam to be 
much wider than 12 m. (b) Repeat for a slit of di- 
mension 1.2 m. (c) Repeat for a slit of dimension 
0.12 m. 

16-2.10 A water wave of wavelength 3.2 m is in- 
cident from the left on a barrier with two narrow 
gaps, separated by 0.46 m. (a) Describe the inter- 
ference pattern of the transmitted waves, as seen 
on an imaginary line, as in Figure 16.5. (b) If the 
incident wave is incident at a 12 ~ clockwise an- 
gle relative to the normal to the barrier, how does 
this change the interference pattern? Hint: What 
would be the path of a very short wavelength wave? 
(c) Find the new angle associated with the central 
maximum. 

1 6 - 2 . 1 1  (a) Sound of frequency 240 Hz is nor- 
mally incident on a wall with two slit-like holes 
separated by d. If on the other side of the wall at 
a distance D there is a plane for which the angular 
separation between the central maximum and the 
first minimum is 10 ~ determine the separation be- 
tween the slits. Take D >> d. Hint: Use the results of 
Example 16.2 in the limit where D >> y. (b) If the 
incident wave now has frequency 960 Hz, find the 
the angular separation between the central maxi- 
mum and the third minimum. 

16-2.12 Two speakers, displaced by 2 m along 
the y-axis, emit sound at the same 180 Hz fre- 
quency, with the same intensity. The upper speaker 
peaks 35 ~ before the lower speaker. (a) To what 
time does this correspond? (b) If the speakers 
were simply holes in the wall, driven by a sin- 
gle source, what angle would the source make to 
the normal to the holes? See Figure 16.5. (c) Find 
the angle that the first minimum makes with the 
normal. 

16-3.1 Show that J r -  20', used in deriving the 
angle change on reflection for the rainbow, gives the 
correct values for O' given by 0 ~ (normal incidence), 
zr/4, and rr/2 (glancing incidence). 

16-3.2 Derive the law of reflection using the an- 
alytical method of Fermat (rather than the geomet- 
rical method employed in the text). 

16-3.3 (a) Derive the total deflection angle and 
exit angle associated with the secondary rainbow, 
where there are two internal reflections. (b) Derive 
the stationary condition that gives the rainbow 

angle for the secondary rainbow. (c) Determine the 
relation between the incident angle and the exit 
angle. 

16-3.4 Snel expressed his result in terms of the se- 
cant of the complementary angles. Rewrite (16.9) 
in such terms. The extent to which, at the time of its 
discovery, Snell's law had been compared to actual 
data, is unknown. For finite angles, this problem had 
defied solution for some 1500 years. 

16-4.1 Summarize Grimaldi's experiment and his 
discoveries about diffraction. 

16 -4 .2  Summarize Hooke's experiment and his 
discoveries about the colors of thin films and plates. 

16-4.3 Summarize Newton's experiment and his 
discoveries about the prism. 

1 6 - 4 . 4  Summarize Bartholinus's experiment and 
his discoveries about double refraction. 

1 6 - 4 . 5  Roemer could not accurately measure the 
period of a single revolution of Io. He could and did 
measure the average period for 40 successive revo- 
lutions. In Figure 16.16, let the position of Jupiter 
be at 0 ~ in the circle representing the earth's orbit 
about the sun, and consider that Jupiter's position 
is nearly fixed. For an observer on the earth, at what 
angles in the earth's orbit about the sun will the pe- 
riod of Io's orbit show the maximum increase and 
decrease? (Roemer remarked that orbital irregular- 
ities and the motion of Jupiter relative to the earth 
were smaller effects than the relative motion of Io 
and the earth.) 

1 6 - 4 . 6  In Figure 16.16, let the position of Jupiter 
be at 0 ~ in the circle representing the earth's orbit. 
(a) How many periods of Io correspond to half an 
earth year? (b) Show that, ifthe motion of Jupiter is 
neglected, the extra distance that light travels from 
Jupiter as the earth goes from 0 ~ to 180 ~ equals the 
diameter d of the earth's orbit. (c) Show that the 
extra time associated with this motion equals d/c, 
where c is the speed of light. (d) By how much 
does this increase the apparent average period of Io 
about Jupiter? 

1 6 - 4 . 7  What experiment, and specifically what 
aspects of it, would you cite to establish that shad- 
ows are not completely sharp? 

1 6 - 4 . 8  White light reflecting off material A ap- 
pears to be orange (OA). White light (W) reflecting 
off material B also appears to be orange (OB). One 
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is a composite of red and yellow, and one is pure 
orange. How would you tell which is which? 

16-4.9 Give a counterexample to the claim that 
all transparent crystals can be used to make cover 
sheets with a sharp image of what is underneath the 
sheet. 

16-4.10 Give an example that argues against the 
claim that the period of the earth's moon about the 
earth is the same as seen from earth and from Mars. 

16-5 .1  Huygens actually wrote that one adds 
the effect of the primary wave and of the sec- 
ondary wavelets. Thus when a primary wave passes 
through a medium, it excites secondary waves in 
that medium. (a) Argue that, as long as the primary 
wave and the secondary wavelets have the same ve- 
locity (Vp = vs), the net wave has the same velocity 
as the primary wave. (b) What is the signal velocity 
if vp < Vs? (c) If vp > Vs? 

16-5.2  What kind of Huygens construction would 
you use to represent an inward-moving spherical 
wavefront? 

16-5.3 Explain why sound velocities, and the rel- 
ative amounts of partial reflection and refraction, 
are intensity independent, using the fact that sound 
is a small disturbance in the ambient density and 
pressure. 

16-5.4 Newton found the velocity of waves from 
an argument where he determined the period for 
a wave of a given wavelength (although he did not 
use that terminology). In Book 2 of his Principia, 
Newton gives Proposition 50, Problem 12: "To find 
the distance between pulses. In a given time, find the 
number of vibrations of the body by whose vibra- 
tion the pulses are excited. Divide by that num- 
ber the distance that a pulse could traverse in the 
same time, and the result is the length of one pulse." 
Let N be the number of vibrations, t the time for 
those vibrations, and D the distance a pulse can 
travel in that time. (a) Derive expressions for the 
frequency f and the wavelength )~. (b) Show that 
Xf = v gives the velocity v. (Newton had neither 
the terminology nor the symbol for )~ or for f.) 
[Answer: ~ = D/N,  T = t /N ,  f = 1/T,  and D = vt 
gives )~ = v t / N =  vT  = v / f .  In practice, Newton 

1 used g,~ and 2 f .  ] 

16-6.1 A given musical note has many overtones, 
which are distinguished by subscripts. The guitar 

has six strings, whose thickest two have funda- 
mentals at the frequencies E2 (82.4 Hz) and A2 
(110 Hz). When the fifth fret of a string of length L 
is pressed, the effective string length is L' = (3/4)L. 
(a) For the tuned E2 string, to  what frequency 
f~ does L' - (3/4)L correspond, and by what per- 
centage is it out of tune with the frequency fA of 
the tuned A2 string? (b) If f~ and fA don't quite 
match, and if they are struck at the same time, 
show that these two strings make sounds that cancel 
every t = 1/(f~ - fA) seconds. This is called a beat. 
Hence, the more in tune are the two strings, the 
longer the time between beats. (c) Find the beat 
time between the E2 string at the fifth fret and 
the unfretted A2 string. In practice, if the lower- 
frequency E string has been tuned already, so f~ is 
fixed, the tuner adjusts the tension on the A string 
until the time between beats is so long as to be un- 
noticeable. 

16-6.2 Explain why Young employed a narrow 
slit in front of the two slits in his interference ex- 
periment. 

1 6 - 6 . 3  Young argues that the shorter apparent 
wavelengths in interference from thin films of water 
and oil (as opposed to air films between glass plates) 
argues for a lower velocity of light in those media, 
relative to air. Justify this. 

16-6 .4  What role does coherence play in ordinary 
reflection? In reflection from thin films? From thick 
films? 

1 6 - 6 . 5  (a) Explain why a two-slit interference 
pattern cannot be observed when light of optical 
frequency fo from lightbulb 1 enters slit 1, and light 
of the same frequency f0 from lightbulb 2 enters 
slit 2. (b) Explain why a two-slit interference pat- 
tern can be observed using sound from two speakers 
driven at the same acoustic frequency fA by differ- 
ent acoustic oscillators. 

1 6 - 6 . 6  (a) What is the minimum thickness d of 
a thin glass plate of index of refraction n = 1.5 
for which constructive interference will be ob- 
served in air, for light of a given wavelength )~? 
(b) Repeat for the plate in water. (c) For inci- 
dent intensity I0 a film in air, of index of re- 
fraction n and thickness d = ),,/4n, gives reflection 
intensity 11 = 0.910. For incident intensity I0, esti- 
mate the reflected intensities for films of thickness 
I./8n, 3),./8n, and ),,/2n. 

1 6 - 6 . 7  In a Young's two-slit experiment, one slit 
is covered with a blue filter and the other with a 
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yellow filter. (a) Will there be an interference pat- 
tern on the observation screen? (b) Can light of two 
different colors be coherent? 

1 6 - 6 . 8  At its thinnest part, a soap film on a 
wire hoop appears black on reflection, whereas 
the thinnest part of an oil slick on water appears 
bright on reflection. (a) Explain. (b) Relate to a 
Newton's ring experiment where the lenses are 
first in air and then in a fluid of large index of 
refraction. 

16-6 .9  Laura orients a hoop containing a 460 mm 
thick soap film (n = 1.33) normal to the sun's rays, 
which are incident from her back. (a) For such nor- 
mal incidence, find the colors (from 400 nm to 
700 nm) that are intensified on reflection. (b) Re- 
peat for transmission. 

16-6.10 White light (400 mm to 700 mm) at nor- 
mal incidence on a soap film (n = 1.33) has an in- 
terference maximum only at 650 nm. It also has 
a single interference minimum. (a) Find the film 
thickness. (b) Find the wavelength of the interfer- 
ence minimum. 

1 6 - 6 . 1 1  An oil slick ( n =  1.22) of thickness 
850 nm lies above water (n = 1.33). (a) Find the 
colors (from 400 nm to 700 nm) that are intensi- 
fied on reflection at normal incidence. (b) Repeat 
for transmission. 

16-6.12 For interference in a Newton's rings ex- 
periment, Young found experimentally that the first 
bright fringe moves out by a factor of six when air 
is replaced by water. Establish this theoretically. 

1 6 - 6 . 1 3  White light at normal incidence on a 
soap film (n = 1.33) has interference maxima at 
441 nm, 539 nm, and 693 nm. (a) Find the film 
thickness. (b) Find the wavelengths of the interfer- 
ence minima. 

1 6 - 6 . 1 4  Two optically flat glass plates (n = 1.5) 
ofwidth 6.4 cm are in contact at one end, and at the 
other end are separated by a thin wire of diameter 
d =0 .02  ram, forming a wedge of variable thick- 
ness. See Figure 16.42. Light of wavelength 620 nm 
is normally incident on the top plate. Consider in- 
terference between light reflected off the bottom of 
the top plate and off the top of the bottom plate. (a) 
Over the length of the wedge, find how many bright 
fringes are observed. Figure 16.13(b) show how the 
pattern would appear. (b) Repeat if oil with n = 1.2 
is between the plates. (c) Repeat if oil with n = 1.6 
is between the plates. 

Figure 16.42 Problem 16-6.14. 

16-6.15 Find the minimum thickness for a non- 
reflective coating (n = 1.26) upon glass (n = 1.50), 
if light of wavelength 570 nm (in air) at normal in- 
cidence has a minimum in reflected intensity. 

1 6 - 6 . 1 6  Consider light incident from air at angle 
0] on a thin film of index of refraction n and thick- 
ness d. Interference fringes are observed. See Figure 
16.43. Note that the light that emerges at C travels 
a longer path than the light that is directly reflected, 
but that to compare the light reflected from A and 
the light transmitted at C, we must include an extra 
path length traveled until the light from A "catches 
up" to the light from C. Show that: (a) the extra 
path length in the film is 2d/tan 02; (b) the extra 
path length in the air of the reflection off the top 
surface is 2d tan 02; (c) the extra path length is such 
that the condition for constructive interference is 
2dn cos 02 = )~(m + �89 

Figure 16.43 Problem 16-6.16. 

1 6 - 6 . 1 7  For a wedge formed by two optically flat 
glass plates, at atmospheric pressure 1575 dark lines 
are observed across a thickness d for a 690.00 nm 
wavelength in air. See Figure 16.42. When the air 
pressure is increased by a factor of ten, 1519 dark 
lines are observed. (a) If the index of refraction n 
deviates from unity only by a term proportional to 
the pressure, find the index of refraction of air at 
atmospheric pressure. (b) Find the wavelength in 
vacuum. (c) Find d. 

16-6.18 An oil slick ( n =  1.22) of thickness 
850 nm lies above water (n = 1.33). (a) Find the 
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colors (from 400 nm to 700 nm) that will be inten- 
sified on reflection when the light is incident at an 
angle of 50 ~ to the normal. (b) Repeat for transmis- 
sion. H i n t :  See problem 16-6.16. 

16-6.19 Michelson interferometer. See Figure 
16.44. A partially silvered mirror P splits the beam 

Figure 16.44 Problem 16-6.19. 

in half, sends it along two paths to mutually perpen- 
dicular mirrors M1 and M2, which send it back to 
the partially silvered mirror where two of the now 
four beams recombine and go to the observer. All 
mirrors are very flat. As the distance between P and 
M~ is adjusted, interference maxima and minima are 
successively observed. (a) Find the relationship be- 
tween the number of maxima N, the wavelength 
;~, and the distance by which M~ is moved. (b) If 
N = 200 maxima are observed when M1 moves by 
0.06 mm, determine the wavelength of the light. 

1 6 - 6 . 2 0  A Young's two-slit apparatus with slit 
separation 0.67 mm is 1.8 m from a screen. (a) If 
red light, of wavelength 670 nm, is incident on the 
double slit, find for the zeroth- and first-order max- 
ima their angular separation and their spatial sep- 
aration on the screen. (b) Repeat for blue light, 
of wavelength 440 nm. (c) Repeat part (a) for the 
first- and second-order minima. (d) Find the highest 
order maximum that can be observed for red light; 
for blue light. 

1 6 - 6 . 2 1  Monochromatic light is incident on a 
Young's two-slit apparatus with slit separation 
0.250 mm, with a screen that is 1.1 m from the slits. 
The third order maximum occurs at y = 5.4 mm. 

(a) Determine the wavelength of the light. (b) De- 
termine the angle 0 and position y on the screen 
of the fifth-order minimum. (c) Determine the 
highest-order maximum that can be observed. 

1 6 - 6 . 2 2  Light from a helium-neon laser (X = 
632.8 nm) is incident upon a two narrow slits. (a) If 
the fourth-order minimum is observed at 18 ~ deter- 
mine the slit separation. (b) Determine the largest 
order maximum that can be observed for this slit 
separation. (c) Repeat parts (a) and (b) for violet 
light of wavelength 440 nm. 

1 6 - 6 . 2 3  Light of wavelength 490 nm is incident 
on a Young's two-slit apparatus. (a) Find the max- 
imum slit separation for which there are no more 
than three maxima. (b) Find the maximum slit sep- 
aration for which there are no more than a single 
pair of minima. 

1 6 - 6 . 2 4  In a Young's two-slit experiment with 
light of wavelength 570 nm, the twelfth-order min- 
ima make an angle of 8.5 ~ to the zero-th order max- 
imum. (a) Determine the slit separation. (b) De- 
termine the angle associated with the fourth-order 
maximum. (c) Determine the slit separation that 
would give a fifth-order maximum at 75 ~ 

16-7.1 In 1816, Fresnel performed a two-source 
experiment with light from a source S and its reflec- 
tion S' (from a mirror), which recombined on the 
observing screen. See Figure 16.45. Show that for 
this geometry there is no possibility ofwhat  Newton 
called "inflection" effects, associated with scattering 
by edges. (Fresnel saw the same pattern as for two- 
slit diffraction. Thus the corpuscular theory failed 
to explain this experiment.) 

Figure 16.45 Problem 16-7.1. 

16-7.2 On the observation screen for a Young's 
interference experiment, just off the central maxi- 
mum the intensity falls off to 12% of the maximum. 
(a) Find the phase difference to which this corre- 
sponds. (b) For a slit separation of 0.35 mm and 
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wavelength 620 nm, find the angle on the screen to 
which this corresponds. 

1 6 - 7 . 3  In a Young's two-slit experiment, as in 
Figure 16.30, the distance to the screen is 62 cm, 
the slit separation is 0.23 mm, and the wavelength 
is 570 nm. (a) Find the distance y associated with 
the first-order maxima. (b) Find the distance y' 
above y where the intensity falls to 20% of the 
maximum. 

16-7.4 (a) Compare Young's observation of a 
bright spot at the center of the geometrical shadow 
of a rectangular slip of paper to Arago's observa- 
tion of a bright spot at the center of the geometrical 
shadow for a disk. (b) What would happen to the 
bright spot if the disk became irregular? 

16-7.5 Give a qualitative argument to explain 
why, at the center of the shadow of an opaque strip, 
there should be a bright fringe. Repeat for an opaque 
disk. 

16-7.6 White light is normally incident on a single 
slit of width 0.8/~m. (a) Determine the number of 
diffraction minima for blue light (460 nm) and for 
red light (680 nm). (b) Indicate the pattern on the 
observation screen within 30 ~ of the central maxi- 
mum. 

16-7.7 For monochromatic light normally inci- 
dent on a single slit of width 0.014 mm, the first 
diffraction minimum occurs at an angle of 1.5 ~ from 
the central maximum. Find the wavelength of the 
light. 

1 6 - 7 . 8  Light of wavelength 487 nm is normally 
incident on a narrow slit. On the observation screen, 
1.24 m from the slit, the distance between the third 
minimum on either side of the central maximum is 
1.58 cm. (a) Find the angle of diffraction of the third 
minimum. (b) Find the width of the slit. (c) Find 
the angle of diffraction for the first minimum, and 
its location on the screen. 

16-7.9 Light of wavelength 624 nm is normally 
incident on a narrow slit. On the observation screen, 
the angle between the second minima on either side 
of the central maximum is 0.88 ~ (a) Find the width 
of the slit. (b) Find the angle of diffraction for the 
first and third minima. 

16-7.10 Light of wavelength 560 nm (yellow) 
and 640 nm (red) is incident on a slit. Estimate the 
angle on the observation screen of the first common 
maximum of these colors if the first minimum for 
red light is at 1.24 ~ . 

16-7.11 Light of wavelength 468 nm is normally 
incident on a slit of width 0.35 mm. (a) Find the an- 
gle of the first minimum. (b) If the screen is 24 cm 
from the slit, find the position on the screen of the 
first minimum. 

1 6 - 7 . 1 2  (a) What happens to a diffraction pattern 
if the light is not normally incident on the slit? (b) 
What happens if the light is normally incident on 
the slit but the observation screen is tilted? (c) To get 
an accurate measure of the slit width, for a known 
wavelength of light, which is preferable to measure: 
the distance between the first minimum and the 
central maximum, or the distance between the first 
minima on opposite sides of the central maximum? 

1 6 - 7 . 1 3  Light of wavelength 690 nm is incident 
on a slit. On the observation screen, 65 cm away, 
the distance between the first two diffraction min- 
ima is 4.86 mm. (a) Find the slit width. (b) Find the 
angle and positions of the second minima. 

1 6 - 7 . 1 4  A laser of wavelength 620 nm is inci- 
dent on a wire of diameter 0.86 mm. (a) Find the 
angle associated with the first diffraction minima. 
(b) To maintain wire diameter within a tolerance of 
0.001 mm, determine to what accuracy the angle 
must be measured. 

16-7.15 A laser of wavelength 633 nm is incident 
on a fiber that is 0.56 m from an observing screen. 
If the first minima on opposite sides are separated 
by 3.6 mm, determine the diameter of the fiber. 

16-7 .16  In a single-slit diffraction experiment 
with monochromatic light, the maximum between 
the second and third minima is at 12.4 ~ and has 
intensity 0.68 W/m 2. If the minimum observ- 
able intensity is 0.21 W/m ?, identify the weakest 
observable maximum, and the approximate angle 
associated with it. 

1 6 - 7 . 1 7  (a) Show that, in (16.27), the secondary 
maxima occur for tan~ = ~, where c~ = zrw sin 0/~. 
(b) Show that, when this condition holds, I = 
Io COS 2 C~. 

16-7.18 A searchlight has wavelength 590 nm. 
(a) At what angle from the central beam is the first 
minimum? (b) For a person 240 m away, to what 
distance does this correspond? 

16-7.19 Light of wavelength 590 nm passing 
through a slit can resolve two line sources with an- 
gular separation 1.5 x 10 -4 radians. (a) Find the 
slit width. (b) For this slit width, find the limit 
of observable angular separation for x-rays with 
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wavelength 0.059 nm. (c) Repeat for microwaves 
with wavelength 0.59 m. 

1 6 - 7 . 2 0  A laser of wavelength 610 nm and beam 
diameter 0.8 mm is normally incident on an observ- 
ing screen 1.3 m away. An opaque sphere is centered 
in the path of the laser, 0.9 m from the screen. If the 
distance on the screen from the undeflected beam 
to the first minimum is 1.4 mm, estimate the diam- 
eter of the sphere. 

16-7.21 Light of wavelength 535 nm is emitted 
by two stars 84 light years away, and observed with 
a telescope of diameter 24 cm. (a) What minimum 
separation must the stars have to be distinguishable? 
(b) Compare this to the radius of the sun. (c) Re- 
peat part (a) for a radio telescope with diameter 
300 m at wavelength 21 cm. 

1 6 - 7 . 2 2  At night, driver A sees a distant on- 
coming car B, which has two headlights 1.46 m 
apart. The nighttime diameter of the pupil of 
driver A's eye is 6.8 ram. For a wavelength of 
550 nm, find (a) the minimum angular resolution 
at which driver A can distinguish the headlights 
of car B; (b) the distance between driver A and 
car B; (c) the time for the two cars to pass each 
other once driver A has resolved the headlights of 
car B (if each car moves at 60 mi/hr relative to 
the road). 

16-7.23 The 19th-century French painter 
Georges Seurat (the inspiration for Stephen Sond- 
heim's Broadway show Sunday in the Park with 
George) produced different colors not by mixing 
pigments, but with distinct, adjacent, dots of pig- 
ment that overlap in the eye due to diffraction. 
(a) Taking the diameter of the pupil of an eye in 
daylight to be 3.2 ram, for blue light (440 nm) find 
the diameter d at which two adjacent dots can just 
be resolved at 4 m. For distances closer (farther) 
than this, the dots can (cannot) be resolved. (b) Re- 
peat for the comfortable focus near point distance 
of 25 cm. (c) Not all eyes are alike. For another per- 
son, with daytime pupil diameter 2.8 mm, find the 
distance s at which the dots can just be resolved, 
using d from part (a). (d) In dim light, the pupil 
diameter expands. For a pupil diameter of 4.6 mm 
in twilight, find s. 

16-7 .24  An acoustic speaker of diameter 12 
inches, centered at the origin, is directed along the 
x-axis. If it emits sound at 120 Hz, find the smallest 
value of y for which the sound is a minimum at the 
point (20 m, y, 0). 

16-8.1 When the optic axis is in the plane of a slab 
of birefringent crystal of thickness d, for normal in- 
cidence there is a single ray of light but there are 
two sets of interference fringes. (a) If the indices of 
refraction in this situation are no and n~, derive the 
relationships for the two sets of interference max- 
ima in reflection. (b) For n o -  1.4 and n~ - 1.5, 
and d - 6 5 0  nm, find the colors from 400 nm to 
700 nm that are most intense in reflection, for each 
polarization. 

16 -8 .2  Give a qualitative explanation for the in- 
tensity patterns of Figure 16.33, including both po- 
sition and relative intensity. 

16-8.3 (a) In Example 16.12, find the additional 
"optical thickness" for light passing through the po- 
larizer. (b) For a slit separation of 0.8 mm, find 
the shift in deflection angles of the interference 
pattern on the observation screen. (Hint: An ex- 
tra path length is in some sense equivalent to the 
beam passing through the polarizer being farther 
away than the other beam. This corresponds to an 
angle that determines the shift in the interference 
pattern.) 

1 6 - 8 . 4  A thin transparent wedge of maximum 
thickness 235 nm and index of refraction 1.53 is 
placed in front of one slit in a two-slit interference 
experiment with slit separation 0.5 mm, as in Figure 
16.34. For light of wavelength 480 nm, determine 
the net shift in angle of the interference pattern 
on the screen, as the wedge moves all the way across 
the slit. 

16-9.1 A grating has ten slits, with a slit separation 
of 2800 nm. (a) If it is illuminated with blue light 
(440 nm), determine the largest-order maximum. 
(b) Determine the angular positions of all the max- 
ima. (c) For yellow light (580 nm), determine the 
largest-order maximum. (d) For m - 1 and yellow 
light, determine the angular width. (e) Determine 
the spread in wavelength about 440 nm that can be 
observed for m - 1. 

16 -9 .2  A diffraction grating 15.2 mm wide has 
8200 rulings. (a) Find the distance between adjacent 
rulings. (b) For a ruby laser (wavelength 690 nm), 
find the number of diffraction maxima. (c) Find the 
angles for the maxima. 

1 6 - 9 . 3  Monochromatic light is incident on a 
diffraction grating with rulings separated by 
5200 nm. The third maximum occurs at 17~ '. 
(a) Find the wavelength of the light. (b) Find the 



734 Chapter 16 u Optics 

number of maxima. (c) Find the angle for the sixth 
maximum. 

16-9.4 Show that the intensity pattern for three 
narrow slits with uniform spacing d is 

10 
I = -~ (1 + 4 cos a + 4 cos 2 a), 

and Io is the intensity for 0 = O. 

2n d sin 0 

k 

16-9.5 A grating has 240 rulings/mm. Find the 
observable range of visible wavelengths in the sev- 
enth order. 

1 6 - 9 . 6  A grating has 270 rulings/ram. It has a 
principal maximum at 35 :. Find the possible visi- 
ble wavelengths corresponding to such a maximum, 
and the order for each of these wavelengths. 

16-9.7 For a grating that is 1.2 cm wide, a princi- 
pal maximum at 526 nm is observed in third order 
at 32 ~ . Find the number of lines in the grating. 

16-9.8 (a) To resolve two spectral lines at 
487.45 nm and 487.62 nm, find the necessary re- 
solving power. (b) For a grating with 1250 rulings, 
find the minimum order to give at least this resolu- 
tion. (c) At this order, find the width of the grating 
that will give this resolution for an observation angle 
of 48 ~ 

16-9.9 Hydrogen (H1) and its isotope deuterium 
(H~) have lines at respective wavelengths of 
656.45 nm and 656.27 nm. To determine their 
presence on the sun, diffraction measurements are 
made. Find the minimum number of slits needed to 
resolve these lines in third order. 

1 6 - 9 . 1 0  (a) For a grating with 2600 rulings and 
ruling separation d - 1800 nm, and light of a wave~ 
length 520 nm, find the angles that correspond to 
all diffraction maxima. For the second-order maxi- 
mum, find (b) the angular width, (c) the dispersion, 
(d) the resolving power. 

16 -9 .11  For a diffraction grating with grating sep- 
aration d, it is implicit that the width w of each 
ruling (transmission or diffraction grating) is less 
than d. The text considered only the case w <( d. 
(a) Show that there is no diffraction for w - d, and 
show that w > d has no meaning. (b) Show that, 
when d = 2w, all the even orders are missing from 
a diffraction pattern. (Hint: Consider the diffrac- 
tion pattern due to an individual slit of width w.) 
(c) When 2d = 3w, identify the orders that are 
missing from a diffraction pattern. These results are 
independent of d and ;~. 

16-9.12 The rate of expansion of the universe is 
determined by analyzing diffraction grating experi- 
ments. When a star moves directly away from the 
earth with velocity v, its frequency f0 is shifted to 
the lower value f - f0v/(1 - v/c)/(1 + v/c). This 
is known as the relativistic Doppler shift. (a) How 
are the wavelengths shifted? (b) If the hydrogen 
line corresponding to 656.45 nm is identified, but 
it is shifted to 765.34 nm, what is the recession ve- 
locity of the star? It is found experimentally that 
the farther away a star is, the greater its recession 
velocity. 

16-10.1 (a) For a Bragg angle of 10 ~ determine 
the scattering angle. (b) Repeat for a Bragg angle of 
80 ~ . 

1 6 - 1 0 . 2  For scattering planes of separation 
0.275 nm, find the scattering angles and the 
Bragg angles 0 associated with second- and third- 
order Bragg scattering of radiation of wavelength 
0.065 nm. 

1 6 - 1 0 . 3  For x-rays of wavelength 0.085 nm, a 
Bragg angle of 15.4 ~ is observed. Find the planar 
separation d to which this corresponds. 

1 6 - 1 0 . 4  For a set of NaC1 planes the interplanar 
spacing is 0.0796 nm. For an x-ray beam making a 
26 ~ angle to the normal to these planes, first-order 
Bragg reflection is observed. Find the wavelength of 
the x-rays. 

1 6 - 1 0 . 5  A beam of x-rays contains wavelengths 
in the range 0.008 nm to 0.014 nm. It is incident 
at 36.7 ~ relative to the normal to a family of planes 
with d = 0.0284 nm. Find which wavelengths are 
Bragg diffracted. 

1 6 - 1 0 . 6  A crystal consists of identical atoms lo- 
cated on a simple cubic lattice, with nearest neigh- 
bor distance a = 0.45 nm. (a) What wavelength is 
needed to make a Bragg angle of 35 ~ relative to a 
plane of atoms with plane separation a? (b) Repeat 
for a plane separation a/~/-2. 

1 6 - 1 0 . 7  Consider a crystal with scattering planes 
of separation 0.342 nm. (a) Determine the wave- 
length and frequency of the radiation needed to pro- 
duce a first-order Bragg angle of 17.4 ~ (b) Repeat 
for a scattering angle of 46.5 ~ 

1 6 - 1 0 . 8  A simple cubic crystal with nearest 
neighbor distance a -  0.45 nm is ground into a 
powder and 0.34 nm x-rays are used to obtain 
a powder pattern. Find the Bragg angle and the 
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scattering angle for the largest diameter ring that 
is observed. 

16 -10 .9  For planes that go through only a few 
atoms in a crystal, the density of atoms in that plane 
must be relatively low. Explain why the scattering 
angles must be relatively large. 

16-G. 1 Discuss why the mechanism for color sep- 
aration by a thin filmmwhere each color has a dif- 
ferent number of wavelengths that span the filmmis 
different than the mechanism for color separation 
by a prismmwhere each color has a different index 
of refraction. 

16-G.2  Derive the equation for the rainbow 
angle, following (16.5). 

1 6 - G . 3  Derive (16.26). 

1 6 - G . 4  Derive the angular dependence of the in- 
tensity profile for light of wavelength )~ normally 
incident on two slits separated by d and each with 
slit width w. 

16-G.5 Find the intensity profile for two slits with 
light normally incident from the same source, with 
wavelength X. One slit has width w (net intensity 
I0), and the other has width w/2 (net intensity 
I0/2). Take their separation d >> w. 

.......... !a!!i~,~ii{i}i~{i~,:i:i ......... 16-G.6  Monochromatic light of wave- 
...... < .... .............. length ,~ is incident on a series of slits sepa- 

rated by d, as in Figure 16.46. (a) Show that the con- 
dition for a maximum is that d(sin ~b + sin 0) - m)~. 
(b) Show that, for ~b + 0 = 90 ~ this reproduces the 
result for Young's micrometer. (c) Show that, for 
q~ = 0, this reproduces (16.30), the result for the 
usual geometry of a diffraction grating. (d) Show 

that, for ~b = 0, this reproduces (16.41), the result 
for the usual geometry of Bragg scattering. 

.......... '!!!!iii{i}iiii~{ii,:;;;i_~:~ ....... 16-G.7  (a) Using phasors, show that for N 
............. ~ ..................... narrow slits, each of which transmits ampli- 

tude A0, the net amplitude on transmission is given 
by 

A -  A0 sin(N~/2) 
sin(~/2) ' 

where ~ = 2Jrd sin 0/)~. (b) Show that the time- 
averaged intensity is then given by 

sin 2 (N~/2) 
i = I 0  

sin2 (~/2) ' 

where I0 is the time-averaged intensity of a single 
slit. (c) Show that for N = 2 this reduces to (16.22). 

16-G.8  Consider N slits. When the finite 
iiiii::l!~:i:::::!: .............. width w of each slit is included, the total 

transmitted amplitude A~ includes a factor that de- 
pends on the observer's orientation with respect to 
the slit, and depends on w. Use (16.26) for the 
amplitude of a single slit, but with r replaced by 
r -  kd sin 0, where k is an index from 1 to N for 
the slit number. Show that A~ equals A of Problem 
16-G.6 multiplied by the factor 1(2 sin fl/2)/fi], 
where fi = 2few sin 0/)~, and that the intensity I~ 
equals I of Problem 16-G.6 multiplied by this fac- 
tor squared. Notice the modulation in Figure 16.36. 

...... ~:~:;~ ........ 16 -G.9  Water occupies the half-space x > 
....... ~;;':;::;ii: ............... 0. Air is to the left. See Figure 16.47. A light 

source is at (d,0), and an observer is at (-a,b). 
(a) Find expressions for the angles 0 and ~b in 
terms of the source and observer cordinates. Now 
consider that 0 and ~b are known. (b) For a ray 
from the source at an extra angle dO, find the ex- 
tra angle &b. (c) Trace the rays seen by the ob- 
server at these two angles. Show that their inter- 
section, which gives the position of the (virtual) 
image, corresponds to d'=(d/n)(cos~/cosO) 3, 
s = dtan0[1 - (cos~b/cos0)2]. (d) For 0 = 30 ~ , 
show that d'/d = 0.611 and s/d = 0.1497. 

Figure 16.46 Problem 16-G.6. Figure 16.47 Problem 16-G.9. 



Plate 1 White light through a prism. 

A beam of white light passed through an equilateral triangular prism. The white light is 
a composite of many pure colors with their own characteristic wavelengths and indices 
of refraction. On passing through the prism, each individual wavelength is refracted 
differently, thus splitting the beam into its component wavelengths, and revealing the 
full spectrum of visible light. 



Plate 2 Double rainbow. 

To see a rainbow, the observer must be between the Sun (behind the observer) and raindrops in the sky (in front of the 
observer). The primary rainbow is due to sunlight that refracts on entering the raindrop, reflects once within the raindrop, 
and then refracts on leaving the raindrop. See Figure 16.9. If all wavelengths had the same index of refraction, the rainbow 
would be seen as a sharp bright white ring, but due to the different indices of refraction, there is a spread of colors. The 
secondary rainbow is due to sunlight that refracts on entering the raindrop, reflects twice within the raindrop, and then 
refracts on leaving the raindrop. The colors are reversed in the secondary rainbow, relative to the primary rainbow. 



Plate 3 Soap film. 

The colors of soap films (and oil slicks) are basically due to interference between (1) light that reflects off the 
front surface, and (2) light that enters the soap film, reflects off the back surface, and then transmits back to the 
incident direction. The effect is sensitive to the thickness of the soap film and the path from the light source to 
the observer, so that the pattern can change if either the light source moves or if the observer moves. For very 
thin films, all colors are subject to destructive interference, so that the bubble appears to be black. For slightly 
thicker films, constructive interference can occur, but only for selective wavelengths. For thick films, the number 
of visible wavelengths that can interfere constructively is so large that all colors seem to be equally reflected. As 
water from the soap film evaporates, and the film thins, the soap film displays all three of these phenomena. 



Plate 4 Soap bubble. 

As for a soap film, the colors of a soap bubble are due to interference between 
(1) light that reflects off the front surface, and (2) light that enters the soap film, 
reflects off the back surface, and then transmits back to the incident direction. The 
effect is sensitive to the thickness of the soap film and the path from the light source 
to the observer, so that the pattern can change if either the light source moves or if 
the observer moves. Part of the different coloration seen here is due to the varying 
film thickness, and part to the varying observation angle. 

Plate 5 Peacock feather. 

The colors of a peacock feather are due both to the ordinary coloration effect of 
preferential absorption by pigments and to the effects of interference between the 
front and back of the feather, thought of as a thin film. The latter effect leads to 
the shimmery irridescence of the peacock feather, because interference effects 
depend upon the path length of the light and thus the position of the observer. 
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General Mathematics Review 

Aol Simple Equations 

(a) A straight line is represented by 

y - m x + b ,  

where b is the intercept (the value of y for x - 0) and m is the slope. Another 
representation of a straight line is 

y - m ( x  - xo)  + y0, 

where the straight line passes through the point (x0, 37o). 

(b) The quadratic equation is defined by 

a x  2 + b x  + c - O. 

Its solution is obtained as follows. Let b' - b / a  and c' - c / a .  Then define d 
by 

0 - a(x 2 + b ' x  + c') - a [ ( x  + b ' / 2  + d ) ( x  + b ' / 2  - d)]. 

Thus d satisfies c ' -  ( b ' / 2  + d ) ( b ' / 2  - d)  = b '2 /4  - d 2, so d - 4- v / b ' 2 / 4  - c'. 

This leads to the two solutions 

b' - b  4- ~/b 2 - 4 a c  
x•  - 4- d '  = 

2 2a  

A.2 Scientific Notation and Powers 

(a) Decimal notation is not to be taken for granted: it was not commonly used 
in Galileo's time, and Galileo did not use it for analyzing his experimental 
results. He might have approximated a number like 6.12 as the rational 
fraction 6�89 and performed calculations with that quantity. 

For n > 0, l0 n means 10 multiplied by itself n times. Thus 103=  
(10) (10) (10) - 1000. For n - 0, 10 n - 10 ~ means 1. For n < 0, 10 n means 
1/10 -n. Thus 10 -3 - 1 / [ (10 ) (10 ) (10 ) ] -  1 / 1 0 0 0 -  0.001. Putting it all 
together, the number 78.24 means 7 101's plus 8 10~ plus 2 10-1's plus 
4 10-2's. 

(b) The rules for multiplying powers of x are 

x m x  n ~ xm+ n. 

( x m ) n  - -  x mn. 

A-1 
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As long as m and n are integers, it is clear how to calculate these quanti-  
ties. The next  section shows how to calculate these quantities for any real m 
and n. 

We also have, for fractional powers or roots, 

1 

(r We now define the logari thm and the antilogarithm. Let 

x - a y. 

Here a ~ 0 is called the base. [In Section A.(22), above, the base was 10, 
and for computers  typically it is 2.] Note  that  if y -  0, then x -  1, and if 
y -  1 then x - a. 

Thinking of this as x - f ( y ) ,  and noting that  this is a 1-to- 1 function, a unique 
inverse function y -  f -~ (x) exists. (Inverse functions are obtained by plott ing 
y - g ( x )  and then reflecting the curve through the line y ~ x, so that  x and y 
interchange.) This particular inverse function is called the logarithm, and it is 
wri t ten as 

y -  1OgaX. 

Since y ~- 0 if x -- 1, we deduce that  log~ 1 ~ 0 for all a. Since y - 1 if x ~ a, 

we deduce that  logaa -~ 1 for all a. 
Naturally, the inverse function of the logari thm ( y - -  lOgaX ), called the an- 

ti logarithm, is x itself: 

x -  a n t i l o g a y -  a l~ 

Let xl - ay~ and x2 - ay2, so yl - log~xl and y2 - lOgaX2. Then xl  x2 - ay~ ay2 

a yl§ Hence Yl 4- y2 - l o g a ( X l X 2 ) .  Thus 

log a (xl x2) - 1OgaXl 4- lOgaX2. 

Similarly we can show that  

1 
log a m -- _logaXl. 

X1 

log a x n - -  n logax .  

Applying log a to both  sides of b l~ - a gives ( l o g b a ) ( l o g a b )  --  1, so 

1 
l ~  log~b" 

To convert  from logarithms in base b to logarithms in base a we apply 
log b to both  sides of ay - x, which yields ylogba - logbx. Then with y - log~x 
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we have 

logbx 
log~x-  logba. 

Natural logarithms involve the base e = 2.718.. . ,  for which 1Ogel0 = 
2.302585. The proper definition of e is given in Section A.4. It makes the 
calculation of logarithms and antilogarithms (also known as exponentials) 
relatively simple, and thus it enables the calculation of quantities like x 'n as 
X m - -  eloge xm __ emloge x .  

Logarithms to the base 10 are the basis of the pre-electronic calculator device 
known as the slide rule. These involve rods calibrated with lengths along x given 
by the logarithm to the base 10 of x. Hence, on adding lengths from rods 1 and 
2 (with the origin relative to rod 1), the logarithms are added (e.g., logl0xl and 
loglox2 ), giving a net length on rod 1 corresponding to loglo(xlx2 ). The number 
on rod 1 corresponding to that length is xl x2. 

Ao3 Arc Length and Trigonometry 

(a) The arc length s of a circle is proportional to the radius r of the circle and 
the angle 0 subtended by that arc (where we don't yet specify the angular 
units, which could be radians or degrees or whatever). Since s and r have 
the same units, for arbitrary angular units we write 

s - ~Or, 

where ~ is a constant that depends on our units. To determine ~, we note that 
s - 27rr for a complete circle. In radian measure we take Olra d - -  1, SO 0 - -  271" 
radians determines a circle. In angular measure we have 2Jrr - ~deg360r, so 
Oldeg - -  Jr/180. 

~ s  Figure A.1 Arc length. 
rO 

r 

(b) The basis of trigonometry is the right triangle, where we will label the sides 
x and y and the angle 0. Note that x is the side adjacent to O, and y is the 
side opposite to 0. The hypotenuse h is defined by the Pythagorean theorem 

h 2 _ x 2 + y2. 

h J 

X 

y Figure A.2 Right triangle. 

There are six dimensionless ratios of these sides, which define the 
six trigonometric functions sine, cosine, tangent, cosecant, secant, and 
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c o t a n g e n t .  Specif ical ly,  

sin 0 -- y 
h" 

x 
c o s  0 - = .  

h 

V 
t a n  0 - ~ .  

x 

h 
csc 0 - - - 

Y 

h 
sec 0 - - - 

x 

sin 0 

1 

c o s 0  

x 

c o t 0  . . . .  . 
y t a n  0 

S o m e t i m e s  co t  0 is w r i t t e n  as c tn  0. 
For  smal l  0, an arc is n e a r l y  a r i g h t  t r i ang l e  w i t h  h ~ r ,  x ~ r ,  a n d  y ~ s. 

H e n c e ,  for  smal l  0 in r a d i a n  m e a s u r e ,  sin 0 ~ t a n  0 ~ 0 a n d  cos 0 -~ 1. 

(c} T h e  t r i g o n o m e t r i c  f u n c t i o n s  sa t is fy  t h e  f o l l o w i n g  r e l a t i ons  (in d e g r e e  m e a -  
sure)" 

sin 0 - c o s ( 9 0  ~ - 0).  

cos 0 - s i n ( 9 0  ~ - 0) .  

t a n  0 - c o t ( 9 0  ~ - 0) .  

T h e y  h a v e  t h e  f o l l o w i n g  p r o p e r t i e s :  

s i n ( - 0 )  = - sin 0. 

c o s ( - 0 )  = c o s 0 .  

t an  ( - 0 )  = - t a n  0. 

s in(0  + 180  ~ = - sin 0. 

cos(0  + 180  ~ = - cos 0. 

t a n ( 0  + 180  ~ = t an  0. 

(d} U s i n g  t h e  P y t h a g o r e a n  t h e o r e m ,  an in f in i te  n u m b e r  o f  t r i g o n o m e t r i c  i d e n -  

t i t ies  can  b e  d e r i v e d ,  t h e  s i m p l e s t  o f  w h i c h  are  

sin 2 0 + cos  2 0 = 1. 

sec 2 0 = 1 + t a n  2 0. 

csc z0  = 1 + co t  20.  

( e )  In a d d i t i o n ,  t h e r e  are  laws  for  t h e  t r i g o n o m e t r i c  f u n c t i o n s  o f  t h e  s u m  o f  
t w o  angles:  

s i n ( A  + B) - sin A c o s  B + cos A s i n  B. 
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From the properties of the sine function under B -+ - B  we then have 

s i n ( A -  B) = sin A cos B - cos Asin B. 

From the relations between the sine and cosine functions we have that  

cos(A + B) = cos Acos B - sin Asin B. 

From the properties of the cosine function under B -~ - B  we then have 

c o s ( A -  B) = cos Acos B + sin Asin B. 

The sum of the relations for the sines yields 

s i n A + s i n B = 2 s i n  ~ ( A + B )  cos ~ . 

The difference of the relations for the sines yields 

s i n A - s i n B - 2 s i n  . ~ ( A - B )  cos ~ . 

The sum of the relations for the cosines yields 

c o s A + c o s B - 2 c o s  ~ ( A + B )  cos ~ 

The difference of the relations for the cosines yields 

cosA- cos B - 2sin [ l  (A+ B)] sin [2(B - A)]. 

Note that, by use of the properties of the trigonometric functions, a knowl- 
edge of any of the above relations can be used to obtain any of the others. For 
example, in the last ofthese relations, letting A -+ 90 ~ - Aand B -+ 90 ~ - B 
leads to the second relation. 

Setting A = B = 0 in two of the above equations yields 

sin 20 = 2 sin 0 cos 0. 

cos 20 = cos 2 0 - s i n  2 0. 

From these relations a number  of others can be derived, such as 

2 tan 0 
tan 20 = 

1 - tan 2 0 

sin 2 -- ~ (1 - cos 0). 

cos 2 - ~ (1 + cos 0). 

cos0 
tan - -  �9 

+ cos 0'  

where + holds for 0 /2  in the first or third quadrants, and - holds otherwise. 
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(f) For the general triangle, with angles ~, ~, y respectively opposite sides a, b, 
c, two classes of relations hold. (Note that, in degree measure, ~ + fi + y - 
180.) One is the Law of Sines: 

a b c 
, _ _  - -  

sin c~ sin fl sin y 

They follow on finding, for each base, the altitudes in two different ways. 

C 

altitude = asin/3 = bsina 

Figure A.3 G e n e r a l  t r i ang le .  

The other is the Law of Cosines" 

a 2 -  b 2 + c 2 -  2bc cos~. 

b 2 -  c 2 -+-a 2 -  2ca cos ft. 

c 2 -  a 2 + b e - 2ab cos y. 

They are related by what is called cyclic permutation. (Can you see the rela- 
tionships?) These equations follow on determining each side in two differ- 
ent ways. For example, the last of these equations follows on squaring both 
sides of c = a sin fl + b sin ~, rearranging the right-hand side using the Law 
of Sines, and using c~ + fl + y = 180. 

A o 4 Differential Calculus 

(a) Differential calculus applied to y = f (x) is merely finding the value of the 
slope at any point x. For example, to find the straight line that is tangent 
to f ( x )  at (x0,y0), we compute m = d f / d x  at )co and then use this in the 
second form of the straight line, given in Section A. 1 (a). 

Here are some basic results about taking derivatives: 

d d f  dg 
dx  ( f g )  - -~x g + f dx  " 

(product rule) 

d d f  
d x ( f + g ) -  -~x -4- - -  

ag 
d x "  

(sum rule) 

d f  d f  du 

dx du dx" 
(chain rule) 

In this last case, f -  f (u) and u - u(x). 



A.4 Differential Calculus A-7 

(b} Here are some specific results: 

d 
X n m Y t X  n -  l 

dx 

The above result is proved straightforwardly in calculus texts for integer 
n. For rational n -  p / q  with p and q integers it can be proved by writing 
y - x n - x p / q  in the form yq  - -  x p, and then taking d / d x  to both sides (i.e., 
implicit differentiation) to find d y / d x .  Once the result is established for 
rational n it can be established, by a limiting process, for all real n. 

In what  follows, a is a constant, and in means the natural logarithm (the 
logarithm in the base e, or 1Oge). 

d 

dx  
sin(ax) = a c o s ( a x ) .  

d 
dx  cos(ax) - - a  sin(ax). 

d 

dx  
- -  tan(ax) - a sec 2 (ax). 

d c o t ( a x ) _ _ a c s c 2 ( a x ) "  
dx  

d 
dx  sec(ax) - a tan(ax) sec(ax). 

d 
dx  csc(ax) - - a  cot(ax) csc(ax). 

d 1 
dx  ln(ax) - -'x 

d 
e a x  _ _  ae ax. 

dx  

The last result serves to define e. 

(r Here are some power series expansions that  can be established by showing 
that the quantities on both sides of the equals sign have the same value at 
x = 0 and that  the derivatives of both sides are the same. 

The first expansion enables us to compute e: 

x 2 x 3 
eX--  l + x + ~ .  +-~.. + "'" 

Applying this to the case x -  1, the left-hand side gives e, and including 
terms to x 6 the right-hand side gives ~ 2.71806. This is more or less what  a 
calculator does when it computes an exponential. 

Next  is the binomial theorem, applicable for Ixl < 1: 

(1 + X )  n = 1 + nx + 
- n ( n  - 1)  ( n  - 3) x3  § n(n 1) x2 + . . .  

2 ~. 3 ~. 



A-8 Appendix A ~ General Mathematics Review 

(Here  n! = n(n - 1 ) . . .  1, so 3! = 3 �9 2 . 1  = 6.) W h e n  n is a posit ive integer, 
this is a series wi th  n terms,  the  last of wh ich  is x n. An i m p o r t a n t  special case 
is n = - 1 :  

l + x  
= (1 + x ) - ~  - 1 - x +  x 2 - x 3 + . . -  

The  logar i thm is given by 

x 2 x 3 
ln(1 + x) - x -  -~- + -~  . . . .  

This is more  or less w h a t  a calculator  does w h e n  it c o m p u t e s  a logar i thm.  
You can verify tha t  bo th  sides agree for x = 0 and tha t  the  derivat ive of bo th  
sides gives bo th  sides of the  previous equat ion,  for (1 + x) -1 . 

In radian measure  for x, we have 

x 3 x 5 

s i n x - x -  3T. + ~ .  . . . .  

x 2 x 4 

cos x -  1 - ~ .  + 4T. . . . .  

x 3 2x s 
t a n x - x +  ~ .  + - i T  + " "  

Opera t ing  wi th  d/dx  on sin y = x gives cos y(dy/dx)  = 1. O n  employ-  

ing cos y = v/ i  - sin 2 y - ~/1 - x 2 and the  b inomia l  t h e o r e m  wi th  (x, n) 
( - x  2, -�89 we obtain  

dy d 1 1 1 2 3x4 5 x 6  
dx = dx sin-1 x = = = 1 + + + + . . .  

COS y ~ / l  - -  X 2 ~ X 

The  power  series for y = sin -1 x itself is 

�9 - 1  
s i n  1 3 4-3 x5 5 x7 x -  x + -~ x + + T-~ + " "  

You can verify tha t  bo th  sides agree for x = 0 and tha t  the  derivative of 
bo th  sides gives bo th  sides of the  previous equat ion.  For x = zc/6, or 30 ~ 
zr/6 - s in-  1 (�89 Including t e rms  to X 7 gives Jr ~ 3 .141155 .  This is more  or 

less w h a t  a calculator  does w h e n  it c o m p u t e s  a sine funct ion.  
The  inverse funct ion for different ia t ion does not  qui te  exist, because  bo th  

F (x) and F (x) + a for any cons tan t  a have the  same derivative f (x), wh ich  
we  will call dF/dx.  Nevertheless ,  we talk of the  antiderivative,  or inverse 
funct ion  F (x), wh ich  is defined up to an arbitrary constant .  
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A~ Integral Calculus 

fa X G(x) - G(a) - f (x) dx 

is called the indefinite integral of the function f (x) over the domain from a 
to x. It corresponds to the area under the curve f (x) for that domain. Thus 
integration is just a form of addition, where an infinite number of very small 
terms are summed. It has the property that dG/dx = f(x) ,  so that f (x )  is the 
derivative of G(x). Hence the integral is equal to the antiderivative, if the latter 
can be obtained (and is determined only up to an arbitrary constant.) In this 
way, many of the following integrals may be obtained from the corresponding 
derivatives: 

f xn+l xndx - ~ .  n ~ - I  
n + l  

f dx _ lnx o 
x 

ea x 
eaXdx - ~ .  a 

f sin(ax) d x -  cos(ax). 
a 

f cos(ax) d x -  sin(ax). 
a 

f sec d x -  tan(ax). 
a 

f csc d x -  cot(ax). 
a 

The following integrals can be obtained by a change of variable to u = cos x 
(and u = sin x) and using the integral for the logarithm: 

f tan(ax) d x -  ln[cos(ax)]. 
a 

f cot(ax) dx - ln[sin(ax)]. 
a 

This integral may be obtained by a change of variable to u = a + bx and using 
the integral for the logarithm: 

f dx _ ln (a+bx)  
a + b x  - b " 

Differentiation of the above with respect to b yields 

f dx - _  1 
(a + bx) 2 -  b(a + bx)" 
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Some inverse trigonometric functions are 

f dx 1 1 x 
= - t a n -  - 

a 2 + x 2 a a 

f dx �9 -1 x - -  s i n  - 
x / a  2 _ x 2 a 

Integration by parts sometimes permits integrals to be evaluated: 

f udv - uv - f vdu, 

which follows from integration on the chain rule in the form d(uv) = udv + du v. 
Here are some other useful integrals, the first three evaluated using integration 

by parts: 

f ln(ax) dx - xln(ax) - x. 

f ea x xe ax d x -  (ax - 1) a2 . 

f ea x x2e ax d x -  ( a 2 x  2 - 2ax + 2) a3 . 

f x 2dx- a 2 _-- 2_~ln(X- a ) x  + a " (x2 > a2) 

f dx _- l l n ( a + x ) .  (x2<a2)  
a 2 - x 2 2a a -  x 

f xdx _ l l n ( a  2+x2).  
a 2 + x 2 2 

f x / x  4- a 2 

x d x  = _ , / a 2  - x 2  

f x/a - x 2 

f xdx = V/x2 + a2" 
,,Ix 2 4- a 2 
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Introduction to Spreadsheets 

This introduction is given for those who are not already acquainted with spread- 
sheets. Each particular spreadsheet has its own symbols for certain operations, 
but all spreadsheets have the same basic operations. To be specific, we will use 
our spreadsheet to solve for the force on the charge q given in Figure 2.7. 

A spreadsheet is a computer program (or application) that sets up rows and 
columns of cells, and permits mathematical manipulations on the entries in those 
cells. Because of this possibility of manipulation, we can think of spreadsheet use 
as programming without programming. 

A cell can appear in either of two ways: either as one of many cells in the 
full matrix of cells, or as the entry cell. Figure B. 1 shows the rows and columns 
of our spreadsheet. At the top is the entry bar, which happens to be that for 
cell E3. (We choose the entry bar by clicking on the corresponding cell in the 
spreadsheet, using the "mouse.") Below the entry bar are the rows and columns 
of the spreadsheet. In the entry bar, the boxes with the big X and big check are 
to reject or accept a typed-in entry. 

We now describe the entry of the data and the arrangement of this par- 
ticular application of the spreadsheet. (You may find a better way to set up 
your spreadsheet~what follows is merely an example.) Some of the entries 
simply define other entries. The numerical values are given just before Figure 
2.7: q = 2.0 x 10 -9 C, ql = -4 .0  x 10 -9 C andq2 = 6.0 x 10 -9 C, R1 = 0.2 m, 
R2 = 0.3 m, and 02 = 55 degrees. 

Cell A l~symbol  k; cell B l~numerica l  value of k. 

Cells A2, A3, and A4~symbols q, ql, and q2; cells B2, B3, and B4~numerical 
values for q, ql, and q2. 

Cells C1 and D l~symbols  x and y; cells C2 and D2--numerical values for 
x and y; cells C3 and D3~numerical  values for xl and yl; cells C4 and 
D4~numerical  values for x2 and y2. 

Cells E2, F2, and G2~symbols x - Xn, y -- Yn, and Rn, to represent coordinate 
differences and relative distances Rn = I r -  rnl of qn ( n -  1,2) with respect 
to q. 

Cells H2, I2, and J2~symbols F*, Fx, and Fy, for the (signed) magnitudes 
of the forces, and their x and y components. [From (3.12'), for ql we have 
F* - kqql / R~. ] 

Here are some simple rules about spreadsheets. 

1. If in cell X5 you want the number corresponding to the product of the 
numbers in cells X3 and X4, then in the entry bar for cell X5 you 
type=  X3*X4. The=s ign  tells the spreadsheet to perform the numerical 

A-11 
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z3 Ix 14 =$c$2-c3 
A B C D E F 

, |  

k 9E+9 x y 

q 2E-9 0 0 x-x n Y-Yn 

ql -4E-9 0.2 0 -0.2 0 

q2 6E-9 1.720E-1 2.457E- 1 -1.72E-1 -2.45E-1 

G H ! J 

-41.483 1.483E-61.112E-6 -9.83E-'7 
| 

R n F* F x Fy 

0.2 -1.8E-6 1.8E-6 0 
. . . . .  

0.3 1.2E-6 -6.88E-6 -9.83E-7 

Figure B.1 Example of a spreadsheet. 

computation indicated in the entry bar for that cell; without it, only the for- 
mula X3*X4 will appear in the spreadsheet cell. Presently, cell E3 contains 
the e n t r y -  $ C $ 2 -  C3. We'll explain the meaning of the $ symbol shortly. 

2. Spreadsheets have a powerful command called fill, which enables us to do 
repetitive calculations very easily. If cell E3 contains the product of E 1 and E2 
in the form = E 1 *E2, you can use the fill command to convert F3 to = F1 *F2. 
If cell E3 contains this same product in the form = SE$2*E3, then the fill 
command will place = SE$2*F3 in F3; in other words, the $ symbol means 
that the next symbol does not get updated when one changes row or column. 
[At the top of the spreadsheet is a menu bar containing an entry called "Edit" 
or "Calculate." Clicking on this will expose a column of possible operations, 
including "Fill Down" and "Fill Right." To perform the above "fill," highlight 
both cells E3 and F3, and then click on "Fill Right."] 

Let us now employ these rules. Although cell E3 contains the number -0.2,  
when we click on cell E3 we find in the entry bar the expression = $ C $ 2 -  C3. 
This represents the number in cell C2 minus the number in cell C3; that is, the 
difference in the x-coordinates of the charges q and ql" x - xl. 

Cell G3 contains the formula-  SQRT(E3* 2 + F3 ^ 2), for the separation 
^ 

rl between q and ql. Cell H3 contains the formula-$B$1*$B$2*B3/G3 2, 
^ 

for F* due to ql. Cell I3 contains the formula-$B$1*$B$2*B3*E3/G3 3, 
for the x-component of the force due to ql. Cell J3 contains the formula-  
SB$1*$B$2*B3*F3/G3 *3, for the y-component of the force due to ql. 

Cells G4, H4, I4, and J4 are similarly defined, but for q2. 
Cell I 1 contains the formula - SUM(I3..I4), meaning the sum of the contents 

of cells I3 to I4, giving the total x-component of the force on q. 
Cell J1 gives the total y-component of the force on q, and Cell H1 

contains-  SQRT(I1 *2 + J1 *2) for the magnitude of the total force on q. Cell 
G 1 gives the angle 0 (in radians) that the force makes with respect to the x-axis, 
computed from the e n t r y -  ATAN2(J 1/I1). 

To move a charge, we simply change its coordinates and the spreadsheet 
nearly instantly gives us the new answer. The fill command of the spreadsheet 
enables us to add in charges q3, q4, etc. with minimum difficulty. 
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Sol utions to Odd-N u m bered 
Problems 

R-2.1 The ground wire provides an alternate cur- 
rent path that carries more current. 

R-2.3 (a) 0 A, 0 W. (b) 2 A, rightward, 20 W. 
(c) 1 A, rightward, 5 W. (d) 1 A, leftward, 5 W. 
(e) 2 A, leftward, 20 W. 

R-2.5  These precautions prevent current from 
flowing through the torso of your body. 

R-3.1 Computers, VCRs, microwaves. 

R-4.1 (a) 20 a .  (b) 0.2 W. (c) 960 J. (d) 480 C. 

R-5.1 (a) No. (b) The monitor can't work without 
power. 

11-6.1 Her hair becomes charged and the strands 
repel each other. 

11-6.3 The source provides a voltage, not a current. 

R-6.5  You develop a charge by rubbing against the 
seat as you leave the car. Holding onto the outside 
surface as you exit allows the charge to leave grad- 
ually. Touching the outside surface only after you 
are outside forces the charge to leave all at once, 
shocking you. 

1t-7.1 (a) 3. (b) 3. (c) 3. (d) In the first case there 
is a collective effect; in the other cases there is an 
individual effect. 

R-7.3 For an insulator a minus indicates an excess 
electron and a plus a deficit of an electron exactly at 
that spot. For a conductor they represent an excess 
or deficit in the average density of the conduction 
electrons in one mole. 

R-7.5 (a) Assume that the extra charge carrier is a 
positive ion. The bulk of the liquid is neutral and all 
excess charge is due to ions distributed over its sur- 
face. (b) Assume that the extra charge carrier is an 
electron. The bulk is neutral and all excess charge, 
due to electrons, is distributed over its surface. 

R-7.7 (a) Yes. (b) In pure water electric current is 
entirely due to H § and OH-  ion movement. In salt 
water the current is dominated by the movement 

of Na + and C1- ions. In metal wire the current is 
due to the movement of electrons. In all cases a 
small average velocity is superimposed on the ran- 
dom motions of charge carriers. 

R-8.1 Only (d) would receive full credit. 

R-8.3 "Show that" problem. 

R-8.5  ( -2 ,  1, 0) and a 180 ~ rotation about the 
y-axis. 

R-9.1 (a) "Show that" problem. (b) Use a = ~, 
[) = ~, and ~ = j. 

R-9.3 (a) "Show that" problem. (b) The left side 
equals -2 ;  the right side equals 0; the two sides are 
unequal. 

R-9.5  (a) "Show that" problem. (b) "Show that" 
problem. (c) "Show that" problem. 

R-9.7 "Show that" problem. 

R-9.9  (a) Counterclockwise rotation of 53.1 ~ 
(b) (-3.60,  5.20, -1) .  (c) (-10.40, -2.20,  26). 
(d) ( -10 .40 , -2 .20 ,  26). (e) They are the same. 
(f) 5.385, 6.403, 28.1. (g) 234.55 o. (h) Yes. 

R-9.11 (10, 5, - 3 )  N-m. 

R-9 .13  (4.8 x 10 -3, 9.6 x 10 -3, 0) N. 

R-9 .15  "Show that" problem. 

R-9 .17  "Show that" problem. 

R-9 .19  (0, 0, -d/c), (a/e, b/e, c/e), where c = 
x/a 2 + b 2 + c 2. 

d~E R-9.21 (a) ~ = (0.254,-0.381,0.889). (b) dA -- 

/7; �9 ~ = --23.0 volt/m. (c) d ~  = - ~ A d A  = 
-1 .195 x 10 -s volt-m. 

1-2.1  See Figure 2.1 and the accompanying dis- 
cussion of the amber effect. 

1-2.3 They will repel if the positive ends are 
brought near each other but attract if the positive 
end of one is brought near the neutral end of the 
other. 

A-15 
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1-3.1 The mechanical motion would be identical, 
but the induced charge would be opposite the pre- 
vious induced charge. 

1 -3 .3  Either end would be attracted to an electri- 
cally charged object due to electrostatic induction. 

1-4.1 (a) In the 17th century, the most common 
way to charge an object was to rub it or to touch 
it to a previously charged object. Water and iron 
cannot be charged in this manner. (b) Put object on 
insulator, charge by induction and either grounding 
or sparking or contact. 

1 -4 .3  Conductors: your body, a penny. Insulators: 
your clothing, plastic, your comb, a styrofoam cup. 

1 -4 .5  When the person stands on the ground he 
is subject to the full voltage difference between the 
charge source and ground, which produces a large 
enough current to cause the shock. 

1 -4 .7  Watson's view would predict identical 
shocks in the two cases. Franklin's view (the cor- 
rect view) would predict a greater shock in the first 
case. 

1 -4 .9  A is a conductor and B is an insulator. 

1-5.1 (a)"A Penny Saved Is a Penny Earned" im- 
plies money conservation in a situation where there 
is a flow of resource, both in and out. (b) Decreas- 
ing their energy bill with thermal insulation has the 
same effect as increasing their revenue by the same 
amount. 

1 -5 .3  After the first connection, A has 4.8 units 
and B has 3.2 units. After the second connection, A 
has 0.96 units and B has 0.64 units. 

1-5.5 (a) The jar cannot lose charge to the ground, 
and losing it through the air could take hours or 
days. (b) As long as the top wire remains charged, 
it will attract charge to the bottom, and thus the 
Leyden Jar remains charged. (c) As long as the 
bottom wire remains charged it will attract charge 
to the top, and thus very little charge can be drawn 
off the top wire. (d) The bottom retains its charge, 
since it is insulated. Once the top wire is connected 
to ground, the bottom wire will attract charge 
to the top and the Leyden Jar would regain its 
strength. 

1-6.1 If the tube were left in place, electrostatic 
induction would occur. Then the experiment would 
be less reproducible because the electrostatic induc- 
tion would depend on the placement of the tube. 

1 -6 .3  Rapid discharge of a nearby source causes 
a rapid decrease of the electrostatically induced 
charge in the human body. 

1 -6 .5  The induced charge on each leaf will be of 
the same sign and hence the leaves will repel. 

1-6.7 (a) Rubbing the balloons on clothing 
charges them up by friction. They are attracted to 
the wall by electrostatic induction and fall as they 
gradually lose their charge. (b) No. (c) The moisture 
in the air will draw off charge. The more moisture, 
the faster the charge will be drawn off. 

1-6.9 When the negatively charged rod is brought 
near the grounded sphere, negative charge driven by 
electrostatic induction flows away from the sphere, 
leaving the sphere positively charged. When the 
ground connection is removed, the sphere remains 
positively charged, but also subject to electrostatic 
induction from the rod. When the rod is removed, 
the positive charge on the sphere redistributes. 

1-7.1 +2e. 

1-7.3 (a) Allowed. (b) Prohibited. (c) Allowed. 

1-7.5 Electrons are transferred from the cloth to 
the rod. Protons generally cannot be transferred. 

1-7.7 (a) The styrofoam bag discharges faster. 
(b) No. (c) The styrofoam still discharges faster, but 
it will start later than in (a). 

1-8.1 People come in integer values; you are ei- 
ther alive or you are dead. There is no such thing as 
people conservation, as established by the phenom- 
ena of birth and death. 

1-8.3 6.25 x 1019 electrons. 

1-8.5 3.125 x 109. 

1-9.1 "Show that" problem. A has units of C/m 3. 

1-9.3 (a) The charge per unit length for rods 1 and 
2 are ql/ l l  and q2/12, respectively. (b) (ql + q2)/ 
(11 + 12). (c) (ql + q2)/12. (d) (q] + q2)/2t2. 

1-9 .5  (a) C has units of C/m 3 and B has units 
of C/m 4. (b) (C + Br)(4~rr2dr). (c) (4zrC)(a3/3)+ 
(4zrB)(a4/4). (d) C + (3/4)Ba. 

1 -9 .7  (a) C has units of C/m 3 and B has units 
of C/m s. (b) (C + Bz2):ra2dz. (c) zra2(C1 + B13/3). 
(d) C + B12/3. 

1-9.9 "Show that" problem. 

1-10.1 When the tapes are pulled apart they de- 
velop a charge. Your finger is neutral. By electro- 
static induction each will be attracted to your finger. 

1-10.3 Use a versorium. It will respond at a grea- 
ter separation to the tape with more charge. 

1-10.5 (a) See Figure 4.24. (b) Smaller. (c) The 
same. 
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2-2.1 (a) "Show that" problem. (b) It decreases by 
a factor of 1/,/2. Yes. (c) 4.07 x 10 -7 C. (d) ml --~ 
ml + M/2. 

2-3.1 4.77 x 10 -6 N, attractive. 

2-3.3 0.626 mC. 

2-3.5 "Show that" problem. The maximum force 
will have magnitude kQ2/4r  2. 

2-3.7 68.6 #C. 

2-3.9 (a) 3.33 x 10 -~~ C. (b) 4.80 x 10 -1~ sC. 

2 " 4 , 1  0 - -  6 0  ~ qmax --- 2 l  sin 0 V/~g ~an0, qmax - -  

4.76 x 10 -7 C. 

2-4 .3  0. 
kq Q kq QI cos(O/2)l 

2 - 4 , 5  (a)  4R2sin2(O/2). (b )  4R2sin2(O/2). 

2-5.1  (a) 0 N. (b) 28.4 m. (c) 3.59 x 10 -6 C. 

2 -5 .3  F =9.53N, 0 = - 1 9  ~ 

2 -5 .5  "Show that" problem. Fx - - 1.102 x 
10 -6N, F y = - 0 . 9 9 5 x 1 0  -6 N, F = l . 4 8 4 x 1 0  -6 
N, 0 ' =  -137.9  ~ 

2-6.1  Rotating the rod about its perpendicular bi- 
sector does not change the configuration so it should 
not change Fy, but this rotation should reverse Fy. 
We conclude Fy = 0. Yes. 

2-7 1 ( a ) F x -  k q Q  �9 - -  a ( a + l )  , Fy- Fz = 0. (b) Fx ~ kqQa 2 . 

2-1 .3  The y component of the force due to an 
arbitrary infinitesimal charge d Q between y and 
y + dy is exactly cancelled by an equal charge d Q  
between - y  and - y  - dy. Thus Fy = 0. 

2-7 .5  Fx = a ~ '  Fy - - ~  a ~ ]" 

2kq Q 2-7.7 Fx= Fz=O, Fy= tea2. 

2-7 .9  The force will point directly away from the 
center of the arc, at an angle of ~/2. The force will 

2kqQ c~ have magnitude F = ~ sin(g). 

3-2.1 (a) Fe - 2.003 x 10 -~7 N. (b) Fg = 2.935 x 
10 -25 N. The force of gravity is much smaller than 
the electrostatic force. 

3-2.3 (a) 6.12 x 10 ~ N/C. (b) 1.76 x 1013 m/s 2. 

3-2 5 (a) 0 - tan-lfL-q~ (b) T = mgsec x 
�9 , ~ m g  ~ �9 

[tan-~fZq~)]. (c) 0 = 4.75 x 10 -4 degrees, T = 
" - m g  

0.412 N. 

3-2 .7  No. 

3 - 2 . 9  E = 2500 N/C, I QI - 0.11 nC. 

3 -2 .11  Scalar fields: pressure, density, tempera- 
ture. Vector fields: flow velocity. 

3-2.13 (a) Gravity is always attractive, so the field 
due to m2 will point toward m2, pulling ml toward 

Gmi /~i .  m2. (lo) ~ = - ~ i  T/2 

3-3.1 (a) 85,000 N/C )~. (b) -85 ,000  N/C )~. 

3-4.1 Drag-dominated. 

3 -4 .3  (a) The advantage is that a ball of charge 
creates field lines inside. (b) The disadvantage is 
that there are too many arrowheads if you want to 
sketch the field quickly. (c) The grass seed method 
has two problems: the grass seeds can align with 
the field in either direction, and the density of the 
grass seeds gives only a qualitative representation of 
magnitude. 

3-5.1 (a) 175 N/C ~. (b) 1100 N/C ~. 
(c) 425 N/C ~. 

k~ (1 + ~)(1 + 2 cos0)~. 3-5 .3  (a) Up ~. (b) ( - j  

3-5 .5  (a) 105 ~ clockwise. E' x = 22.6 N/C, E y -  
54.7 N/C. (b) This calculation was relatively sim- 
ple. Doing the calculation from scratch would have 
involved 23 separate calculations and then the ad- 
dition of 23 vectors, a very involved calculation. 

3-5.7 (a)/~ = kQ[  ~ 1  _]_ (x-a) 2 1  ~2 ])C" 

-* 6a 2 )~. 
(b) ~ - .  9 - 

3-5 .9  "Show that" problem. 

3-6.1 (a) Q = ) ~ L .  (b) /~ = k~L _~ (c) /~ = x(x-L) " 
k)~(2x-L) _2.>. 
x(L-x) 

3-6 .3  /~ - _~Q(3 -~ )~ .  
- -  2a2vq- d 

3-6 .5  (a) Down. (b)/~ = - 4k__~ ~. a 

3-6 .7  (a)O. (b) } = 2~R2)~. (c)/~ = -~ -~ )~ .  

= - ~  k ~ ( 1  - c o s ( 2 ~ ) ) ~ .  3 - 6 . 9  ~ 
-* 4 kZ y 3-6.11 (a) E = y-G-~+a239" (b)/~ = 4kz____K_a • y2 +a 2 X" 

3-6.1  3 (a) Place q at (14.7, 0, 0) m. (b) Place Z in 
the xy plane, parallel to the y-axis, and intersecting 
the x-axis at x = -288  m. (c) Impossible. 

3-6.15 (a) 20N/C downward. (b) The upper 
sheet has charge density 0.442nC/m 2, and the 
lower sheet has charge density -0 .0884 nC/m 2. 

3-7.1 Along. 

3-7.3 /~ is zero 2/3 of the way from 2Z to ;~. 

3-7,5 Within an insulator we can arrange the 
charge however we please, but within a conduc- 
tor the like charges would repel each other toward 
the surface disrupting the uniform volume charge 
distribution. 
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3-8.1 (a) 3.6 x 10 -2s J. (b) 90  ~ 1.8 x 10 -2s N - m .  

3-8 .3  ( a ) 2 . 5  x l 0 -2s N - m .  (b) 1. l  7 x l 0 -zs N - m .  
(c) -2 .207  x 10 -2s J. 

2kp ~_..L>. ~_ f 2kp 3-8.5 (a) P = q ( T J  (b) P - q t 7 ) - ~ .  (c) 
p = 7.11 x 10 -2s C-m. 

3 -9 .1  (a) P=pAYc.  (b) 2 . 3 7 x 1 0  -9 N 5. (c) 
2.37 x 10 -9 N )~. 

3-10.1 (a) -2 .59  x 106 m/s. (b) 4.64 x 10 -8 s. 

3-10.3 (a) - 7 2 8  N/C. (b) 6.44 x l0 -9 C/m 2. 
(c) 4.3 x 106 m/s, 21.8 ~ 

3 - 1 0 . 5  2.01 x 10 -s  m. 

3-10.7 (a) The velocity v does not depend on the 

v~ ~e radius r. (b) r = 2Jrr 2~," 

4-2.1 (a) The flux will have the opposite sign. 
1 Q e . c  = - 4 7 r k Q e n c  (b) - 3 4  N-m2/C. (c) ~E = -~o 

4 - 2 . 3  -7 .68  x 10 -6 N-m2/C. 

4-2.5 Err R 2. 

4-2.7 2zrkQ[1 a 
~/R 2 +d 2 ]" 

4-3.1 (a) 0. (b) 679 N-m2/C. (c) 0. 

4 - 3 . 3  (a) 4rrkQ. (b) (2/3)zckQ. 

4-3.5 (a) (0.8, 0 .48 , -0 .36) .  (b) 8.12 N/C. 
(c) 5.64 N/C. (d) +46 ~ (e) 1.128 x 10 -3 N-m2/C. 
(f) 9.97 x 10 -Is C. 

4-4.1 1.77 n C / m  2. 

4-4.3 -3.76 x 10 -9 C. 

4-5.1 (a) -1 .94  x 10 -]2 C. (lo) 2.59 x l0 s N/C. 

4-5.3 (a) 1.30 x l 0 -l~ C / m  2. (b) 2.66 x 109 N/C. 
2kX(r 2 - a  2) (b) O, 2k),/r. 4-5,5 ( a ) ,  = rr(b2_a2 ) . (b2_a2)r , 

4 - 5 . 7  (a))~] = -0 .72  nC/m, )~2 • 0.85 nC/m. 
(b) 19.47 N/C. 

f: grav 
4-5 .9  (a) ~ = M , f g " h d A  = - 4 r c G Y e n c .  

( b )  g - -  4zr3GP F. (C) T = 2 z r /  3 4.--~pc. (d) 5070 s. 

4-6.1  No. 

4-6.3 (a) 25 V. (b) The dipole moment  on the 
conductor will point away from the point charge. 
The point charge will be attracted to the con- 
ductor. 

4-6.5 (a) The inner surface has - Q a n d  the outer 
surface has + Q.  (b) The inner surface has - Q  and 
the outer surface has zero charge. 

4 - 6 . 7  Connecting the slats makes them behave 

almost like a solid conductor, which can screen out 
an external field. 

4-7.1 0.212 nC/m 2. 

4-7.3 "Explain in your own words" problem. 

4-7.5 (a) Starting to the left and proceeding 
to the right, the electric fields are 10zrk~--%, 
18zr ha-c ,  2~r kr~ --%, and 10zr kr~ ~-. Co) Starting with 
the left side of #1, going rightward, the charge 
densities a r e - ( 5 / 2 ) c r  and ( 9 / 2 ) G - ( 9 / 2 ) ~  and 
(1/2)r - ( 1 / 2 ) a  and - (5 /2 ) r  

4-7.7 ( a ) - 7 . 9 6  nC/m 2, ( b ) - 4 . 0  x 1 0  -11 C,  

(c) E - 0 .  (d) Er = - 4 0 0  N/C (radially inward). 

4 - 7 . 9  (a) O, kQ/r  2, - k Q / r  2 (radial component 
of field). (b) Qinner= O, Qouter= Q. (c) Qi nner-- 
_Q,  Q~uter= _Q.  

4 - 7 . 1 1  (a) o, 4kx/r, -2kX/r (radial component of 
field). (b) X inner  = 0 ,  X ~ = 24. (c) X~ nner  - -  -24 ,  
)v~uter --  --~.. 

4-8 .1  (a) M1 of the charge resides on the cup's 
outer surface. (b) - 3 # C .  (c) 2#C. (d) -0 .4#C.  

$ 
4-9.1 2Jr(1 - %/s2-+d2 /4 ). 

4-10.1 3 x 10 3 C / m  2. 

4-11.1 Ex O, Ey 4kx xb = = --  ~ ,  O'z = --  4(x2+b2i " 

kQ 2 kQ 2 
4-11.3 (a) 8-774 (b) (~ - ~) ~ . 

5-2.1 81.2 N. 

5-3.1 (a) 2 x 10 -8 J. Co) - 2  x 10 -8 J. In the first 
case we raise the electrical potential energy; in 
the second case we lower the electrical potential 
energy. 

5 -3 .3  - 2  V/cm, -2 .2  W c m , - 2 . 4  V/cm. 

5-3.5 2.7484 V. 

5-4.1 5.7 x l0  -14 m. 

5-4 .3  (a) 35.33 V, the electron is heading toward 
the higher potential. (b) 883.25 N/C 3). 

5 -4 .5  (a) 4.8 x 10 -s J. (b) 20,000 V, the start- 
ing point is at a lower potential than the endpoint. 
(c) 2500 V/cm. 

5 -4 .7  (a) The 6 V plate, 1.78 x 106 m/s. (b) 
1.44 x 10 -18 J. (c) -1 .44  x 10 -18 J. (d) 9 V. 

5-4.9 0.058%. 

5-4.11 (a) 8.88 x l0 s V. (b) 0.63 x 10 -7 C. 
(c) 3.94 x 10 -13 C / m  2. 

5-5 .1  The field is largest near the two bottom 
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corners and smallest on the line directly between 
the two side plates. 

5 -5 .3  The field is largest at the upper right and at 
the lower left corners and smallest at the center. 

5 -5 .5  (a)"Show that" problem. (b) - Q .  

5 -5 .7  (a) Spheres centered at the charge. (b) Yes. 
(c) Yes. (d) No. 

5 -5 .9  The field must be zero at the crossing point. 

5-6.1 - 2 . 0  V. 

5-6.3 (2kq2/a)(2 + 1/~/2). 

5-6 .5  (a) 48 kV. (b) 192 kV. (c) 0 J. 

5-6 .7  (a) Halfway between them. (b) Yes. Take 
v~= a~q 

a 

5 - 6 . 9  5.56 x 10 -1~ C. 

5-6.11 -442  n C / m  2. 

5 - 6 . 1 3  -1 .753 V. 

5-7.1 (a) 0. (b) Yes. (c) - 2 x2 - bx. 

5-7 .3  (a) - b  2. (b) +b 2. (c) 2b 2. (d) No. 

5-8.1 (a) The potential at the center is the same 
as on the surface. (b) The center. 

5 -8 .3  2.02 nC/m. 

5 -8 .5  - (1 /3 )Ar  3, the equipotential surfaces are 
concentric cylinders centered on the z-axis. 

5 -8 .7  2rrk~(~/z 2 + a 2 - z). 
kQ kQz 

5-9.1 (a) V ( z ) -  Rx/-dg-Cdz2" (b) Ez--(R2+z2)3/2. 

(c) No. (d) Ex and Ey will in general change under 
rearrangement. 

5 -9 .3  Sketch not provided. 

5-9.5 (a) 0. (b) V ( x )  = ka[x 1,~(x+l/2 ~ _ l] 
~'~ x-I~2 ) 

(c) "Show that" problem. (d) "Show that" problem. 

5-9.7 (a) V = - k  Q / b .  (b)  V ( a )  = - 0 . 9 k Q . /  
b < 0. (c) For q > 0.1 ~. 

5-10.1 (a) 24.85 V, 29.25 V. (b) - 2 2  V/m )?. 
(c) - 2 2  V/m 5. 

5-10.3 (a) V(x) = kl--q[ln Ix + l -- In Ixl]. 
= ; - ~ ] . ( c )  G =  --x :~] 

5 - 1 0 . 5  "Show that" problem. 

5 - 1 0 . 7  (a) 2.95 V, 8.05 V. (b) -25.5  V/m f. 
(c) - 2 5 r  3 f, - 2 5  V/m f. 

5-10.9 ( - 2 y  + 8x)2 + ( - 2 x  + 10y)y. 

4 Va (~)1/3  ( 1 9 ) 0 , - 0 . 8 4  x 10  4 5-10.11 (a) E x -  5 d  �9 

V/m,  - 1.06 x 104 V/m, - 1.2 x 104 V/m, - 1.33 x 
10 4 V/m. (c) _ 9___~ (x___~_)1 1 ~2/3 . 

Note: The total charge per unit area between the 
plates is - 1.18 x 10 -7 C/m 2. 

5 -11 .1  (a) 6300 V, -1125  V. (b) 3.15 x l0 s N/C 
outward, 2.81 x 10 4 N/C inward. (c) 6 x 10 -9 C, 
3 x 1 0  -9 C, 1350V, 1350V. (d) 6 .75x104 N/C 
outward, 3.375 x 104 N/C outward. 

5-11.3 No. 

5-11.5 Q10R = 10QR, ~10R = ~ R ,  VR = V10R, 
EloR = ~ER. 

5 - 1 1 . 7  (a) 9.09 V. (b) 100 V. (c) 100 
( 10]nl Y. x [1 - ,rrJ , 

5 - 1 2 . 1  1.114 x 106 N/C )~. 

5 - 1 2 . 3  1.323 x 10 l~ N/C. 

6-2.1 (a) 23.6 nF. (b) 2.12 x 102 m. 

6 -2 .3  Excess charge affects the structure of the 
solid sphere less than the structure of the shell. 

6 - 2 . 5  4.5 x 10 .8 m. 

6-3.1 (a) 0.144 nF. (b) 1.25 nC. 

6 -3 .3  (a) 5.79 x 10 -11 E (b) 1.736 x 10 -12 C. 

6 -3 .5  (a) By how close the plates can be kept with- 
out touching each other. (b) By how large the plates 
can be without making the capacitor unusable. 

6-3.7 (a) 1250 V. (b) 0.0905 m 2. (c) 6.25 x 10 s 
N/C. (d) 5.52 x 10 -6 C / m  2. 

6-3 .9  This problem involves dielectrics, which 
are not discussed until Section 6.5. (a) 4.734 cm. 
(b) 14.25 nF. (c) 1.083 x 10 .4 C. 

6 -3 .11  (a) 19.23 pF. (b) 4.62 nC. (c) 6.92 x 103 
N/C. 

6-4.1 (a) Make three parallel arms, each with 
three 2#F capacitors in series. (b) Put two units 
from part (a) in parallel. 

6-4.3 A/4;rk(dl + d2). C =  Q / A V  has AV in- 
crease by the factor (dl + d2)/d. 

6-4 .5  (a) 3.43 #F, 14 #F. (b) 41.16 #C, 5.145 V, 
6.86 V. (c) 12 V, 96 pC, 72 pC. 

6 - 4 . 7  154 nF. 

6-4.9 4 nF. 

6-4.11 5 # C .  

6 - 4 . 1 3  9 #C on each capacitor, A V 1' = 3V, A V~ = 
1.5 V. No. No. 

6-5.1 d = 2.67 x 10 -4 m, A = 242 m 2. 

6-5.3 3.91. 

6-5.5 Above about 1 V, electrolysis occurs at the 
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plates and an ion current would flow. The capacitor 
then would not be able to hold charge. 

6-5.7 (a) 33.25 cm 2. (lo) 120 pF, 3.5 kV. 

6 -5 .9  "Show that" problem. 

6 -5 .11  "Show that" problem. 

6 - 5 . 1 3  (a) 0.28 x 10 -~7 F =  2.8 aF. (b) 0.058 V. 

6 - 5 . 1 5  Ctota l I+K ab = 7 k(b-~)" 

6 - 6 . 1  (a) 6.67 x 10 -8 F, 3.32 x 10 -6 m. (b) 4.8 x 
1 0  . 4  J. ( c )  3.61 x 107 V/m. (d) 5761 J/m 3. 

6-6.3 4 x 1 0  - 6 E  

6-6.5 (a) QA = QB = 160 nC, A VA = 4 V, 
AVB = 8  V, UA =0.32/zJ, UB =0.64 ttJ. (lo) AVA = 
A 1/8 = 5 .333 V, QA = 213.3 nC, QB = 106.7 nC, 
UA = 0.568 #J, UB = 0.284/xJ. (c) 0.108 #J. 
(d) AVA = AVB = 1.777 V, QA = 71.1 nC, QB = 
35.6nC, Ua=0.063/~J ,  UB =0.032/~J.  (e) 
0.757 uJ. 

6-6.7 (a) U =  k2-- @.  ( b ) d U = - ( k Q . 2 / 2 R 2 ) d R ,  
E 2 

Pel = 8-n-k" 

6-6.9 (a) Q1 = 0.2 = Q3 = Q 4  = 360/~C, A V1 = 
AV4 = 60 V, AV2 = A�89 = 30 V. (b) 32.4 mJ. 
(c) Q1 = Q 4  = 240/zC, Q2 = Q 3  = 480 #C, 
AV~ = AV2 = AV3 = AV4 = 40 V. (d) 28.8 mJ. 
(e) -240/zC.  

6 - 6 . 1 1  1.128 x 1012 J. 

6-7 .1  (a) I E d i e l l / I E o l -  1/5. (b) V d i e l / V  0 - -  1/5, 
Vdiel = 1 .2  V. (c)  Q . d i e l / ~ O  = l .  ( d )  Cdiel ~ c O  = 5. 

(e) gdiel / go = 1/5.  

6-7 .3  In the first case, U gives all of the energy. 
In the second case, the capacitor energy must be 
included. 

6-7.5 "Show that" problem. 

6 -7 .7  Take C-- 12 #F initially. (a) Ucap = 

( I /2 )CV 2, AUbat t  = - C V  2, Uheat = ( 1 / 2 ) C V 2 ;  
gca p = C V  2 W,' - (1/2)CV2; Vc'ap = (1/2)CV 2 ' hand 
AU," = C V  2 U;' . ' - batt , heat = (1/2)CV 2 (b) Uca p - 

( 1 / 4 ) c v  2 aU;'at t ( 1 / 2 ) C V  2, W,' = ( 1 / 4 ) C V  2. , = hand 

6-8.1  (a) 0.2233 ,C .  (b) 191.4 V. (c) Qo = 
0.0106 #C, Q.b = 0.2127 #C. 

6 -8 .3  "Show that" problem. 1/1 - �89 = Q.1 (pll - 
P21) + Q.,2(p12 - p22)  + Q.,B(p13 - p23) .  The term 
Q3(p13 - p23) is the effect of Q3. 

6 -8 .5  (a) Charge will distribute over the surface 
of a conductor, so that the material is irrelevant and 
only the shape of the surface is important. Polar- 
ization of an insulator depends on the dielectric 
constant and thus the material. (lo) The sphere's 

induced dipole moment, due to polarization, is rel- 
atively small for r >> a. 

6-9 .1  (a) Along the length of the molecule. (b) 
ct would have to depend on the direction of/~. In 
most cases E and } would not even point in the 
same direction. 

6-9.3 "Show that" problem. 

6-10.1 "Show that" problem. 

6-10.3  k~ 2 a 

7-1.1 (a) No current. (b) No current. (c) 5 mA. 

7-2 .1  10,800 C, 3.75 x 1019 electrons/s. 

7 -2 .3  (a) 35,840 C. (b) 2.39 x 103 s, or about 66.4 
hr. 

7 - 2 . 5  5.09 x l0  -11A.  

7-2.7 (a) 133.3 A. (b) 4.76 x 106 A/m 2. (c) Jx = 
4.47 x 106 A/m 2, Jy = - 1 . 6 2 9  x 106 A/m 2, Jz = O. 

(d) 6.12 A. 

7 -2 .9  No. Opposite directions. 

7 -2 .11  995 A/m 2. 

7-3 .1  (a) 4 82, 5 ~2. (b) Non-ohmic. 

7-3.3 (a) 2 a .  (b) - 2  A. 

7-3 .5  (a) 3.1296 x 10 -s fa/m. (lo) 0.125 82. 

7-3.7 8.45 ~2-m. 

7 - 3 . 9  31.2 mm. 

7 -3 .11  (a) 7 ma .  (b) 8.4 nV. (c) 20 nf2. 

7 - 3 . 1 3  (a) 240 ~2, 2.4 82. (b) Resistance of the 
bulb for home use. 

7-3.15 (a) 5 kV. (b) 250 ~. 

7-3.17 (a) 3.6 x 104 J. (b) 0.833 A. (c) 6000 C. 

7-3.19 (a) 28.8 fa. (b) 28.8 x 106/m. 

7 -3 .21  (a) 23.9 horsepower. (lo) 1000%. (c) No. 
It cannot exceed 100%. 

7-4 .1  (a) 0.28 V/m rightward. (b) 0.532 V. The 
current flows from the higher voltage left end. 

7-4.3 (a) 2.79 x 10 -8 f2-m. (b) Aluminum. 

7 -4 .5  (a) For d = 0.04 cm, Rcu = 0.01547 f2, 
Rsted = 8.27 x 10 -6 82. (b) A Vcu = 0.0310 V, 
A Vstee I = 1.654 x 10 -6 V. 

7 -4 .7  Charge on the surface of the circuit, includ- 
ing the wire, makes an electric field that drives the 
current through the wire. 

7 -4 .9  In previous chapters we were considering 
conductors in equilibrium. In this chapter, there is 
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current flowing through the conductors, so they are 
not in equilibrium. Thus the electric field is not nec- 
essarily zero within the conductors. 

7 -5 .1  (a) 13 fa. (b) AV2 = 27 V, AV~ = 12 V. (c) 
39 V. (d) 3 A. (e) 3 A. 

7-5.3 (a) 6 52. (b) 3.5 A. (c) 35 V. (d) 3.5 a .  
(e) 10 S2. 

7 - 5 . 5  (a) 1.5 ~. (b) Both are 12 V. (c) 12 V. 
(d) 11 A. (e) 1.09 ~. 

7 - 5 . 7  (a) R1 = 4 S2, R2 = 2.67 fa, R3 = 1.2 fa. (b) 
/3 = 10 A, /2  = 6 A. (c) 16 V. (d) 28 V. (e) 2.8 82. 

7 - 5 . 9  One has a parallel combination of two resis- 
tors in series with another parallel combination of 
two resistors. The other has a series combination of 
two resistors in parallel with another series combi- 
nation of two resistors. 

7-5.11 96 fa, 144 52, 100 W. 

7-5.13 (a) IA = 3 A, PA = 0.9 W, IB = 0 A, PB = 
0W.  (b) I A = I 8 = 3  A, P A = P 8 = 0 . 9  W. (c) 
IA - I8 = 1.5 A, PA = P8 = 0.225 W. (d) I8 = 2 A, 
PB = 0 . 4  w,  IA = Ic = 1 A, PA= Pc = 0 . 1 W .  

7-5 .1  5 (a) Resistors in parallel add as inverses, and 
capacitors in parallel add directly. (b) Resistors in 
series add directly, and capacitors in series add as 
inverses. (c) The formulas for total resistance and 
capacitance take the same form if R ~ 1/C. R = 
A V / I  and l / C =  A V / Q .  

7 - 5 . 1 7  If a person stands on only one foot, then 
most current would pass through the foot touching 
the ground. If the person were to stand on both 
feet, there would be a path for current into the 
torso of the body where current is most danger- 
ous. 

7-6.1 (a) 1 mV. (b) 20,000 S2/V. 

7-6.3 (a) 1.98 kf2. (b) 0.5526 ~2. (c) 84.0 mV. 

7 - 6 . 5  (a) 7.02 V. (b) 7.4%. 

7 -7 .1  The ion density is high near the plates, but 
low farther from the plates. 

7 - 7 . 3  Starting a car four times a day consumes 
0.667 % of the chemical charge every day; about 
the same amount as the non-current-producing 
sulfation reaction does. 

7-7.5 1662 s = 27.7 min. 

7-8.1 1.36 V, 0.3 52. 

7-8.3 (a) The filling, aluminum foil and saliva in 
the mouth. (b) The chemical energy of the voltaic 
cell (the foil and filling are the electrodes and the 
saliva is the electrolyte). 

7-9.1 (a) 43,2000 C. (b) 60 hr. (c) 24 hr. 

7-9.3 (a) 2880 C = 0.8 A-hr. (b) 0.1 A. (c) 8 hr. 

7 - 1 0 . 1  (a) Voltage gains of 0.6 V and 1.2 V across 
the electrodes, voltage losses ir =0 .3  V and iR = 
1.5 V across the resistances. (b) 0.6 hr. (c) 7776 J. 

7-10.3 (a) 2 A. (b) Voltage loss of 0.3 V and 
voltage gain of 1.3 V across the electrodes, voltage 
losses ir = 0 . 6  V and i R =0 .4  V across the resis- 
tances. 

7-11.1 (1) F_ = 1.59 x 10-17N3) , /~+ = 
-1 .61  x 1 0  -17 N 3). (2) if_ = 3.18 x 10-6m/s 3?, 
if+ = -3 .22  x 10 -6 m/s  3). 

7 - 1 1 . 3  (a) "Show that" problem. (b) 11.2 x 106 s. 
(c) 9.54 x 10 -7 m. 

7-12.1 1.846 x 106 s. 

7-12.3 n - 3.84 x 1013/m 3, vd = 9000 m/s. 

7-12.5 dI = cor, rdr, I = o01~a2/2. 

7-12.7 2.415/xC/m 2. 

7-12.9 "Show that" problem. 

7-13.1 Insulators, semiconductors, conductors. 

7-13.3 J = nev. If the critical velocities Vc are not 
too different for semiconductors and metals, then 
the densities n mostly determine the Jc, s. 

8-3.1 (a) g = 24 V. (b) R = 0.024 a .  (c) 105.0 
A-hr. 

8 - 3 . 3  (a) 30 days. (b) 23.1 days. 

8-3.5 (a) g = 10.72 V. (b) r --- 0.0245 82. 

8 - 3 . 7  (a) I = 5.2 A charging the battery. (b) 
1.352 W heating. (c) 10.72 W charging. (d) 88.98% 
efficiency. 

8 - 3 . 9  (a) R = 0.75 f2. (b) I = 3 A. 

8 -4 .1  (a) 40 hr. (b) 12 cents. 

8 -5 .1  (a) cq=0 .6V,  r = 6 0 0 ~ 2 .  (b) 4.02%. (c) 
5.14%. 

8 - 5 . 3  I = 2.25 A. 

8 - 5 . 5  (a) R = 3.62 fa. (b) A V - 2 6 1  V. (c) M = 
1.190 x 104 kg. (d) 78.6%. 

8 - 5 . 7  (a) R = 2.4 fa. (b) 99.59%. (c) 96%. 

aV 12 = AV I = 8-6.1 (a) 11 = I + / 2 .  (b) I1 = - ~ - .  R-T, 
A V - s  

r 

8-6.3 R =  788 fa. 

8 - 6 . 5  (a) 0.05 < r / R  < 0.55. (b) 0.033 < r~ 
R < 0.367. 
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8-6 .7  (a) R = 15 t2, g = 120 V. 

8-7.1 (a) I = I 1 = - I 2 = 2 2 . 2 A .  (b) AVe= 
--A V2 = 11.78 V. (c) ~P~ = 266.4 W discharge, 
5P2 = - 2 2 2 . 0  W charge. 

8-7 .3  (a) Reverse the direction of positive 12 re- 
lative to Figure 8.13(b). Then I1 = I + I2, I] = 
gl-~V = 6 0 0 -  100AV, 12 = s  : 5 0 0 - -  5 0  

rl r2 

A V, I = -~ .  (b) A V = 2.946 V. (c) I • 294.6 A, 
11 = 3 0 5 . 4 A ,  I 2 = 1 0 . 8 A .  (d) 7~R=867 .9W,  
7~rl = 932.7 W, 7~2 = 140.0 W, 7~1 = 1832.4 W 
discharge, 7~2 = 108.0 W discharge. 

8-7 .5  (a) B1 off, B2 off. (b) B1 dim, B2 dim. (c) B1 
bright, B2 off. (d) B1 bright, B2 off. 

8 - 7 . 7  R = ( - 1  + v ~ ) 3 0  ~2 = 21.96 ~.  

8-7 .9  0.5 R. 

8-7 .11  R = 7 2 ~  

8 -7 .13  "Show that" problem. 

8 - 7 . 1 5  "Show that" problem. 

8 - 7 . 1 7  (a) M1 positive currents and A V are as in 
g - A V  Figure 8.39, so that I1 = --77--1' etc. Also, I = A V/R  

and I = I 1 + I 2 + 1 3 .  (b) A V = 4 . 9 6 3 ~ .  (c) I =  
496.3 A, 11 = 103.7 A, 12 = 251.8 A, 13 = 140.7 A. 
(d) Current is conserved. 

8 - 8 . 1  (a) Q 2 = 0 , 1 1 = 0 ,  I = 6 A . ( b )  1 2 = 0 ,  I =  
11 = 1.5 A. 

8-8 .3  (a) Q = 0 ,  I1 = 4 / 3 A ,  12=2/3A, 13=  
2 / 3 A ,  1 4 = 4 / 3 A .  I = I 1 - 1 2 = 2 / 3 A  goes to 
the capacitor. (b) I1 = I3 = 0.8 A, I2 = I4 = 1.0 A, 
I = 0 ,  Q =  14.4 tiC. 

8-8 .5  (a) IR = 0. (b) IR = I0. 

8-9.1 (a) rRc = 12 s. (b) I0 = 0.84 ttA, I~ = 0. 
(c) Q0 = 0, Q ~  = 10.01 #C. (d) Oheat = 4.536 
[~J. (e) Uheat--6.048 /~J. 

8 - 9 . 3  (a) "Show that" problem. (b) 96/~J. 

8-9 .5  (a) R = 5.1 x 10 is t2. (b) rRc = 2.04 x 
107s. (c) C = 1.96 x 10 -13 E 

8 - 1 0 . 1  More turns through small angles require 
less surface charge but  are more expensive to make. 
Two 45 ~ might be adequate. 

8 -10 .3  (a) r/R--+ oo. (b) Let R i-q]= r -1 + R -1. 
Then Qcp = (e~/R)(r + R)Cp[1 -e-t/I%qC]. (c) 

]R = Qcv/RCp. 

8 - 1 0 . 5  (a) 2Z~. (b) Charge will actually flow from 
one part of the surface through the bulk to another 
part of the surface. (c) A combination of bulk and 
surface current would provide the least resistance, 
but  in practice the resistance to surface current is 

very large because of the associated small cross- 
sectional area. 

8 - 1 0 . 7  (a) If al < a2, then the electric field is 
larger in material 1 than in material 2, so a positive 
surface charge will on the material 1 side increase 
the field and will on the material 2 side decrease the 
field. (b) ~: = J(al-a2)/4Jrk~]a2. 

8 - 1 1 . 1  Many choices are possible. For R1 - R3 = 
0, (9.65') gives 11 = 13 = 0, whereas (9.65) gives 
nonzero 11 and 13. 

8 - 1 2 . 1  n = 1.241 • 10 24 /m 3. 

9-2.1 qml - - 2 6 . 8  A-m, qm2 - -  13.4 A-re. 

9-2 .3  # = 1.64 A-m 2. 

9 - 2 . 5  B = 0.0259 T. 

9 - 2 . 7  ]~ = qm B, qm due to one pole of a long mag- 
net and/3 = km[-/~ + 3(/~- R)-R]/R 3 due to a short 
magnet. The force on the distant pole of the long 
magnet is neglected. 

9 - 2 . 9  (a) The magnet is strongly attracted to the 
soft iron rod when the soft iron is brought up 
to the magnet's poles, but only weakly attracted 
when the rod is brought up to the magnet's center. 
(b) The soft iron is strongly attracted to the magnet 
when the magnet is brought to any part of the soft 
magnet. 

9 - 2 . 1 1  "Show that" problem. 

9-3.1 qm = 5.12 A-m, O" m - - 3 . 2  x 10 s A/m, /~ = 
0.256 A-m 2. 

9 - 3 . 3  M = 3.99 x 10 s A/m. 

9 - 3 . 5  (a) r << a, no rs (b) a << r << l, 
IBI ~ r -2. (c) l << r, IBI ~ r -4. 

9 -4 .1  Discontinuity in B is #0(a - 1)2(4. 

9 -5 .1  Put a rod of soft magnet in a line between a 
pole of a permanent  magnet and the region where 
the field is to be intensified. 

9 - 5 . 3  When field lines are expelled (concen- 
trated), the object that is their source is repelled 
(attracted). 

9 - 5 . 5  (a) H = 1481 A/m, X = 1.688. (b) Memu = 
2.50 mmu/cm 3, Bemu = 50 G, Hemu = 1 8 . 6 0 e .  

9 - 6 . 1  Mr and Ms are too far in value; the magnet 
would not retain its magnetization. 

9 -7 .1  (a)I/7/I = 485 A/m, I/~1 = 0.98 T. (b) Small, 
except perhaps near the poles. 

9 - 7 . 3  By keeping in the field lines, the keeper 
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magnet lets the magnetization of one pole of the 
magnet magnetize the other end, and vice versa. 

9-8.1 In Figure 9.19(a) there are no poles because 
2(//is normal to fi; hence/7t  ~ ~. In Figure 9.19(b) 
the poles produce a demagnetization field # / ~  -iV/ 
that makes/~ = ~t0(/7/+ 2(//) ~ 0. 

9 -9 .1  1/31- 6.63 x 10 -6 T. 

9-9.3 72.9 ~ dip angle. 

9-9.5 "Show that" problem. 

9-10.1 If the Fe and Nd interaction were ferro- 
magnetic, the net magnetic moment  would be larger 
than when they are antiferromagnetic: 7 #re + #Nd 
rather than 7 [~Fe - -  #Nd. 

10-1.1 (a) B = -0 .056)~  T. (b)/3 = 0.056# T. 

1 0 - 1 . 3  (a) Blx - -0 .037  T. Bly = 0.015 T. 
(b) B2x = -0 .074  T. B2y = - 0 . 0 3 0  T. (c) Bx = 
0.111 T. By = --0.015 T. 

10"2 .1  (a) South pole up. (b) Rightward force. 
(c) Leftward force on magnet. (d) No torque on 
magnet. 

1 0 - 2 . 3  (a) Left magnet has moment  into page, 
right has moment  out of page. (b) Attracted to loop 
on left. 

1 0 - 2 . 5  The wire moves downward. 

1 0 - 2 . 7  (a) In units of A-m 2, f i = - 0 . 1 7 3 1 [ -  
0.0261 j + 0.3385k. 

1 0 - 2 . 9  (a) Attractive. (b) Repulsive. (c) Wires car- 
piing parallel currents will attract. 

10-3.1 (a) f i - - 4 . 5 2 x  10-4~A-m 2. (b) f =  
-1 .808  x 10-651N-m. (c) ~ = -1 .664  x 10-6p 
N-m. 

1 0 - 3 . 3  (a) # = 1.024 x 10 -4 A-m 2. qm = 8.53 X 
10 -4 A-m. ( b ) I B I - 9 4 . 8 n T .  ( c ) 0 . 5 2 1  nT. (d) 
[ B ] -  10.24 nT. 

10-3.5 (a) M - 9 . 2 7  x 106 A/m. (b) For a good 
magnet, M ~ 10 s - 106 A/m. 

1 0 - 4 . 1  (a)]/~] = 81.6 #N. (b) Reversing the cur- 
rent or field reverses the force, pumping the 
blood the opposite way. (c) Reversing both cur- 
rent and field does not change the direction of the 
force. 

1 0 - 4 . 3  Compress. 

10-4.5 ~ -  -2al/31:). 

1 0 - 4 . 7  (a) F - 2zrNa2AI'2. (b)/5 = 0.253~ N. 

1 0 - 4 . 9  (a) "Show that" problem. (b) F = 0.049/). 

10-4.11 (a) Fb = 0.009~ N. Ft = - 0 . 0 1 8 / )  N. 
(b ) /~  = 0.0225)? N. /~r = --0.0225~ N. (c) Fn~ = 
-0.009/9 N, compress. 

1 0 - 4 . 1 3  (a)a = 10 7 m/s 2. (b)IFI = 1.4 x l0 s N. 
(c) I = 2.8 x 106 A. 

10-4.15 F = [27rkmqmla2/(r 2 + a 2 ) 3 / 2 ] p .  

1 0 - 5 . 1  (a) Force is out of the page. (b) ]F] = 
2.206 x 10-17 N. (c) a=247g, where g - 9 . 8 m / s  2. 

1 0 - 5 . 3  IBI = 9.42 x 10 -17 T. 

1 0 - 5 . 5  /~ = (2.611 x 10-2~ 7.658 x 1 0 - 2 ~  
10.27 x 10-2~ ]/~] = 1.307 x 10 -~9 N. 

10-5.7 B = ( 0 . 0 2 8 6 ~ -  0.0755k) T. 

1 0 - 5 . 9  "Show that" problem. 

1 0 - 6 . 1  (a) Electron moves on a semicircle that 
bends left, and comes back out of the field region. 
(b) Proton moves on a semicircle that bends right, 
and comes back out of the field region. 

1 0 - 6 . 3  (a) It deflects along - ) .  (b) v = 2.11 x 
108 m/s. Using m = m0(1 - v2/c2) -�89 gives v = 
1.726 x 108 m/s. 

10-6.5 The period and radius are independent. 
The student is wrong. 

1 0 - 6 . 7  (a) T = 5.45 x 1 0  - 7  s. (b ) I /~1 -  0.241 T. 
(c) 41.7 V. 

1 0 - 6 . 9  Deuteron, 2.55 cm; triton, 3.12 cm; 3He 
nucleus, 1.56 cm; 4He nucleus, 1.80 cm. 

1 0 - 6 . 1 1  (a) 26.1 T. (b) 30.1 T. 

1 0 - 6 . 1 3  (a) P is perpendicular to /3. (b )v~  = 
2 and both E and vii do not ~2 2 - -  V ~  = x/2mE - vii, 

change. (c) "Show that" problem. 

1 0 - 6 . 1 5  (a) 0 =  124.6 ~ (b) R = 8 . 3 5  x 10 -4 cm. 
(c) p = 3.57 x 10 -3 m. 

1 0 - 6 . 1 7  (a) Circle centered at x = z = mvo/qB, 
y = 0 ,  with radius R =  4'2mvo/qB. (b) Pene- 
tration is (v/2 - 1)mvo/qB. ( c ) T i m e  in field is 
(rr/2)(m/q B). (d) Exits at x0 = 2mvo/q B. 

1 0 - 6 . 1 9  (a) "Show that" problem. (b) "Show 
that" problem. (c) The two formulas coincide. 

1 0 - 6 . 2 1  (a) "Show that" problem. (b) "Show 
that" problem. 

1 0 - 7 . 1  Because the charge carriers move to the 
side of the wire, the force does act on the charge car- 
riers themselves (i.e., the current). Thus Maxwell 
was in error here--"to err is human." 

10-7.3 (a) Negative. (b) vd = 0.882 mm/s. 
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10-7.5 (a) RH = 7.35 x 10 -11 m3/C. (b) Re = 
- 1 0 . 5 x  10 - g f l . ( c )  l = l . 2 2 # m .  

1 0 - 7 . 7  (a) Top is positive. (b) Emo, = - v B S , ,  
Ees = vBS,. (c) A V = uBl. (d) A V = vBl cos 0. 

10-8.1 dWemf = -dW;mf = -0 .084  J. 

11-2.1 d/] = 2.72 x 10-:~ + k) T. 

11-3.1 "Show that" problem. 

11-4.1 (a) 5.29 m. (b) 281 turns. 

11-4.3 2.81 mm. 

11-4.5 (a) d B =  (kmlds/a2)~.  (b) B = (zrk~l/a)~.  

11-4.7 3.67 mA. 

11-4.9 B ~ = 6 x  10 -ST.  

11-5.1 (a) /] = 0 ,  /3 = 4zrkmKi ~, B = 12zrk~Ki'. 
(b) IBI-= 0.003]4 T. 

11-5.3 (a) Two close coils behave like a single 
coil, with a single maximum at their midpoint. 
(b) Two distant coils behave like two indepen- 
dent coils, with a local minimum at their mid- 
point. (c) By = 2srkm/R2[((y + s/2) 2 + R2) -3/2 + 
( ( y -  S / 2 )  2 + R2) -3 /2 ] .  (d)s  = R. 

11-5.5 "Show that" problem. 

11-5.7 "Show that" problem. 

11-5.9 (a) /3 -- - 168.4~ #T. (b) / ]  = -31 .0s  ~T. 
(c) B = 49.1~ #T. 

11-5.11 /] = -2k~  Kln(  x+w/2x_-i-w-~)Sz. 

1 1 - 5 . 1 3  (a) K = M, counterclockwise. (b) B = 
a 2 b 2 

kmI[ (z2+a2/43~/z2+a2/2 -t- (z2+b2/43~/z2+b2/2 I ] ' z .  

11-5.15 (a) Bx = ~2zrk~I[ ~+z/2 _ 
4 ( x + L / 2 ) 2  +a 2/43 

2~r km NI a 2 
x -L~2  ]. (b) For L/a ~ O, B~ ~ (x2+a2)3/2. 

4 ( x - L / 2 ) 2 + a 2 / 4 )  

For L/a  ~ oo, Bx ~ 4 z r ~ N I / L .  

1 1 - 5 . 1 7  (a) dI /d r  = acor. (b) I - co(a2~2). 
x 2 (c) Bx = 2zr kma w[ %Ix 2 -]- a 2 - -  2x + ~ ]. 

1 1 - 6 . 1  (a) / ~ - 3 . 0 4 x 1 0 - 2 1 5 7  N. (b) /~-- 
-3 .04  x 10-215 N. (c) P = 0. 

11-6.3 P = 2~k~i. 
r 

11-6.5 (a) IFI = 2kmI21n(a/r), to the left. (b) 
I F I -  9.15 x 10 -5 N. 

11-6.7 (a) B 2rrkmI2 __ b .... ( - - 5 )  (119) /~ 2sr2kmI112na2 X.  
- -  " b 

(c) B = -2 .51 x 10-45 T, i~ = 1.18 x 10-55 N. 

11-6.9 F/I  = kml2/a. 

11-7.1 (a) FB = 1.72 x 10 -5 T-m. (b) FB = 0. 

11-7.3 (a) Ie,c = 19,900 A. (b) FB = 0.05 T-m. 
(c) FB = 0 T-m. 

1 1 - 7 . 5  (a) Field circulates counterclockwise. (b) 
Fs/s  = 0.04 T. (c) Ienc= 636.6 A. (d) Field points 
out of the page. 

1 1 - 8 . 1  "Show that" problem. Deformation doesn't 
affect circulation if no current passes through the 
deforming circuit. 

11-8.3 (a) And. (b) For both a physical circuit and 
an Amp~rian circuit, d~" is defined, but only for a 
physical circuit does it point along the local current 
direction. 

11-9.1 Take df  to be clockwise, so Ien~ > 0 is into 
the page. (a) FB = - 1 2 0  T-m. (b) Ienc = - - 9 . 5 5  X 
107 A (out of page). (c) J .  fi = 7.96 x 106 A/m 2. 

1 1 - 9 . 3  (a) F~ = 2ydydx.  (b) Ien~ = ydydx/2zrkm. 
(c) I / A = y/2zt kin. 

11-9.5 (a) F B = 5.6 x 10 -6 T-m. (b) B = 3.56 x 
10 -5 T. (c) Ien~ = 4.45 A into the page. (d) Ienc/A = 
2266 A/m 2. 

1 1 - 1 0 . 1  (a)IBI = 9.60 roT. (b)IBI = 15 mT. (c) 
Counterclockwise. 

1 1 - 1 0 . 3  (a) r < a and a < r < b counterclock- 
wise, c < r clockwise. (b) Concentric circle of ra- 
dius r > c. (c) FB = 2zrrlBI. (d) FB = 12zrkmI. 
(e) BI = 6kmI/r. 

1 1 - 1 0 . 5  Take //nner tO be out of the page, and 
to indicate the counterclockwise tangent. . (a)  

Jcore I I =n- -~a  Jsheath- (b) For r < a, B -  , rr(c2-b2) " 

2~I r;'" b, [3 2krI ~,, for a < r  < = 0~; for b < r  <c,  
-. r 2 b 2-  ^ B = 2krm* (1 -- ~ ) ~ b ;  for c < r, B = 1). 

1 1 - 1 0 . 7  (a) "Show that" problem. (b) r i B ' =  
-km(nlz ) (dg  • ~ ) /R  3. (c) "Show that" problem. 

11-11 .1  (a) ~ k~q~m *, = 47y"  (b) h = (qm/2)~/km/Mg. 

1 1 - 1 1 . 3  (a) "Show that" problem. (b) By = 
k y q ~ )  km q2 

{ 2 for y < 0. (c) F - q m B -  (Z~h)" 

1 1 - 1 2 - 1  (a) Induced surface current K circulates 
clockwise as seen from above. [b) K = q~ P 2~r (p2 +h2)3/2 " 

-, kmq 2 

(c) ~ = (5~7( -~) .  

1 1 - 1 3 . 1  See Section 11.13. 

1 1 - 1 4 . 1  (a) Bgap = 17.2 mT. (b) Bin-- Bgap = 
17.2 mT. (c) Agap/A-- 45.5. 

1 1 - 1 4 . 3  (a) B i n -  1.29 T. (lo) Bgap-- 1.29 T. 
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12-3 .1  (a) Calico is an insulator. (b) The greater 
the current, the greater the deflection. (c) Counter- 
clockwise. 

12 -3 .3  (a) Counterclockwise. (lo) To increase the 
response. 

12-3.5 (a) Smaller. (b) Clockwise. 

12 -3 .7  (a) Source of magnetic field. (b) Counter- 
clockwise. 

12-4 .1  (a) Increases out of the page. (b) Into 
the page. (c) Clockwise. (d) Clockwise. (e) Up. (f) 
Compress. (g) No tendency to rotate. 

1 2 - 4 . 3  No current. 

1 2 - 4 . 5  If R increases, (a) decrease. (b) increase. 
(c) same direction as primary. (d) same direction 
as primary. (e) loops attract and expand. (f) If R 
decreases, all answers reverse. 

1 2 - 4 . 7  (a) Increase out of the page. (b) Into the 
page. (c) Clockwise. (d) Clockwise. (e) Leftward, 
compressive. (f) If the field is tilted, the effects will 
decrease. 

12-4.9 (a) counterclockwise. (b) move foil away 
and compress the foil. 

1 2 - 6 . 1  (a) 0.2 H. (b) 27 A/s. 

12-6.3 - (32.4  + 32.4t) mV. 

12-6.5 (a) 2kmN1Npha/fi. (b) 2kmN1N2ha/fi. 
2zr2 kma2 b 2 0-11 1 2 - 6 . 7  (a) R3 . (b) 2.56 x 1 H. 

1 2 - 6 . 9  (a) 4zr2kmN~Nslsa2/l. (b) Counterclock- 
wise. (c) d~B/dt= 4rr2kmN~Ns(dls/dt)a2/l, 8 =  
-4rr2kmN~Ns(dls/dt)a2/l. (d) 0.126 mH. 

12-7 .1  (a) -0.08:9 V/re. (b) Bottom is higher, by 
18.35 mV. 

12-7.3 (a) A V,~ght = O. (b) A Vleft = O. 
(c) zx V~op = 0. 

1 2 - 7 . 5  East wing is higher by 0.135 V. 

1 2 - 7 . 7  1.42 btV, clockwise viewed from above. 

1 2 - 7 . 9  (a) oorBb. (b) b/~cd. (c) Force ro)B2bcd~ 
opposing motion, torque r 2 o)B 2 bcd~ opposing mo- 
tion. (d) "Show that" problem. 

12-8 .1  (a) Middle arm. (b) Before, lj = 0.048 A, 
Iw = 1.2 A, both right to left. (c) After, lw is un- 
changed and I j = 1.2 A, left to right. (d) A V~ = 
24 V, A Vj = 600 V, both clockwise, and A VL = 
624 V counterclockwise. (e) See Figure 12.21. 

12-4.11 observer dBext/dt Bind ~ind, ]ind ~ compress or expand 

reader | Q counterclockwise opposite (5 expand 

observer dBext/dt Bind ~ind, lind Fnet compress or expand 

from above | (i) counterclockwise (3) compress 
12-4.13 

12-5.1 (a) E and/3 are vectors; g, ~B, andd~B/dt 
are scalars. (b)/~, g, and d~B/dt do not change; 
and ~B reverse. 

1 2 - 5 . 3  (a) ~B = - ( 1 6 t  + 3 2 t  2) x 10 -7 Wb. (b) 
d~B/dt = - ( 1 6  + 64t) x 10 -7 Wb/s. (c) g = ( 1 6  + 
64t) x 10 -7 V. (d) ]F] - 2.56(1 + 4t + 2t 2 + 8t 3) x 
10 -11 N. (e) 3.03 s. 

12-5.5 (a) -2.39 inV. (b) -2 .47  mV. (c) -0 .65 
mA. 

12 -5 .7  (a) 0.008 V counterclockwise. (b) 0.32 
mA counterclockwise. (c) 5.12 x 10 -s N pushing 
the loop into the field region. 

1 2 - 5 . 9  (a) 0.096 T into the page. (b) 0.00144 
Wb/s. (c) 0.036 mA counterclockwise. (d) 6.912 x 
10 -8 N drawing the circuit into the solenoid. 

12-5.11 (a) 2NBA. (b) 2NBA/R. 

1 2 - 5 . 1 3  (a) (2rrr)(dr/dt)B2/R. (b) 144 N/m. 

12-9.1 2.703 mH. 

12-9.3 -61 ,300  A/s, the sign meaning that 12 and 
11 are changing in opposite senses. 

1 2 - 9 . 5  For a pure inductor, ~B = f ( ~  + Bi)- 
dJll conserved. Thus an increase in/31 is accompa- 
nied by a decrease in/32. This corresponds to out- 
of-phase magnets, which will repel. 

12-10.1 (a) 72 turns. (b) -1 .55 mV. 

1 2 - 1 0 . 3  (a) N2L. (b) 0.138 mH. 

12-10.5 L = 2kmN2aln[(b + a)/a]. 

1 2 - 1 1 . 1  ( a ) d I / d t = 2 . 2 1  x l0 s A/s, VR= 
0.966 V, VL = 1.434 V. (b) I = 6.52 A, dI/dt = 
1.38 x l0 s A/s, VR = 1.5 V. 

1 2 - 1 1 . 3  (a) dI/dt = 5.78 x 10 s A/s. (b) 4.8 V. 
(c) 37.25 ns. 

1 2 - 1 1 . 5  (a) 6.73 mH. (b) 0.410 ms. (c) 19.8 mA. 

1 2 - 1 1 . 7  (a) At t = 0 +, VL = 12 V. At t = 25/~s, 
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�89 ~ 0. (b) At t = 25/xs, Vet = 0.293 V, and VR = 
11.707 V. (c) At t = 0 § the electric field is elec- 
tromagnetically induced. At t = 25/~s, the field is 
electrostatic. 

12-12.1 ( a )0 .1568  J. (b) 2.31 x 108 J/m 3. (c) 
24.1T. 

12-12.3 0 . 4 1 6 / ~ H / m .  

1 2 - 1 2 . 5  (a) 0.008 s. (b) See Figure 12.31. (c) 
At t = 0 ,  I = 0  a n d d I / d t = 3 x  103A/s. At t =  
0.002 s, I = 5.31 A and dI /d t  = 2.34 x 103 A/s. At 
t = oo, I = 24 A and d I / d t  = 0. (d) Battery pro- 
vides 0, 63.7 W, and 288 W. (e) Resistor uses 0, 
14.1 W, and 288 W. (f) Inductor builds up energy 
at rate 0, 49.7 W, and 0. (g) Except for negligible 
parasitic capacitance, there is no electrical energy. 
(h) ~batt = 7~L + 79R �9 

12-13.1 (a) 1.1 N/C.  (b) 1.76 N/C.  

1 2 - 1 3 . 3  (a) "Show that" problem. (b) 0.00398. 
(c) IEol = 0.0329 V/m,  Ez = 0.131 mV/m, AVL = 
0.0262 mV. (d) Eo is electromagnetically induced. 
(e) Ez is electrostatic. 

12-13.5 Let ~2 = Rr Rl + Rr Rm + RI Rm. If 
gr > 0, then II = gr Rm/R 2 goes up the left arm 
and Ir = gr (R m + RI)//~2 goes down the right 
arm. (a) IrRr. (b) It Rt. (c) gr = - 0 . 3 9 7 V ,  so 
I rRr = - 0 . 2 8 3  V (voltmeter bot tom is positive) 
and It Rt = -0 .0567  V (voltmeter top is positive). 

12-13.7 (a) 4 A clockwise. (b) 8 V across left, 
0 V across top, 4 V across right, 0 V across bottom. 
(c) VA =- -5  V, VB = - 2  V, Vc = - 3  V, VD = 0 V. 
(d) S V, - 3  V, 1 V, - 3  V. 

1:~-14.1 (a) 11 = 12 = 6 A, right to left. (b) I = 
1.7 A in both arms, circulating clockwise. (c) I = 
0.96 A in both arms, circulating clockwise. 

12-14.3 (a) 11 = 12 = 0. (13) I1 = 12 = 0. (c) I1 = 
0.545 A, I2 = 0.15 A. (d) I = 0.346 A, circulating 
counterclockwise. (e) 68.6/is,  0.193 A. 

13-2.1 "Verify that" problem. 

1 3 - 3 . 1  From best to worst: iron rods, iron, plastic 
(either rods or solid). Iron rods have a large magne- 
tization, but a relatively large resistance. 

1 3 - 4 . 1  The motor is an external source of me- 
chanical power, and the generator uses the electrical 
power. 

13-5.1 (a) 10 f2. (13) 100 V. 

1 3 - 5 . 3  (a) 92.31 A. (b) O.59 N, 1.02 m/s 2. (c) 
0.015 V. (d) 92.3 A. (e) 2.25 s. 

13-6.1 (a) 4293 s. (b) 7.32 A. (c) 0.0703 N. 

1 3 - 6 . 3  (a) 227 s. (b) 2.89 x 104 m/s. (c) 1.461 x 
103 A. 

1 3 - 7 . 1  0.0403 s. 

1 3 - 7 . 3  88.7%. 

1 3 - 8 . 1  (a) 80 s. (b) 0.08 N, 1.667 m/s 2. (c) 
69.1 m/s 2, 1.97 m/s. 

1 3 - 9 . 1  2.65 x 106 m/s, 2.65 x l0 s m/s, 2.65 x 
102 m/s, 2.65 x 101 m/s. 

1 3 - 9 . 3  "Show that" problem. 

1 3 - 9 . 5  (a) Opposite source current. (b) Same as 
source current. 

14-1.1 Vrms = 1/,/-$, P" = O. 

14-1.3 (a) 0.0127 s per radian and 0.08 s per pe- 
riod. (b) 12.5 s -1 and 78.5 rad/s. (c) 12.5 s -1 is f 
and 78.5 rad/s is co. 

14-1.5 (a) Vrms = Vm/,f$. (b) A V =  Vml2. 

14-1.7 (a) Vnns = Vm/~/3. (b) A V =  O. 

14"2 .1  Decrease either L or C by a factor of 4. 

1 4 - 2 . 3  (a) 2.093 x 10 -9 F to 0.264 x 10 .9 E (13) 
2.62 x 10 -12 J and 0.329 x 10 -12 J. 

1 4 - 3 . 1  (a) Current starts at zero but with finite 
slope, going through some damped oscillations 
until it is zero at long times. (b) Charge starts at zero 
and with zero slope, going through some damped 
oscillations until it is finite at long times. 

14-3.3 "Show that" problem. 

14-3.5 (a) coo = 2.49 x 1 0  4 rad/s, f0 - 3.97 x 
103 Hz, Rc = 1197 f2. 

1 4 - 4 . 1  (a) 29.4 cm 2. (b) 800 turns. 

1 4 - 5 . 1  (a) 5.86 f2, 56.1 ~ (b) Energy is absorbed. 

1 4 - 5 . 3  (a) B provides power, A receives power. 
(b)  55  ~ 

14-5.5 (a) 500 f2, 0.628 F, - 9 0  ~ (b) 502.6 J. 

1 4 - 5 . 7  (a) Scalar. (c) The y-component  of the ro- 
tating vector, or phasor, gives a scalar that equals the 
voltage. 

1 4 - 5 . 9  (a) At low f capacitors serve as open cir- 
cuits (finite voltage), at high f capacitors serve as 
closed (or short) circuits (zero voltage). (b) At low 
f inductors serve as closed (or short) circuits (zero 
voltage), at high f inductors serve as open circuits 
(finite voltage). 

14-6.1 Z = 500 S2, q5 = 0.188 rad = 10.8 ~ R = 
39.4 f2, XL = 7.50 S2, L - - 0 . 1 9 9  H. 
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1 4 - 6 . 3  XL = 1.57 ~, Z = 20.6 f2, ~ - 0 . 0 7 8 4  rad = 
4.49~ Gad - 0.0398 ms, I~ = 3.0 A. 

1 4 - 6 . 5  X c = 3 . 0 2 x  104 ~, R = 1 . 4 3 0 x 1 0  s f2, 
Z = l . 4 6 1 x  10 s f 2 , ~ b - - l l . 9  ~ . 

1 4 - 6 . 7  Z = 160 f2, XL = 30.14 f2, R = 157.1 ~2, 
~b = - 0 . 1 8 9 4  rad = - 10.85 ~ tlag = 6.85 x 10 -s ms. 

1 4 - 6 . 9  ~b = 0.188 rad, Xr = 2.29 f2, L = 0.911 mH, 
Z - 12.22 ~. 

1 4 - 6 . 1 1  (a) Irms= 3.52 A for all circuit ele- 
ments. (b) A VR, rms = 85.4 V, A VL,rms = 20.1 V. (c) 
72R, rms = 300.6 W, 72L,rms = 0. (d) ~b = 0.23 rad, 
tlag = 0.61 ms. 

1 4 - 6 . 1 3  (a) Inductor with L = 0.1 H. (b) 73 = 
35.45 W. 

14-7.1 (a) F = 0.0625 Hz. (b) ZR = R = 200 f2, 
ZL = XL - 3 . 5 6  x 10 -3 ~. (c) Power surges have 
high frequencies, for which inductors have a high 
impedance. 

14-7.3 (a) Capacitor. (b) Resistor. (c) V R ,  m = 

2.39 V, Vc, m = 24.9 V. (d) VR, m - -  17.35 V, VC, m --  
18.00 V. 

1 4 - 1 . 5  "Show that" problem. 

14-8.1 (a) Yes. (b) No. (c) Yes. 

14-8.3 (a) X L -  157.1 s2, X c -  0.796 ~2, Z = 
156.3 ~"2, ~ = 88.53 ~ (10) ]m = 0 . 1 5 3 5  A, VL, m = 
24.1 f2, VR, m = 0.614 f2, Vc, m = 0.122 f2. (c) Volt- 
age leads current  by 6.15 x 10 -4 s. (d) 0.626 V, vol- 
tage lags current  by 7.82 x 10 -s s. (e) 157 .1~ ,  
voltage leads current  by 6.15 x 10 -4 s. (f) 156.3 f2, 
voltage lags current  by 6.25 x 10 -4 s. 

14-8.5 (a) 1340 Hz, /rms = 0.05 A. (b) VL,rms = 
6.315 V, VR,,ns = 1.20 V, Vc, nns = 6.32 V. (c) Z = 
191 f2, ~ = 82.8 o, Irms = 0.00688 A. (d) VL,rms = 
1.587 V, VR, rms -- O. 1508 V, Vc, nns - 0.3968 V. (e) 
Re = 252.6 f2. Definitely a resonance, but  rather 
broad, since Q = 5.625 is fewer than the 6.26 radi- 
ans that  correspond to a full period. 

1 4 - 8 . 7  "Show that" problem. 

1 4 - 9 . 1  For water, a valve permits a small force to 
control a large flow of water; for electricity, a valve 
permits a small voltage to control a large flow of 
electricity. 

1 4 - 9 . 3  See Figure 14.14(b). The grid voltage de- 
termines whether  or not  electrons are drawn off 
the cathode; once off the cathode, they go to the 
anode. 

14-10.1 Neither  of t hem can dissipate energy, 

and on average neither of t hem can store more  than 
one cycle's worth  of energy. 

1 4 - 1 0 . 3  (a) 72 > 0 when refinery is buying power. 
(b) 72 < 0 when  refinery is selling power. 

1 4 - 1 0 . 5  (a) cos~b0 = 0 . 4 2 3 .  (b) Add capacitor 
with C = 1.958 #F. (c) Z -- 1215 s2. 

1 4 - 1 1 . 1  (a) 6.25 turns. (b) 62.5 turns. 

14-11.3 100 V. 

1 4 - 1 1 . 5  (a) N s / N p -  1/10. (b) Lower voltage 
side has higher current; thicker wire decreases the 
Joule heating rate. 

14-11.7 (a) 72gen = 4800 W. (b) 72 = 72gen - -  

4 8 0 0  W. (c) 72wires = 2.56 W. (d) 72load = 

4797.44 W. 

1 4 - 1 1 . 9  See Section 14.11.3. 

14-11.11 (a) R =  1 ~2. (b) R c / R =  Jr. (c) L = 
0.84 mH, C =  0.34 mF. (d) Ns/Np = 100. 

1 4 - 1 2 . 1  Toaster. 

14-12.3 (a) gm = 4.88 V. (b) Z = 20.8 f2, ~b = 
52.8 ~ (c) Im = 5.76 A. (d) F = 0.105 N. 

1 4 - 1 2 . 5  (a) I R  + L d I / d t  + Q / C  = gm sincot, 
gm =coBmlx. (b) I -  gm/Zsincot, Z and ~b as in 
(14.71) and (14.72). (c)/? = gmbBm/2Z. 

1 4 - 1 3 . 1  (a) 23.9 #m.  (b) d - 0.001 inch is 25.4 
#m,  so that  the field will penetrate, but  down by a 
factor of e -a/8 = 0.346. 

1 4 - 1 3 . 3  "Show that" problem. 

15-2.1 (a) 2011 m/s. (b) 2 min. (c) 70 min. (d) 
60 flagmen. 

15-3.1 2.8 x 1016 N/C-s. 

15-4.1 0.011/m. 

1 5 - 4 . 3  (a) d y / d x  = x / ( a -  y), d2y /dx  2 = a2/ 
( a -  y)3. (b) 1/a. (c) d2y /dx  2 = 1/R, where  R = a 
is the radius of curvature. 

15-5.1 120 m/s. 

15-5.3 3 N. 

15-5.5 (a) Energy flowing along the string is more  
concentrated. (b) Yes. (c) 3361 N. (d) It corresponds 
to hanging a mass of 342,6 kg; unlikely. 

1 5 - 5 . 7  "Show that" problem. 

1 5 - 5 . 9  (a) 2.048 m/s. (b) 0.36 m. (c) - 0 . 6 5  m/s. 
(d) - 0 . 6 2 6  m/s 2. 

1 5 - 5 . 1 1  (a) 2 5 1 m  -1. (b) 2010s  -1 (c) 320 
Hz. (d) 0 .003125s.  (e) - 8 0 4 5 . 7 5  rad, which is 
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equivalent to 3.01 rad. (f) y(x, t) - (0.03 cm) 
sin[251x + 201t + 3.01]. (g) 0.00296 cm. 

15-5.13 (a) 3.0 kg/m. (b) 0.72 N. 

1 5 - 5 . 1 5  (a) 147 m/s. (b) 170 cm and 85 cm. (c) 
86.5 Hz and 172.9 Hz. 

1 5 - 5 . 1 7  (a) 7.48 m. (b) 22.44 m. (c) 0.0128 s. 
(d) 78 Hz. (e) - 2 .65  m/s. (f) - 8 6 0 0  m/s 2. 

1 5 - 5 . 1 9  (a) No. [b) No. (c) No. (d) d 2 y / d x 2 =  
v2(d2y/dt  2) and d2z/dx 2 = v2(d2z/dt2). 

15-6.1 - 12 ,000)~  V / m .  

1 5 - 6 . 3  (a) (D/c)  sin(qx - cot). [b) (D/c)  sin x 
(qy - cot). 

1 5 - 6 . 5  (a) 0.009375 m. (b) 670.2 m -~. (c) 
2.01 s -~ . (d) 0.15 sin(qy - cot) mT. 

1 5 - 7 . 1  (a) 303 rn. (b) 3.367 m. 

15-8.1 (a) r -1. (b) r -1/2 

1 5 - 8 . 3  (a) 1.59 x 105 V/m. (b) 0.53 mT. 

1 5 - 9 . 1  (a)4.17 x 10 -8 m/s2. (b) 19,200 s. (c) 8 x 
10 -4 m/s. (d) 7.68 m. 

15-9.3 (a) uE = H B  - -  8.95 sin2(qx - cot) mJ/m 3. 
(b) S = 5.375zsin2(qx - cot). (c) $' = 0.0179 sin 2 
(qx - cot) N/m 2. 

15-9.5 (a) r 3 _2Jrkmn2rl d I  ^ = 7ir. (b) 7 : ' /1 -  
4zr2n2r2IldI/dtl. (c) d72/l = 8Jr2n2rdrlIdI/dtl .  
(d) d ( d U B / d t ) / l -  8zc2n2rdrlIdI/dtl .  This equals 
dp/ l ,  so dp=d(dUB/d t ) .  

15-10.1 (a) 3.93 m. (b) 1.132. (c) 1.28. 

15-10.3 (a) 5.07 x 10 TM Hz. (b) 5.07 x 10 TM Hz. 
(c) 443.7 nm. (d) Ore fl  - 23 ~ (e) Orefr = 17.04 ~ 

15-10 .5  (a) 0F~176176 24.41 ~ 
(b) Crown glass. (c) Diamond. 

1 5 - 1 1 . 1  2.3 W / m  2, polarized vertically. 

1 5 - 1 1 . 3  (a) 0. (b) 0.134 W / m  2, at 35 ~ to the 
x axis. 

1 5 - 1 1 . 5  2.58 W / m  2, polarized vertically. 

15-11.7 (a) 53.1 ~ (b) 36.9 ~ 

1 5 - 1 2 . 1  (a) See Section 15.12. (b) See Section 
15.12. 

1 5 - 1 2 . 3  -2881)~ A/m. 

1 5 - 1 3 . 1  "Show that" problem. 

1 5 - 1 4 . 1  (a) 2.4 m. [b) 2 .4  m.  

1 5 - 1 4 . 3  R/P~ ,~ 0.25. This corresponds to Q = 
R~/2R ~, 2.0 radians, or 0.32 of a full oscillation. It 
damps out very quickly. 

16-2.1 (a) 76.6 mm. (b) 287 Hz. 

1 6 - 2 . 3  (4d 2 - 4m2X2)y 2 - 4m2)~2D 2 = m 2~.2 

(d 2 - m2X2). 

16-2.5 (a) 0.212 m. (b) 1604 Hz. 

1 6 - 2 . 7  (a) One line of maxima, no lines of min- 
ima. (b) One line of maxima, two lines of minima. 
(c) Five lines of maxima, six lines of minima. 

1 6 - 2 . 9  (a) See Figure 16.6(a). (b) See Figure 
16.7(a). (c) See Figure 16.8(a). 

16-2.11 (a) 4.09 m. (b) 12.50 ~ 

1 6 - 3 . 1  "Show that" problem. 

16-3.3 (a) ~ = 2rr + 20 - 60'.  (b) sin 2 0 = 
1-(n/3) 2 
~ . - ~ .  (c) ~b- 180 ~ = 50.97 ~ 

164.1 See Section 16.4. 

164.3 See Section 16.4. 

164.5 At 90 ~ (top of circle) get maximum in- 
crease in period; at 270 ~ (bottom of circle) get max- 
imum decrease in period. 

164.7 Grimalcli's experiment showing bright and 
dark fringes inside and outside the geometrical 

shadow. 

164.9 Birefringent crystals, unless oriented prop- 
erly, will give two images. 

1 6 - 5 . 1  (a) "Show that" problem. (b) Vs. (c) vp. 

1 6 - 5 . 3  (a) For small-amplitude disturbances the 
equations are linear, which leads to an amplitude- 
independent sound velocity. (b) The relative 
amounts of reflection and refraction are amplitude- 
independent. 

16-6.1 (a) 109.87 Hz. (b) Tone at ( f A -  f~)-~. 
(c) 7.5 s. 

1 6 - 6 , 3  k ' /k  = v/c. Since the experiments indi- 
cate that )~' in the film is less than k in air, we deduce 
that v < c. 

1 6 - 6 , 5  (a) The sources have a coherence time 
much shorter than the measuring time of the eye. 
(b) The sources have a coherence time longer than 
the measuring time of the ear. 

16-6.7 (a) No.  (13) No.  

1 6 - 6 , 9  (a) 489.44 mm. (b) 611.8 nm and 407.9 
nm. 

1 6 - 6 , 1 1  (a) 691.3 nm, 518.5 nm, and414.8  nm. 
(b) 592.4 nm and 460.0 nm. 

1 6 - 6 , 1 3  (a) 912 nm. (b) 606.5 nm, 485.2 nm, 
and 404.3 nm. 
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16-6.15 113.1 nm. 

16-6.17 (a) nl = 1.000293. (b) ~.vac - -  690.2 nm. 
(c) d --- 0.4998 m. 

16-6.19 (a) N = 2AD/)~. (b) 600 nm. 

1 6 - 6 . 2 1  (a) 409 nm. (b) 8.1 mm. (c) 611. 

1 6 - 6 . 2 3  (a) 490 nm. (b) 245 nm. 

1 6 - 7 . 1  "Show that" problem. 

1 6 - 7 . 3  Break up the illuminated part of the plane 
into tiny strip-shaped sources parallel to the finite 
opaque strip. Break up the illuminated part of the 
plane into tiny annulus-shaped sources concentric 
with the finite opaque disk. Because of the sym- 
metry of the observation point at the center of 
the geometrical shadow, wavelets from all strips 
(or annuli) add in phase, giving an interference 
maximum. 

1 6 - 7 . 5  366.5 nm. 

1 6 - 7 . 7  (a) 16.27 #m. (b) 2.20 ~ 6.60 ~ 

1 6 - 7 . 9  (a) 7.68 o. (b) 3.24 cm. 

1 6 - 7 . 1 1  (a) 18.47 #m. (b) 4.28 ~ 4.87 cm. 

1 6 - 7 . 1 3  19.7 # m .  

1 6 - 7 . 1 5  (a) "Show that" problem. (b) "Show 
that" problem. 

1 6 - 7 . 1 7  (a) 0.393 mm. (b) 1.5 x 10 -7 rad ians .  

(c) 15 radians--unresolvable. 

16-7.19 (a) 2.36 x 1012 m. (b) 3400 times the ra- 
dius of the sun. (c) 6.79 • 1014 m. 

16-7.21 (a)0.671 mm. (b)0 .0419mm.  (c) 3.5m. 
(d) 5.75 m. 

1 6 - 8 . 1  (a) 2 d =  ( m +  �89 (b) 520 nm 
( m = 3 )  and 4 0 4 . 4 n m  ( m = 4 ) .  (c) 5 5 7 . 1 n m  
(m = 3) and 433.3 nm (m = 4). 

1 6 - 8 . 3  (a) 0.063 nm. (b) 4.503 ~ 

1 6 - 9 . 1  (a) Maxima out to m = 6. (b) m = O, 0~ 
m = 1, +9.04~ m = 2, +18.32~ m = 3, +28.13~ 
m = 4, +38.94~ m = 5, +51.79~ m = 6, +70.54 ~ 
(c) Maxima out to m - -  4. (d) 0.0212 tad = 1.2 ~ 
(e) 43.9 nm. 

16-9.3 (a) 513.4 nm. (b)mmax = 10.  ( C ) 0 6  = 

36.3 ~ . 

16-9.5 400 nm < ~ <595 nm. 

16-9.7 4030 lines. 

16-9.9 1220 slits. 

16-9.11 (a) "Show that" problem. (b) "Show 
that" problem. (c) Multiples of three. 

16-10.1 (a) 20 ~ 80 ~ (b) 160 ~ 10 ~ 

1 6 - 1 0 . 3  0 .16  nm. 

16-10.5 m = 4 gives )~ = 0.01139 nm, m = 5 
gives X = 0.00911 nm. 

1 6 - 1 0 . 7  (a) 0.205 nm, 1.47 x 1018 Hz. (b) 0.270 
nm, 1.111 x 1018 Hz. 

1 6 - 1 0 . 9  2d sin 0 -- mX and nv = nA/d -- constant 
relates the volume and area densities and the plane 
separation. Higher nA means smaller d and thus 
larger 0 and larger scattering angle 20. 
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A 
acceleration, wave, 638 
ac current. See alternating current 
accumulation, 176 
acoustic cavities, 659 
acoustic resonances, 641 
acupuncture, 289 
Aepinus, Franz Maria, 72 
air, 16, 243, 262, 543, 652 
A1-Hasan, 685 
alkaline voltaic cells, 309-311. See 

also batteries 
alnico alloy, 394, 395, 400, 403 
alpha particles, 54, 133 
alternating current (ac), 581-629 

amplification, 607-608 
capacitor voltage, 596-597 
field diffusion equation, 

622-623 
frequency and period, 581-582, 

647 
generators, 591-592, 598 
impedance and phase, 592-597 
importance of, 582 
induction motors, 619 
inductor voltage, 595-596 
jumping rings, 618-619 
LC resonance, 583-587 
linear motors, 616-618 
power and power factors, 

608-612 
quality factors, 589-590 
RC series circuits, 598, 603 
rectifying and filtering, 

602-604 
resistor voltage, 594-595 
RLC circuits, 587-591, 

604-607, 610 
skin depth, 619-623 
Tesla coils, 615-616 
transformers, 612-616 

aluminum, 283-284, 288 
AM (amplitude modulation), 605 
amber, 40 
amber effect, 40-44, 69, 120-121, 

253, 398 

ammeters, 299-300, 480, 482, 490 
Ampere, Andr6 Marie, 281,284, 

421-427, 461,507 
amperes (units), 2, 83, 473 
Amp~re's equivalence, 423-427, 

464, 476, 517 
Amp~re's force law, 432-433,464, 

472 
Amp~re's law 

circulation measurement, 482 
current sheets, 484-485 
electromagnetic shielding, 

621-622 
electromagnets, 492 
field outside current-carrying 

wires, 483-484 
magnetic circulation, 474-475, 

480-482 
magnetic circulation derivation, 

476-480 
Maxwell's extension of, 633- 

636, 645 
primary vs. secondary circuits, 

516-517 
proof of, 477-478 
statement of, 476 
symmetry and, 482-486 
toroidal coils, 484 
uses, 476 

Amp~re's right-hand rule, 422, 427 
amphipathic molecules, 246 
amplifiers, 602, 607-608, 619 
amplitude, 586, 712-713 
analogy, method of, 372 
Anderson, Phillip, 322 
Anderson localization, 323 
angstrom (units), 84 
angular momentum, 407-409, 412, 

430-431 
angular resolution, 713-714 
annulus, 59. See also ring of charge 
antennas, 656-657, 663-664, 

666-667 
antiderivatives, 56-57, A-8, A-9 
antiferromagnets, 412 
antilogarithms, A-2 to A-3 

antimonopoles, 574-576 
Arago, Frangois, 507, 708, 717 
Arago's needle, 507, 517-518 
arc-length, A-3 to A-6 
arc of a circle, integration over, 59 
area formulas, 60-61, 63-64 
areal charge distribution, 59-61 
Aristotle, 318 
armature windings, 573 
Armstrong, Neil, 110 
Astronomia Pars Optica (Kepler), 

693 
Atlantic cable, 631-632 
atomic magnetic moments, 430-431 
atomic magnets, 402, 409 
atomic volumes, 121 
atoms, 84-86, 201-203, 431 
audio speakers, 435-437, 449 
auroras, 445 
automobiles, 8-9, 171-172, 345, 

627. See also car batteries 

B 
Babinet's principle, 684, 712 
back emf, 7, 567-569 
back force, 566, 568 
back voltage, 304, 312, 314, 

341-342, 535 
ballast, 612 
ball lightning, 72 
band gaps, 324 
bandwidth, 611 
Bardeen, John, 322-323, 326 
barium ferrite, 403 
bar magnets, 424-425 
Bartholinus, Caspar Berthelsen, 

692, 715 
bases, mathematical, A-2 
batteries 

AA alkaline voltaic cells, 
309-311 

automobile (See car batteries) 
capacitors as, 246 
cost of, 343 
D cells, 309-310 

I-1 
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batteries (contd.) 
discharge properties, 342-343 
emf and Ohm's Law, 304-308 
energy density, 543 
fast discharge, 303 
fast recharge, 303-304 
ideal, 350 
identical voltaic cells in series, 

339-340 
jumper-cable problem, 

355-356 
in parallel, 341,353-357 
power transfer, 343-345 
primary vs. secondary, 342 
reversing, 352-353 
in series, 350-353, 356-357 
simple, 338 
sizes, 309-310 
slow discharge, 304 
as surface pumps and resistance, 

314 
terminal voltage, 304, 312, 314, 

341-342, 535 
voltage in, 186 

Bednorz, Georg, 325 
benzene, 652 
beta decay, 54 
bilinearity, 29 
Binnig, Gerd, 217-218 
binomial theorem, A-7 
Biot, Jean-Baptiste, 421 
Biot-Savart law 

applications of, 465-468 
derivation of, 464-465 
electromagnets, 492 
forces on magnets and 

current-carrying wires, 
471-474 

history of, 461,472 
numerical analysis, 462-464 
principle of superposition, 

468-471 
statement of, 462 

birefringent crystals, 715-717 
Bloch, Felix, 409 
blood, resistance of, 289 
Bohr, Niels, 430-431 
Bohr magneton, 402, 430-431 
Bose, Georg Matthias, 45 
boundary conditions, 640 
Boyle, Robert, 69 
Bragg, W. L., 339, 724 
Bragg angle, 725-726 
Bragg scattering, 724-726 
Brattain, Walter, 323, 326 
Brewster, David, 717 
Brewster angle, 659, 717 
bridge circuits, 242-243, 359, 

368-372 

C 
calcite crystals, 692 
calculus, differential, 688, A-6 to 

A-8. See also integral 
calculus 

Canton, John, 50-52 
Canton's tin cylinder, 50-52 
capacitance, 227-280 

from capacitor charging time, 
362-363 

coefficients of potential, 
257-258 

in combinations of series and 
parallel circuits, 240-242 

definition, 227-228 
dielectric effect, 245 
measurement, 229-230 
notation, 230 
in parallel circuits, 235-238 
parasitic, 367-368 
scaling with linear dimension, 

231-232 
self-capacitance of isolated 

conductors, 228-232 
in series, 238-240 
specific, 247 
spheres, 230-232, 258 
two connected conductors, 215, 

251 
two-plate capacitors, 232-235 

capacitive loading, 665 
capacitive reactance, 597 
capacitive time constant, 539 
capacitor plates, 233 
capacitors 

attraction of dielectrics into, 
253-255 

biological, 246-248 
bridge, 242-243 
capacitor plates, 233 
charge conservation, 348 
charge transfer between, 251, 

572 
charging from voltaic cells, 

311-312 
concentric cylindrical, 235 
concentric spherical, 234-235 
dielectrics, 243-248 
discharging, 364 
displacement currents within, 

635-636 
electrical screening, 265-267 
electric fluid model, 13-14 
electrolytic, 246 
energy density, 250 
energy storage by, 248-249 
force and, 251-255 
fringing fields, 479-480 
LC circuits (See LC circuits) 

Leyden jars, 45, 227-228, 
239-240 

meaning of term, 215 
parallel-plate, 233-234, 

236-238, 240-242, 
249-250 

RC circuits (See RC circuits) 
resistive heating, 251 
RLC circuits (See RLC circuits) 
short- and long-time behavior, 

357-360 
supercapacitors, 246 
uses, 227 
voltage drop, 311,596-597, 

603 
Volta's law, 349 

car batteries 
charge vs. cost, 342-343 
current draw by headlight, 

345 
fast recharge of, 303-304 
jumper cables, 355-356 
during operation, 303 
overview, 8-9 
starting, 302, 345 
terminal voltage, 341-342 
voltaic cells in parallel, 341 
voltaic cells in series, 339 

carbon, polarizability of, 121 
carbon arc lamps, 561-562 
carbon filament lamps, 562 
carbon steel magnets, 403, 405 
Cardano, Girolamo, 69 
cathode rays, q/m ratio, 443-444 
cathode ray tubes, 325, 442-443 
Cavendish, Henry, 82, 282 
cavitation, 12 
cell membranes, 246-248, 288-289 
cell walls, resistance across, 289 
cesium, 121,216 
charge. See electric charge 
charge carriers 

density, 321,447 
Hall effect, 445-449 
ponderomotive forces, 450-451 

charge conservation. See 
conservation of charge 

charge density, 68, 255, 366-367 
charge distribution 

accumulation, 176 
areal, 59-61 
conductors, 21-22, 55-56, 

197-199 
continuous, 121-128 
discrete, 210 
electrostatic screening, 173-174 
freezing and unfreezing, 162, 

173 
Maxwell's trick, 197-199 
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two connected conductors, 
214-215, 251 

volume/surface, 122 
charged particles. See also electrons 

circular motion in magnetic 
fields, 438-440 

in crossed electric and magnetic 
fields, 443 

deflection in magnetic fields, 
406-407 

force on, in magnetic fields, 
437-438 

magnetic mirrors, 444-445 
motion in electric fields, 

133-136 
spiral motion in magnetic fields, 

440-441,444 
voltage difference of, 194 

charge electrometers, 86-88 
charge electroscopes, 86-87 
charge quantization, 55 
charge storage, 45, 50, 82, 248-249 
charging. See also electrostatic 

induction 
capacitors, 311-312, 362-363 
by contact, 48-50 
by friction, 23, 44, 48, 65-66 
RC circuits, 18, 360-362 
by sparking, 52-53, 71 

checking your work, 98-100, 425 
chemistry, 202-203, 335, A-13 
circles 

arc length, A-3 to A-6 
areas, 60 
circumference, 59 
nonzero circulation, 205 

circuit breakers, 6-7 
circuit-normal right-hand rule, 475 
circuits 

Amp~rian, 475477, 480486 
bridge, 242-243, 359, 368-372 
capacitors in, 235-243 
elements of, 506 
Faraday's W, 509 
integrated, 326, 368 
Kirchhoff's rule applications, 

350-357 
Kirchhoff's rules, 346-350 
LC, 583-584, 586-587 
light speed and, 376 
limitations on validity of theory, 

374-376 
LR, 538-542, 600-601,604, 

611-612 
primary vs. secondary, 505, 

512-513, 516-517, 524, 
534 

RC (See RC circuits) 
resistors in, 293-298 

response, 602-603 
RLC (See RLC circuits) 
shorted, 312-313, 359 
sign conventions, 346-347 
voltage profiles, 314-315 
voltaic cells in, 312-315 

circulation. See electric circulation; 
magnetic circulation 

circumference formula, 59 
classical physics, and instability, 136 
clocks, windup and hysteresis, 564 
co-axial cables, 537, 544, 

661-663 
coefficients of potential, 255-259 
coercive force, 402 
coherence, 699 
coherence time, 699 
coils 

co-axial, 467, 516-517 
degaussing, 609 
moving a magnet toward, 515 
Rogowski, 480, 482, 490 
Tesla, 615-616, 620 
toroidal, 484, 526 

Colladon, Jean-Daniel, 507 
collision time, 316 
colors 

Hooke on, 693 
Newton on, 697 
separation by prisms, 656, 

691-692 
of striated surfaces, 700 
of thin films and plates, 

690-691, 701-705 
wavelengths of, 647 
Young on, 698, 700 

common-sense method, 92-93 
communications, 631-632, 

661-663 
commutative law, 30 
commutators, 561,602, 616 
compact disk (CD) players, 7-8 
compasses 

directions, 385 
drag effect, 518 
home experiments, 65 
magnets and, 390-391,507 
needle oscillations, 408-409 
origin of, 40, 42-43 

complete internal reflection, 655 
compressional motion, 668-671 
computers, 8, 609 
condensers, Leyden jars as, 13, 45, 

228 
conductance, 296, 326. See also 

electrical conduction 
conduction electrons, 14 
conductivity. See electrical 

conductivity 

conductors 
cavities within, 162-163, 

169-173 
charge carrier density, 321 
charge distribution, 21-22, 

55-56, 197-199 
charge redistribution at 

equilibrium, 160 
charging by contact between, 

49-50 
charging energy, 258-259 
connected, 214-215 
depolarization sparks, 54 
discovery of, 43-44 
e}~ectrical screening, 265-267 
electric field lines, 117-118, 

160-166 
electrostatic screening, 173-174 
in equilibrium, 159-163 
equipotential surfaces, 186, 

192-193 
flux tubes between, 267-269 
grounding decreases energy, 259 
ionic, 21, 176 
net charge on surfaces, 161 
nonuniform, 216-218 
outward electrical pressure, 

174-175 
plasma oscillations, 372-374 
ribbon, 473-474 
self-capacitance, 228-232 

conservation of charge 
Amp~re's law, 633-636 
Franklin on, 1-2, 46, 48 
Kirchhoff's rules, 347-348 
nuclear reactions, 54-55 
resistors in parallel, 295 
resistors in series, 293 

conservation of current, 354 
conservation of energy, 188, 

193-194, 542-544 
contact potential, 338 
continuous charge distributions, 

121-128 
Cooper, Leon, 322 
Cooper pairs, 325 
copper 

conductivity, 291-292, 319 
drift velocity, 320 
ohmic response, 283-284 
plasma frequency, 373 
relaxation time, 321 
resistivity, 288 
signal velocity, 662 
skin depth, 620 
temperature dependence of 

conductivity, 322-323 
cosine function, A-4 to A-5 
cosmic rays, 67, 82 
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Coulomb, Charles-Augustin de, 80, 
82, 164, 386 

coulombs (units), 2, 4, 12, 83 
Coulomb's law, 83-86 
coupling constants, 388 
critical angle, for complete internal 

reflection, 655 
critical damping, 590 
cross products, 32-33 
crystal field energy, 413 
crystals, 692, 715-719, 724-726 
cubes, electric flux and charge 

enclosed, 152, 155 
Curie temperature, 403, 413 
current. See electric current 
current density 

definition, 285 
displacement, 634-636 
drag force, 320-321 
for electrons, 320 
non-ohmic behavior, 325-326 
wires, 482-483 

current loops. See also magnetism of 
electric currents 

Amp~re's equivalence, 423- 
427, 476, 491,517 

Biot-Savart law, 462-468 
decomposition, 421-4 22,467 
equivalent magnets, 429-430 
field at center, 465-466 
field on axis, 466-467 
force and torque, 427-429, 

434-435 
monopoles, 472 
motional EMF, 529, 567 
orientation energy, 429 
planar, 465 
pulled through a field, 519, 

523-524, 529 
rectangular, 519, 522-523, 529 
speaker cones, 435-437 
square, 521-522 
torque on, 427-429 

current sensitivity, 299 
current sheets, 484-485. See also 

sheet surfaces 
cyclic permutation, 34, A-6 
cyclotrons, 439-442 
cylinders 

area of, 60-61 
cell membranes, 247 
concentric two-plate capacitors, 

235 
electric potentials, 207-208 
Gauss's Law, 154-155, 157- 

159, 163-164 
holes in, 490 
radial current flow, 286-287 
volume of, 62 

D 
damping, 587-591,650 
dart leaders, 265 
da Vinci, Leonardo, xvi 
Davy, Humphrey, 561 
dc current. See direct current 
D cells, 309-310 
Debye-Scherrer x-ray scattering, 

725-726 
decimal notation, A-1 
declination angle, 385 
De Dominus, Antonio, 685 
definite integrals, 56 
degaussing coils, 609 
de la Rive, Auguste-Arthur, 507 
demagnetization fields, 403-406 
density 

charge carrier, 321 
current, 285, 320-321, 

325-326, 482-483, 
634-636 

electric field lines, 115 
electrons, 320 
energy, 250, 267-268, 543,648 
gases, 260-262 
ion, 302-304, 307 
surface charge, 68, 255, 

366-367 
depletion layer, 176-177 
depolarization spark, 54 
derivatives, in calculus, A-6 to A-8 
Descartes, Ren6, 686-689 
diamagnets, 398-399, 401, 

486-491. See also 
superconductors 

diamonds, 69, 652 
dielectric breakdown, 16, 261-265 
dielectric constant, 243-245, 

259-261 
dielectrics 

analogy to magnets, 398 
attraction into a capacitor, 

253-255 
polarizability, 259-261,266 
screening, 266 
surface charge densities, 255 

dielectric strength, 115, 215,243, 
261-263,543 

differential calculus, 688, A-6 to 
A-8 

differential equations, 360, 585, 
638 

diffraction. See also diffraction 
gratings 

Bragg scattering, 724-726 
discovery of, 689-690 
Fraunhofer, 709, 710-712 
gratings, 679, 719-724 
overview, 683-685 

pattern intensity, 712-713, 
719-720 

polarization and, 717 
Rayleigh criterion, 713-174 
Young on, 707-708 

diffraction gratings 
angular width, 721-722 
applications, 719 
description of, 679 
dispersion, 722-723 
intensity patterns, 720 
maxima, 719-720 
resolving power, 723-724 

diffusion equations, 622-623 
dimensionless ratios, 91 
dimensions, 64 
diodes, 325-326, 602 
Dioptrice (Kepler), 693 
dip angle, 385 
dipole antennas, 666-667 
dipole moment. See electric dipole 

moment; magnetic dipoles 
direct current (dc), 8-9, 17-18, 

564-565, 602-604 
disk dynamo, 530-531 
disk magnets, 404-405, 423, 467 
disks, charged, 117, 126-127, 

517-518, 619 
dislocations, 85 
dispersion, diffraction, 722-723 
dispersive waves, 636-637 
displacement current, 633-636 
distributive law, 30-31, 33 
domain walls, 412-4 13 
doorbells and transformers, 612 
Doppler effect, 647, 692 
dot products, 29-31 
double refraction, 692, 715 
drag force 

current density, 320-321 
definition, 315-316 
eddy current, 517-518 
on a falling magnet, 532 
frictional force, 566 
lift-drag relationship, 577 
Millikan's oil-drop experiment, 

317-318 
model limitations, 322 

drag load, 570 
drift velocity, 320, 446 
Dufay, Charles-Francois de 

Cisternay, 1, 44-46, 71 
dynamos, 561 

E 
Earnshaw's theorem, 136 
Earth 

capacitance, 231,235 
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magnetic field, 385, 437-438, 
439 

magnetic mirror effect, 445 
orbit, 440, 692 
surface charge estimation, 154 

eddy currents 
drag/lift, 517-518 
electromagnetic shielding, 

619-620, 623 
in generators, 561-563 
iron rod, 534 
MAGLEV, 518, 573-578 
magnetic flux and, 547 
magnet moving toward 

conducting sheet, 516 
receding image construction, 

575-577 
for squares, 563 

Edison, Thomas Alva, 566, 608 
efficiency, 345, 570, 609-612 
elastic constant, 85 
electrets, 43 
electrical breakdown, 16, 261- 

265 
electrical conduction, 282-283, 

323, 326 
electrical conductivity 

Cavendish on, 82 
conductance, 296 
copper, 319 
definition, 291 
drag model, 320-321 
flow through uniform wire, 

319-320 
superconductors, 324-325 
temperature dependence, 

322-323 
electrical force, 65-66, 83-84 

adhesive strength, 85 
electrical generators. See generators, 

electrical 
electrical impedance. See impedance 
electrical potential. See also voltage 

action-at-a-distance viewpoint, 
185, 199, 209-211 

cell membranes, 247 
coefficients of potential, 

255-259 
cylinders, 207-208 
definition, 185-186 
difference, 189 
discrete charge distribution, 

210 
electrical energy from, 188 
from electrical potential energy, 

189-192 
electric dipole, 211 
electric fields and, 185, 192, 

195-197, 211-214 

equipotential surfaces, 186, 
190-191 

field viewpoint, 185-186, 190, 
205 

fixed voltage, 185, 199, 253 
Maxwell's trick, 197-199 
measurement of, 194-195, 231 
nonuniform conductors, 

216-218 
in parallel capacitors, 238 
path independence, 203-205, 

348 
point charges, 199-203, 209 
ring of charge, 206-207, 

210-211 
scanning tunneling microscopy, 

217-218 
sheet charges, 206 
spheres, 208-209, 215 
as sum over point charges, 

209-211 
two connected conductors, 

214-215 
from uniform electric field, 192 
voltage additivity, 293 
voltage difference formula, 189 
voltmeters, 300-301 

electrical potential energy, 174-175, 
185, 189-194, 200-203 

electrical pressure, 174-175 
electrical resistance. See resistance, 

electrical 
electrical shocks. See shocks, 

electrical 
electric charge 

adding up, 55-64 
areal charge distributions, 

59-61 
computing from Gauss's Law, 

151-155 
conservation of, 46, 48, 54-55 
Coulomb's law, 83-84 
current and, 4-5 
electrons, 12 
Leyden jars, 45-47, 50 
linear distributions, 57-59 
overview, 11, 23-24 
quantization, 55 
quantum of, 317-318 
as scalar quantity, 55 
units, 83 
volume charge distribution, 

61-64 
electric circuits. See circuits 
electric circulation, 520, 644 
electric current. See also magnetism 

of electric currents 
Amp~re's right-hand rule, 

422-425 

batteries as sources, 354-355 
bridge circuits, 242-243, 359, 

368-372 
car headlamps, 345 
current sheets, 484-485 
definition, 4-5, 285-286 
density (See current density) 
direction of, 512-514 
dividers, 299 
drift velocity in wire, 320 
eddy currents (See eddy 

currents) 
electric fluid model, 1-2, 10- 

16, 20, 24 
emf and, 306-307 
at equilibrium, 160 
Lenz's law, 514-520, 522, 524, 

547, 616 
loops (See current loops) 
LR circuit decay, 542 
measurement, 299-300 
nonuniform work functions, 

217 
number current, 318, 320 
Oersted's right-hand rule, 

420-421 
Ohm's law (See Ohm's law) 
radial flow, 286-287, 292-293 
rectified, 561,602-604 
surface charge and, 366-367 
units, 473 

electric dipole moment 
electrical potential, 211 
in lightning, 263-265 
magnetic dipole moments and, 

388, 391 
molecular polarizability, 

120-121 
nonuniform electric fields, 

132-133, 216-217 
orientation energy of, 132 
torque on, 131 
uniform electric fields, 

118-120, 130-132 
electric eels, 341 
electric field lines 

areal density of, 115 
concept development, 108-109 
drawing, 115-118 
from equipotentials, 196-197 
Faraday's ice pail experiment 

and, 167-168 
as flux tubes, 128-130 
Gauss's Law, 146-148 
glass rods, 52 
radial, 269-270 
tangential, 270-271 
tension, 268-269 
visualizing, 23-24 
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electric fields. See also electric field 
lines 

within a ball of charge, 115 
calculation of, 113-115, 

122-128 
calculus analysis, 123-128 
within capacitors, 250 
charged disks, 117, 126-127 
charged particle motion in, 

133-136 
charged spheres, 116, 136 
concept development, 108-110 
within conductors, 160-163 
definition, 11 0-111 
dielectric strength, 243-244 
dipole axes, 119 
dipole moments, 118-120, 

130-133 
Earnshaw's theorem, 136 
electrical potential and, 185, 

192, 195-197, 211-214 
equipotential surfaces and, 186, 

195-199, 257 
Faraday's law and, 522 
from force on test charges, 112 
induction and test charges, 

112-113 
interaction of charges with 

dipoles, 120 
light sources produce, 657 
line charges, 116, 123-124, 

128-129 
magnetically induced, 307 
magnitude determination, 

155-157 
motional, 446, 567 
nonuniform, 132-133 
normal to dipole axes, 119-120 
outside uniform conductors, 

162 
point charges, 116 
positive/negative conventions, 

114 
of protons, 111 
ring of charge, 125, 206-207, 

212 
rules for drawing field lines, 115 
sheets of uniform charge, 117, 

124-125, 134, 152, 165- 
166, 206 

solenoids, 544-546 
sparking in air, 19-20, 114-115 
static phenomena and, 109-110 
two equal charges, 121 
units, 111 
visualizing, 23-24 
wires, 366 

electric fluid model 
breakdown phenomena, 16 

equivalences for, 11 
Franklin on, 1-2, 10-11, 46-47 
inadequacies of, 20 
mass and charge flow, 14-15 
mass and electric charge, 11-12 
overview, 1-2 
pipes and wires, 15, 24 
pressure and voltage, 12 
pumps and batteries, 15-16 
reservoirs and capacitors, 12-14 

electric flux. See also Gauss's Law 
charge enclosed by surface and, 

148-149 
from closed surface, 146-148 
defining, 147-148 
determination by symmetry, 

155-159 
field lines as, 145-146 
flux tubes, 145-146 
Gauss's Law, 149-150 
numerical integration, 150-151 
partial surfaces, 151 

electricity 
costs of, 343 
eighteenth century, 43-47, 70 
electric fluid model, 1-2, 10- 

16, 20, 24, 46 
equivalences to magnetism, 388 
Franklin on, 1-2, 1 0-11, 46-47 
high voltage power lines, 613 
in the home, 2-4, 6-7 
origin of term, 40, 43 
overload, 6-7 
power plants, 562, 581-582, 

591-592 
seventeenth century, 41-43, 

69-70 
static, 19, 80-88 
storage of charge, 45, 50, 82, 

248-249 
uses of, 7-8, 560-562 
visualization of, 21-24 

electric wind, 71 
electrocardiography, 284 
electrochemistry, 338 
electrocution. See shocks, electrical 
electrocytes, 341 
electrodes, 68, 246, 302-304, 

309-310 
electrodynamic, origin of term, 421 
electrofore perpetuo, 53-54, 67 
electrolysis, law of, 443 
electrolytes, 19, 302-305, 309-310 
electrolytic capacitors, 246 
electrolytic cells, 309. See also 

voltaic cells 
electromagnetic induction. See also 

Faraday's law 
Arago's needle, 517-518 

constant current generation, 
531 

direction of current circulation, 
512-520 

discovery of, 507-508 
eddy current magnetic 

levitation, 518 
electric fields from, 307 
Faraday's experiments, 508-514 
Hertz's studies of, 663-664 
Lenz's law, 514-520 
loop pulled through a field, 519 
magnetic flux, 520-521 
mutual inductance, 524-528, 

535 
overview, 506-507 

electromagnetic inertia, 533-534 
electromagnetic radiation. See also 

light; waves 
absorption, 409 
in co-axial cables, 662-663 
compressional motion, 668-671 
dipole antennas, 666-667 
displacement current density, 

634-636 
electromagnetic wave equation, 

645 
energy and momentum, 651 
Faraday's law, 644-645 
fields, 649 
Hertz's studies of, 663-667 
isotropic spherical sources, 

649-650 
Maxwell's prediction, 583, 

632-633 
microwave cavities, 659-661 
plane waves, 643-644 
polarization, 644, 652, 

656-659 
radiation pressure, 650-651 
reflection and refraction, 

652-656, 658-659 
resonating receivers, 664-665 
spark-excited oscillating 

antennas, 663-664 
spectrum of, 647-648 
transverse nature of, 656-659 
wave properties, 646-647 

electromagnetic shielding, 487, 578, 
619-623, 665 

electromagnets 
Biot-Savart law, 492 
electromagnetic induction, 510 
field in gap of, 493-494 
field within transformer cores, 

492493 
invention of, 533 
mutual inductance, 526 
self-inductance and, 533-534 
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electrometers, 71-72, 86-88, 166, 
194-195, 231 

electromotive force (emf) 
ac generators, 591-592 
atoms, 308 
back, 7, 567-569 
batteries in series, 352 
car batteries, 302-304 
chemical, 309 
current driven by, 306-307 
disk dynamos, 530-531 
identical voltaic cells in series, 

339-340 
induced, 511,520-524, 591 
local, 436-438, 450-451 
motional, 528-532, 567 
mutual inductance, 524-528, 

535 
nonelectrostatic types of, 

307-308 
overview, 282-283 
potentiometers, 306 
recharging, 570 
self-induced, 535-536 
solenoids, 544-546 
sources, 304-308 
terminology, 437 
voltaic cells, 309-310 

electrons. See also charged particles 
conduction process, 14, 

323-324 
Coulomb's law, 84-85 
current density, 320 
deflection experiments, 318 
delocalized orbitals, 323 
drag force, 315-318 
drift velocity, 320 
electric fields, 111,134-135 
electromotive force, 308 
electrostatic deflection, 

135-136 
energy calculations, 201-202 
Joule heating, 321-322 
magnetic force direction, 

437 
magnetic mirror effect, 445 
magnetism and, 491 
magnetization and, 412-4 13 
orbitals, 14, 21,217, 326 
origin of term, 40, 444 
spin, 412, 431 
in superconductors, 491 

electron spin resonance (ESR), 407, 
409, 411 

electrophorus, 53-54, 67 
electrophysiology, 337 
electroscopes, 67, 86-88 
electrostatic, origin of term, 421 
electrostatic deflection, 135-136 

electrostatic induction 
Canton's tin cylinder, 50-52 
charging by, 23-24, 52-53 
in Coulomb's experiments, 82 
depolarization spark, 54 
dipole moments, 120-121 
electric fields, 112-113 
electromagnetic induction and, 

506 
electrophorus, 53-54 
Franklin on, 46 
polarization, 19 
screening, 173-174 

electrostatic precipitators, 125 
electrostatic screening, 173-174, 

487, 578 
Elements of the Mathematical Theory 

of Electricity and Magnetism 
(Thomson), 267 

emf. See electromotive force (emf) 
energy 

in capacitors, 248-251 
charging, 258-259 
conservation of, 188, 193-194, 

542-544 
conversion into heat, 290 
crystal field, 413 
density, 250, 267-268, 543, 

648 
dipole, 388 
electrical, 185, 188, 189-192 
electrical potential, 174-175, 

185, 189-194, 200-203 
electromagnetic, 648-650 
flux tubes, 267-268 
forces and, 251-255 
gravitational potential, 185-188 
hydrogen electron, 201 
light, 324 
magnetic, 413, 542-544 
orientation, 132, 429 
spin-orbit, 413 
traveling waves, 667-668 
in voltaic cells, 310-311 
wave transport of, 667-668 

energy bands, 324 
equations, about, 5, A-1 
equipotential surfaces, 186, 

190-193, 195-197, 257. 
See also electric fields 

equivalent capacitance, 236-237, 
239, 241 

equivalent magnets, 423-425, 
429-430 

eriometer, 712 
ESR (electron spin resonance), 407, 

409, 411 
ether, 693,697 
experiments. See home experiments 

exponentials, A-3, A-7 
extension cords, 6-7 

F 
Fabri, Honor6, 69 
Faraday, Michael 

dielectrics, 245 
disk dynamo, 530-531,581 
electrical potential difference, 

190 
electric field lines, 52, 108-109, 

128-130 
electrolysis, 318 
electromagnetic induction, 505, 

507-514 
ice pail experiment, 166-168, 

172 
mutual inductance, 526 
simple motors, 560 

Faraday cages, 171-172 
faraday (units), 265 
Faraday's law 

electromagnetically induced 
emf, 520 

electromagnetic radiation, 
644-645 

electromagnetic shielding, 621 
Faraday's experiments, 508-514 
history of, 507-508 
Lenz's law, 514-520 
magnetic flux, 520-521 
motional EMF, 528-532 
mutual inductance, 524-528 
quantitative statement, 

521-524 
self-induction, 533-538 
statement of, 633 

farad (units), 13 
far field diffraction, 709, 7 ] 0-712 
Felici, R., 528 
Fermat, Pierre de, 688-689 
fermi (units), 85-86 
ferroelectrets, 43 
ferromagnetic materials, 400-403 
Feynman, Richard, 218 

quotation by, xiii 
fidelity of sound reproduction, 606 
field diffusion, 622-623 
field lines. See electric field lines 
field windings, 573 
filters, 365, 602-604 
first-order differential equations, 

360 
fits of reflection, 697 
fixed voltage, 253 
Fizeau, Armand-Hippolyte-Louis, 

662, 688 
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fluid flux, 145 
fluorescent tubes, 262-263, 612 
flux sources, magnetic poles as, 386, 

397 
flux tubes 

electrical energy density, 
267-268 

of Faraday and Maxwell, 
128-130 

field line tension, 268-269 
Gauss's Law, 146 
radial field lines, 269-270 
tangential field lines, 270-271 

FM (frequency modulation), 
605-606, 620 

forces 
Amp~re's force law, 432-433, 

464, 472 
back, 566, 568 
Biot-Savart law, 461-474, 492 
capacitors and, 251-255 
on closed circuits in magnetic 

fields, 434-437 
on current-carrying wires, 

431-437, 471-474 
diffusion, 307 
drag (See drag force) 
electrical, 65-66, 83-84, 185, 

188, 388 
electromotive (See 

electromotive force) 
energy and, 251-255 
fixed voltage, 253 
gravitational, 185, 187 
line charge calculation, 96-100 
from line charges, 96-100 
Lorentz, 443,528, 650 
magnetic, 388-389, 431-438, 

522-524, 566, 568 
moving charges in magnetic 

fields, 437-438 
noncollinear addition, 92-94 
nuclear, 86 
ponderomotive, 436, 449-451, 

529 
radial, 517-518 
on speaker cones, 436 
speed of response, 108-109 
symmetry applications, 94-96 
thermoelectric, 307-308 
vector addition of, 88-94 
zero-force position, 90-91, 95 

forward bias voltage, 325 
Fourier, Jean-Baptiste-Joseph, 582, 

622 
Fourier's theorem, 646 
Fracastoro, Girolamo, 68 
fractional quantum Hall effects 

(FQHE), 449 

Franklin, Benjamin, 10-11, 46-48, 
51, 71-72, 81,323 

Fraunhofer, Joseph von, 719 
Fraunhofer diffraction, 709, 

710-712 
frequency 

in alternating current, 581,586, 
598, 602-603 

AM band, 605 
electromagnetic spectrum, 

647-648 
FM band, 605-606, 620 
frequency-wavelength relation, 

643 
of home electrical power, 3-4 
reflection and refraction, 

652-654 
resonant, 641 
vibrational, 641 
wavenumber and, 646 

Fresnel, Augustin, 708-710, 
717-719 

Fresnel diffraction, 690, 709 
friction 

charging by, 23, 44, 48, 65-66 
drag force, 565-566 
nonzero circulation, 205 
relaxation times, 565 

fundamental harmonic, 641 
fuses, 6-7 

G 
Galileo, 318, 693, A-1 
gallium, doped into silicon, 324 
gallium arsenide, 218 
Galvani, Luigi, 336-337 
galvanic cells, 309. See also voltaic 

cells 
galvanometers, 281,283,298-299, 

528 
gases, density of, 260-262, 265 
gauss (unit), 385 
Gaussian surfaces, 147, 149-150, 

207-208 
Gauss's Law, 145-183 

boxes in nonuniform fields, 
153-154 

concentric spherical surfaces, 
148-149, 154, 156-157 

conductors in equilibrium, 
159-163 

cubes in uniform fields, 152 
cylinders, 154-155, 157-159, 

163-164 
depletion layer in 

semiconductors, 176-177 
determination by symmetry, 

155-159 

electrostatic screening, 173-174 
flux tubes, 145-146 
for gravitation, 156 
half-cubes in uniform fields, 

152-153 
for magnetism, 398 
number of field lines leaving a 

Gaussian surface, 146-148 
numerical integration of electric 

flux, 150-151 
outside uniform conductors, 

163-166 
outward pressure on 

conductors, 174-175 
overview, 149-151,633 
partial surfaces, 151 
proof of, 168-169 
sheet conductors, 164-165 
uses, 476 

Genecon generators, 571 
generators, electrical 

alternating current, 591-592, 
598 

disconnection, 573 
disk dynamos, 530-531 
dynamos, 561 
eddy current losses, 561-563 
Faraday's law and, 524 
Genecon, 571 
hysteresis losses, 563-564 
linear machines, 564-565, 571 
types of load, 570-571 
Van de Graaf, 18 
voltage drop across, 592 

Gibbs, Josiah Willard, 25 
Gibbs phenomenon, 175 
Gilbert, William, 41-43, 386 
glass 

dielectric properties of, 243 
index of refraction, 652, 656 
resistivity, 288 
temperature dependence of 

conductivity, 322-323 
gold leaf experiments, 44 
gradient operators, 133,213 
Gramme dynamo, 559, 602 
graphite, 288, 322-323 
gravitational potential energy, 

185-188 
gravity 

analogy with electric fields, 
110, 131-132 

as electromotive force, 308 
between electrons and protons, 

85 
Gauss's Law for gravitation, 

156 
gravitational field concept, 

109-110, 187 
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gravitational screening, lack of, 
172-173 

on the moon, 110 
Newton's law of universal 

gravitation, 187 
on a penny, 254 
point masses, 187 
vector conventions, 88 

gravity balance, 81 
Gray, Stephen, 1, 43-44, 70-71, 81, 

323 
Grimaldi, Francesco Maria, 689- 

690 
ground, 2-3, 188, 259 
Guericke, Otto von, 69-70 
guitars, tuning, 642. See also musical 

instruments 
gyromagnetic ratio, 410 

H 
hair-standing-on-end effect, 10, 

16-18 
half-power bandwidth, 611 
Hall coefficient, 447 
Hall effect, 445-449 
Hall fields, 446 
Hall resistance, 446, 448-449 
Hall voltage, 445-448 
hard drive, 402 
harmonic oscillators, 409, 584-586, 

640-641 
harmonics, string, 641 
Hauksbee, Francis, 70 
Heaviside, Oliver, 25, 633, 662 
helium, 86, 121, 133, 201 
Heller, Peter, 430 
Helmholtz, Hermann, 467, 664 
henry (units), 524 
Henry, Joseph, 507, 524, 533, 

560-561,664 
hertz (units), 4, 581 
Hertz, Heinrich Rudolph, 583, 630, 

663-667 
high-pass filters, 602, 604 
home experiments 

compass needle and comb, 65 
electrical screening, 65 
electroscopes, 67 
Faraday's ice pail experiment, 

167-168 
Franklin's electrical motor, 66 
friction, electrification by, 

65-66 
Gilbert's versorium, 64 
suspension demonstration of 

mutuality, 65-66 
two types of electricity, 66 

Hooke, Robert, 82, 690-691, 
693-694 

hum, at 60 Hz and 120 Hz, 619 
humidity, sparking and, 19-20 
Huygens, Christiaan, 692, 694-696, 

708, 715 
hydrogen, 201, 411 
hydrolysis, 338 
hydrophilic/hydrophobic functional 

groups, 246-247 
hysteresis loops, 401-406 
hysteresis losses, 563-564 

I 
Iceland spar, 692 
ice pails, Faraday, 166-168, 172 
impedance 

definition, 344, 365, 593 
determination of, 594 
imaging, 284 
matching, 4, 343-345 
phase and, 592-597 
resistance and, 595 
RLC circuits, 606, 611-612 

inclination angle, 385 
index of refraction, 652, 655-656, 

686. See also refraction 
inductance 

calculations, 536-537 
coefficients of, 534 
measurements, 536 
mutual (See mutual inductance) 
self-inductance (See 

self-inductance) 
solenoids, 544-546 

induction. See electromagnetic 
induction; electrostatic 
induction 

induction motors, 619 
inductive reactance, 596 
inductive time constant, 540 
inductors, 506, 538-539, 543, 587, 

595-596 
inductor voltage, 595-596 
initial conditions, 640 
initial curve in magnetization 

process, 401 
insulators 

charge distribution, 55-56, 
161 

charging and, 49 
discovery of, 43-44 
electric field lines, 117 
electrophorus, 53-54 
overview, 15 

integral calculus 
antiderivatives, 56-57 

areal charge distribution, 59-61 
electrical potential, 210 
electric fields, 123-128 
force due to line charges, 

96-100 
integration by parts, A-10 
linear charge distribution, 

57-59 
notation of intermediate 

variables, 97 
overview, A-9 to A-10 
RC circuit charging, 361-362 
vectors, 100 
volume charge distribution, 

61-64 
integrated circuits, 326, 368 
intensity, 648, 712-713, 719-720 
interference 

coherence, 699 
colors of striated surfaces, 700 
colors of thin films and plates, 

701-705 
constructive vs. destructive, 

680-682, 701-703, 
706 

Hertz's studies of, 665 
maxima and minima, 682-683, 

711-713 
polarization and, 717-718 
reflection from thin films, 

690-691,701-705 
ripple tank studies, 679-681 
slit diffraction pattern intensity, 

712-713 
two-slit interference pattern 

intensity, 709-710, 717- 
718 

Young's two-slit experiment, 
705-707 

internal reflection, 655, 686 
internal resistance, 305-306, 

312 
intervals of fits, Newton's, 697 
Invar, 609 
inverse cube law for dipole, 120 
inverse functions, A-2, A-10 
reverse square law, 80-84, 187 
1on channels, 341 
ion density, 302-304, 307 
ionic conductors, 14, 21, 176 
ionic crystals, 202-203 
1on pumps, 248, 341 
iron, 400, 402-403, 413, 662 

J 
Jenkin, Mr., 533-534, 542, 

546-547 
Joule, James, 290, 561 
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Joule heating 
emf sources, 305 
Faraday's law, 524 
in generators and motors, 

562-563 
lightbulbs, 288 
microscopic viewpoint, 

321-322 
Poynting vector and, 649 
statement of, 6, 290 

Joule's law, 6 
jumper-cable problem, 355-356 
jumping rings, 617-619 
junction rule, 347-348 

K 
keeper magnets, 401,403-404 
Kepler, Johannes, 692-693 
Kilby, Jack, 326 
Kirchhoff, Gustav Robert, 661-662 
Kirchhoff's rules 

batteries in parallel, 353-357 
batteries in series, 350-353 
mixed circuits, 356-357 
Rule 0 (give sign conventions), 

346-347 
Rule 1 (nodal rule), 347-348 
Rule 2 (loop rule), 348-350 
short- and long-time behavior 

of capacitors, 357-360 

L 
Land, Edwin, 658 
Landauer, Rolf, 326 
lasers, 699, 715 
latitude, 385 
Laue, Max Theodor Felix von, 

724-726 
Laughlin, Robert, 449 
law of charge conservation. See 

conservation of charge 
Law of Cosines, A-6 
law of reflection, 688, 696. See also 

reflection 
law of refraction, 654-655,685- 

686, 687-689, 688-689, 
692, 696, 715. See also 
refraction 

Law of Sines, A-6 
law of universal gravitation, 187 
Lawrence, E. O., 441 
LC circuits, 583-584, 586-587 
lead, temperature dependence of 

conductivity, 322-323 
lead-acid batteries, 543. See also car 

batteries 

left distributive law, 30, 34 
left-hand rule, 516 
length, dimensions, 64 
Lenz's law 

dc force from ac power, 616 
eddy currents, 518, 547 
examples of, 515-520 
Faraday's law and, 522, 524 
magnetic levitation, 518 
motion statement of, 517 
statement, 514 

Lenz's left-hand rule, 516 
Le Roy, I~douard, 71 
Leyden jars, 14, 45-47, 50, 

227-228, 239-240, 
663-667 

lie detectors and electrical 
resistance, 18 

lift, 394-395, 518, 577 
lifting strength, magnetic, 394-395 
light. See also electromagnetic 

radiation 
carbon arc lamps, 561-562 
colors, 647, 656, 690-693, 

697-698, 700-705 
complete internal reflection, 

655 
dispersion of, 653 
eighteenth-century 

experiments, 717-719 
electricity and, 67-68 
as electromagnetic radiation, 

645 
Huygens's principle, 694 
interference (See interference) 
late 17th-century discoveries, 

689-693 
late 17th-century views of, 

693-697 
nature of, 708 
polarization (See polarization) 
radiation pressure, 650-651 
reflection (See reflection) 
refraction (See refraction) 
scattering, 683-684, 701 
semiconductor conductivity 

and absorption of, 324 
speed in matter, 652 
speed in vacuum, 376, 645, 692 
from the sun, 649-650 
visible, 647 
wave nature of, 698-699, 708 

lightbulbs, 2-3, 288, 562, 565, 
570, 657 

lightning, 22, 71-72, 263-265 
lightning rods, 71 
linear charge distribution, 57-59 
linear machines, 564-568, 571, 

616-618 

linear polarization, 644, 657-658 
linear transmitting antennas, 

666-667 
line charges 

charge distribution, 122 
electric field lines, 116, 

123-124, 128-129 
equipotential surfaces, 195 
force due to, 96-100 

lines of force. See electric field lines 
lipid bilayers, 246-247 
Lippershey, Hans, 693 
Livingston, M. S., 441 
load, in motors and generators, 

570-571 
load resistors, 343-344 
local electromotive force, 436-438, 

450-451 
localization, 323 
lodestone, 40, 69, 385 
logarithms, A-2 to A-3, A-7 to A-8, 

A-9 
longitude, 385 
longitudinal coherence length, 699 
longitudinal resistance, 447 
loop currents, 370-372. See also 

current loops 
loop rule, 348 
Lorentz force, 443, 528, 650 
low-pass filters, 602, 603 
LR circuits 

characteristic frequencies, 
600-601 

as filters, 604 
power transfer, 611-612 
self-inductance, 538-542 
turning off, 541-542 
turning on, 538-540 

M 
MAGLEV. See magnetic levitation, 

eddy current 
De Magnete (Gilbert), 41-42, 386 
magnetic anisotropy energy, 413 
magnetic braking, 518 
magnetic charge, 393-394 
magnetic circulation 

Amp~rian circuits, 480-482, 
622 

around a closed path, 204-205 
circuit-normal right-hand rule, 

474-475 
computing, 481-482 
definition, 474 
holes in cylindrical magnets, 

490-491 
magnetic shells, 476-480 
sources, 386, 397 
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magnetic dipoles 
holes in cylindrical magnets, 

490 
magnetization and, 392-393 
orientation energy, 429 
overview, 390-395 
right-hand rules and, 423- 

425 
torque on, 407 

magnetic domains, 412-413 
magnetic energy, 542-544 
magnetic fields 

Amp~re's right-hand rule, 
422425 

bar magnets, 391,395, 397 
calculation of, 462-4 71 
changes in number of field lines, 

512 
closed circuits in, 434-437 
co-axial coils, 467, 516- 

517 
current-carrying wires, 420- 

421,468-469 
demagnetization fields, 

4O3406 
diamagnets in, 399400 
disk-shaped magnets, 467 
of the Earth, 385 
experiments, 110-113 
flaring, 444-445, 472, 618 
forces on moving charges in, 

437-438 
historical notation, 396 
inertia, 569 
magnetic induction, 396 
magnetic poles and, 396-397 
measurements, 389 
monopoles, 389-390, 472 
no-deflection condition, 443 
nonzero circulation, 205 
normal component, 397-398 
Oersted's right-hand rule, 

420-421,427 
overview, 24, 109 
paramagnets in, 398-399 
particle deflection, 406-407 
rules for drawing lines, 115 
from sheet of magnetic charge, 

394 
source of, 526 
symmetry and Amp~re's law, 

482486 
torques on dipoles, 131 
twisted pairs, 469 
uniform, 467, 471 
units, 385 

magnetic flux 
changes to, 522-523 
definition, 520-521 

Lenz's law and, 514-520 
rectangular circuit, 644 

magnetic force law, 438-445 
magnetic forces, 431-438, 522-524, 

566, 568 
magnetic induction, 396 
magnetic levitation, eddy current 

(MAGLEV) 
lift-drag relationship, 577 
Maxwell's receding image 

construction, 575-577 
overview, 518, 573-575 
theory of, 577-578 

magnetic materials 
determination of, 412-4 13 
ferromagnetic, 400-403 
hysteresis loops, 401-403 
paramagnets vs. diamagnets, 

398-400 
permanent (hard) magnets, 

397, 400, 402-403, 405, 
412-414, 424 

soft magnets, 402 
magnetic mirrors, 444445 
magnetic momentum, atomic, 

430-431 
magnetic north, 385 
magnetic oscillations, 407-411 
magnetic pressure, 4734  74 
magnetic relaxation time, 568 
magnetic resonance frequency, 411 
magnetic resonance imaging (MRI), 

411,467 
magnetic sheets, 423 
magnetic shells, 476-480 
magnetic susceptibility, 399 
magnetic tape, 402 
magnetic work, 449-451 
magnetism. See also magnetism of 

electric currents 
electrons and, 491 
Gauss's law, 398 
Gilbert's study of amber effect, 

41-42 
lodestone, 40 
nineteenth century, 402 
seventeenth century, 41-43 
sixteenth century, 68-69 

magnetism of electric currents. See 

also Biot-Savart law 
Amp~re's current loop 

decomposition, 421-4 22, 
467 

Amp~re's equivalence, 
422-431,476, 517 

Amp~re's right-hand rule, 
422-425 

circular motion of charged 
particles, 438-440 

equivalence of right-hand rules, 
426-427 

equivalent magnets, 423-425, 
429-430 

force on current-carrying wires, 
431-437 

Hall effect, 445-449 
magnetic mirrors, 444-445 
magnetic moment of 

parallelograms, 425-426 
no-deflection condition, 443 
Oersted's right-hand rule, 

420-421 
orientation energy of a current 

loop, 429 
ponderomotive force, 436, 

449-451 
speaker cones, 435-437 
spiral motion of charged 

particles, 440-441,444 
torque on a current loop, 

427-429 
magnetite (lodestone), 40, 69, 385 
magnetization 

definition, 393 
direction determination, 413 
effect of temperature on, 403, 

413 
estimation from lifting strength, 

395 
magnetic dipole moment and, 

392-395 
permanent, 424 
remanent, 402-403 
saturation, 402 

magnets, 384-418 
atomic, 402, 409 
bar, 424-425 
breaking, 395-396 
compasses and, 390-391 
current induced with, 511 
diamagnets, 398-399, 401, 

486-491 
discovery of, 385-386 
electric vs magnetic poles, 

387-388 
ellipsoid, 403-404 
equivalent, 423-425, 429- 

430 
flux vs. current sources, 386- 

387, 397-398 
force between magnetic poles, 

388-389 
forces on, 471-474 
horseshoe, 404 
keeper, 401,403-404 
lack of actual poles, 395-398 
lifting strength, 394-395 
magnetic dipoles, 388, 390-392 
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magnets (contd.) 
microscopic Amp~rian currents, 

491 
microscopic vs. macroscopic, 

408-411 
paramagnets, 398-399, 401 
permanent, 397, 400, 402-403, 

405, 412-414, 424 
refrigerator, 384, 394-395, 489 
soft vs. hard, 384, 401-402 
suspended in fields, 392 
toroid, 404-406, 492 

Malus, I~tienne-Louis, 717 
Malus's law for linear polarizers, 658 
Marconi, Guglielmo, 630 
mass, rest, 441 
mass current, 14-15 
mass spectrometers, 440 
material strength, 85 
mathematics review 

arc length, A-3 to A-6 
differential calculus, 688, A-6 

to A-8 
integral calculus, A-9 to A-10 

(See also integral calculus) 
scientific notation and powers, 

A-1 to A~ 
simple equations, A-1 
trigonometry, A-3 to A-6, A-7, 

A-9 to A-10 
matrices, A-11. See also 

spreadsheets, numerical 
approximations by 

Maxwell, James Clerk 
displacement current, 

633-636 
electrical potential difference, 

184, 190 
electric field lines, 109, 128, 

145 
electromagnetic radiation 

prediction, 583, 632-633 
extension of Amp~re's law, 

633-636, 645 
laws of electromagnetism, 

632-633 
loop currents, 370-372 
quotation by, xviii 
receding image construction, 

575-577 
surface charge trick, 197-199 
Treatise on Electricity and 

Magnetism, 267 
Maxwell's equations, 632-634 
mean free path, 68, 322 
mechanical engineering, Newton's 

law and, 566 
mercurial phosphorus, 70 
mercury poisoning, 560 

metals, 19, 323-324, 445-449. See 
also under names of 
individual metals 

meters 
ammeters, 299-300, 480, 482, 

490 
charge electrometers, 86-88 
electrometers, 71-72, 86-88, 

166, 194-195 
eriometers, 712 
galvanometers, 281,283, 

298-299, 528 
micrometers, 700, 719 
multimeters, 231,298-299 
potentiometers, 306 
radiometers, 651 
voltage electrometers, 194-195 
voltmeters, 300-301,446 

mho (units), 296 
mica, dielectric properties of, 243 
Michell, John, 386 
Michelson interferometer, 731 
Micrographia (Hooke), 690 
micrometers, 700, 719 
microscopic characteristics 

electrical conduction, 323 
electric fields, 367 
importance of, 316 
joule heating, 321 
magnets, 399, 408-411 

microwave cavities, 659-661 
microwave ovens, 171,620, 665 
Millikan, Robert Andrews, 317-318 
Millikan's oil-drop experiment, 

317-318 
molar volume, 265 
momentum, angular, 407-409, 412, 

430-431 
momentum analyzers, 440 
momentum of electromagnetic 

radiation, 650-651 
monopoles 

current loops, 472 
fields of, 389-390, 472 
magnetic levitation, 574 
moving toward conducting 

loops, 531-532 
perfect diamagnets, 487-489 
receding image construction, 

575-577 
solenoids as, 429-430 

MOSFETS (metal oxide 
semiconductor field effect 
transistors), 583 

motion 
circular, 438-440 
compressional, 668-671 
in electric fields, 133-136 
falling, 347 

longitudinal, 643 
Newton's second law, 566 
planetary, 692-693 
spiral, 440-441,444 
string under tension, 636-639 

motional electric fields, 446, 528 
motional electromotive force, 

528-532, 567 
motors 

back emf, 7 
eddy current losses, 562-563 
freezing up, 569 
frictional forces, 565 
hysteresis losses, 563-564 
induction, 619 
initial response, 569, 571-573 
linear machines, 564-565, 

571-572, 616-618 
load, 570-571 
power consumption during 

starting, 345, 571-573 
rotational machines, 573, 619 
slip-rings, 428 
squirrel-cage frames, 562-563 
steady state operation, 569-570 
transients, 571-573 
types of load, 570 

Mott, Sir Neville, 322-323 
Mott localization, 323 
MRI (magnetic resonance imaging), 

411,467 
MCiller, Mex, 325 
multimeters, 231,298-299 
Mu metal, 402 
muons, 308, 406-407 
Murgatroyd, Paul, 482 
musical instruments, 639-642, 671 
Musschenbroek, Pieter van, 45, 

227-228 
mutual inductance 

Faraday's study of, 508, 
526-527 

flux through secondary, 524 
induced emf, 524 
loop pulled through a field, 

527-528, 535 
loop within a solenoid, 525-526 
rectangular loop and long wire, 

527 
self-inductance and, 534-536 

mutuality, 65-66, 69 

N 
near field (Fresnel) diffraction, 690, 

709 
negative surface charges, 68 
NEO (Nd2Fe14B) magnets, 400, 

403, 405, 413-414, 467 
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nervous system, 289, 376 
Newton, Sir Isaac 

differential calculus, 688 
on electric fields, 108 
law of universal gravitation, 187 
on light, 656, 691-692, 

696-697, 703-705 
rings, 703-705 

newtons (units), 282 
Newton's rings, 703-705 
Newton's second law of motion, 

566 
nodal rule, 347-348 
no-magnetic-pole law, 633 
nondispersive waves, 636-637, 647 
northern/southern lights, 445 
Noyce, Robert, 326 
nuclear force, 86 
nuclear magnetic resonance (NMR), 

407-409, 411 
nuclear reactions, charge 

conservation in, 54-55 
number current, 318-319 
numerical approximations, 100, 

360-361. See also 
spreadsheets, numerical 
approximations by 

O 
oersted (units), 415 
Oersted, Hans Christian, 283, 386, 

419-420 
Oersted's right-hand rule, 420-421, 

427 
Ohm, Georg Simon, 281,283-285 
ohms (units), 5, 288 
Ohm's Law 

conductors in equilibrium, 160 
drag force, 318-322 
electrical engineering and, 

567-568 
emf driving current, 306-307 
global form, 287-290, 307 
LC circuits, 584 
local form of, 290-293, 307 
medical applications, 284 
ohmic vs. non-ohmic responses, 

283-284, 325-326 
overview, 5-6, 283-284 
terminal voltage, 341-342 
voltaic cell in series with a 

resistor, 313-314 
oil-drop experiment, 317-318 
Onnes, Kamerlingh, 325 
open circuits, 314-315 
operating points, triode, 608 
optics 

crystal, 715-719 

diffraction (See diffraction) 
diffraction gratings, 679, 

718-724 
geometrical vs. physical, 679 
interference, 679-683 
principle of least time, 687-689 
rainbow angle theory, 686-687 
refraction (See refraction) 
seventeenth century, 685-689 

orbitals, 14, 21,217, 326 
oscilloscopes, 135-136 
outlets, electrical, 2-3 
overdamping, 588, 590 
overload, 6-7 
overtones, 641 

P 
paper, dielectric properties of, 243 
parachutists, terminal velocity of, 

317 
paraelectrics, 398 
parallel circuits 

batteries in, 353-357 
capacitors in, 236-238, 240- 

242, 249-250, 252 
inductors in, 546-547 
resistors in, 295-298 
voltaic cells in, 341 

parallelograms, magnetic moments, 
425-426 

parallel-plate capacitors 
analogy to magnetic lifting 

strength, 394-395 
attractive force calculations, 

252-254 
energy of, 249-250 
fixed charge, 252 
fixed potential, 252-253 
fringing field, 479-480 
overview, 236-238 
polarizability, 260 
in series combination, 240-242 

parallel rods, 534 
paramagnets, 398-399, 401 
parasitic capacitance, 367-368 
partial circles, electric fields of, 

212-213 
partial derivatives, 638 
particle accelerators, 442 
Pauli, Wolfgang, 175 
Pauli principle, 412 
Peltier effect, 308 
Peregrinus, Petrus (Pierre de 

Maricourt), 40, 385-386 
perfect diamagnets, 486-491, 541. 

See also superconductors 
period, 582, 637 
periodic table of the elements, A-13 

permanent magnets, 397, 400, 
402-403, 405, 412-414, 
424 

permeability, 387, 399, 652 
permittivity constant, 83, 243 
phase shifts 

colors of thin films and plates, 
701,703 

definition, 593 
determination of, 594 
in LC circuits, 586 
in RLC circuits, 607 

phasors, 593, 595, 599-600 
phosphorescence, 44, 263 
photoelectric effect, 218 
photoemission, 218 
pinhole cameras, 713 
Pixii, Hippolyte, 561 
planar surfaces. See sheet surfaces 
Planck's constant, 326, 402 
plane of polarization, 658 
planetary motion, laws of, 692-693 
plane waves, 643-644 
plasma frequency, 372-373 
plasma globes, electrical breakdown 

in, 262 
plasma oscillations, 372-374 
point charges 

in atoms, 201-202 
electrical potential, 199-203, 

209, 212 
electric fields, 116, 212 
electric flux for concentric 

surface, 148-149 
electrostatic screening, 

173-174 
equipotential surfaces, 

195-196, 199 
flux tubes, 130 

Poisson, Sim6on-Denis, 718 
polarizability, 120-121,259-261, 

652 
polarization 

amber effect, 41 
Brewster angle, 659, 717 
by crystals, 715-719 
double refraction and, 692 
eighteenth-century 

experiments, 717-719 
electrical, 19 
electric dipole moments, 392 
linear, 644, 657-658 
Malus's law, 658 
partial, 658 
plane of, 658 
screening and, 266 
sunglasses, 659 
sunlight, 660 
waves, 644, 652, 656-659 
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polar molecules, 118 
poles, origin of term, 40 
ponderomotive force (pmf), 436, 

449-451,529 
positive surface charges, light 

production and, 68 
potential. See electrical potential 
potential difference. See voltage 
potential energy, electrical, 174- 

175, 185, 189-194, 
200-203 

potentiometers, 306 
power, electrical, 6 
power consumption, 345, 608- 

612 
power cords, 6-7 
power factor, 608-612 
power flow, electromagnetic, 

648-650 
power lines, high voltage, 613 
power of points, 71, 215 
power series expansions, A-7 to 

A-8 
powers of x, A-1 to A-2 
power transfer, 343-345, 

611-612 
Poynting vector, 24, 649 
precession, 410 
pressure, electrical, 174-175 
pressure, magnetic, 473-474 
pressure, radiation, 650-651 
Priestley, Joseph, 81 
primary batteries, 342 
prime conductors, 45 
principle of least time, 687-689 
principle of superposition 

conductors with cavities, 
169-172 

electrical potential path 
independence, 204-205, 
348 

electric fields and, 118-121 
electric fields for continuous 

charge distributions, 
121-128 

magnetic field applications, 
468-471 

overview, 88-94 
use of symmetry, 94-96 
vector addition, 88-94 

prisms, 656, 691-692, 697 
problem solving comments, 

101-102 
proof plane, 164 
proportional reasoning, 101 
proton, 85-86, 111,445 
Ptolemy, 685-686, 693 
Purcell, Edward, 409 
Pythagorean theorem, A-3 

Q 
q / m ratio, 443 
quadrature, 56, 60 
quality factors, 589-590, 611 
quantization rule, 430-431 
quantum Hall effect (QHE), 

448-449 
quantum mechanics, 84, 136 
quantum of charge, 317-318 
quarks, 55 

R 
radian measure, 581, A-3, A-8 
radiation. See electromagnetic 

radiation 
radiation pressure, 650-651 
radiometers, 651 
radio signals 

AM/FM bands, 605-606 
amplification, 607-608 
diffraction, 685 
power and power factor, 

608-612 
RLC tuning, 604-607 
wavelength, 648 

rainbow angle, 686-687 
rainbows, 706-707 
RAM (random access memory), 227 
Rayleigh observability criterion, 

713-715 
RC circuits 

applications, 365 
charging, 18, 360-363 
current in, 358-359 
definition, 357 
discharging, 18, 363-364 
as filters, 603 
frequencies, 598 
phasor methods, 599-600 
series circuits, 598 
time constant, 361,364 
trigonometric analysis, 599 

recession velocity, 575 
recharging emf, 570 
rectangular loops, 519, 522-523, 

525, 644 
rectifiers, 605 
reflection 

angles, 654-655 
frequency and wavelength on, 

653-654 
Huygen's theory of, 695-696 
internal, 686-687 
law of reflection, 688 
polarization, 658-659 
principle of least time, 

687-689 

specular, 685 
thin films and plates, 701-705 

refraction 
angles, 654-655 
Descartes's law of, 688-689 
double, 692, 715 
frequency and wavelength on, 

653-654 
Hooke's law of, 694 
Huygen's theory of, 695-696 
index of, 652, 655-656, 686 
principle of least time, 687-689 
rainbow angle theory, 686-687 
Snell's law, 654-655, 685-689, 

692, 715 
refrigerator magnets, 384, 394-395, 

418, 489 
refrigerators, 308, 469 
relativity, special theory of, 441 
relaxation time 

drag force, 316 
frictional, 565 
generators, 571 
limitations on circuit theory, 

375 
magnetic, 568 
metal conduction, 321, 

323-324 
transients, 572-573, 588 

remanent coercive force, 402 
remanent magnetization, 402-403 
reservoirs, 12-13 
resistance, electrical. See also Ohm's 

Law; resistivities; resistors 
ac transformers, 613-615 
bridge, 368-372 
in connecting wires in a circuit, 

349 
definition, 283, 287, 292 
electric fluid model, 15 
emf sources, 304-306 
Hall, 446 
in ideal batteries, 350 
internal, 305-306, 312 
radial current flow, 292-293 
RLC circuit transients, 

587-591 
scaling property of, 292 
skin moisture and, 18 
temperature coefficient of 

resistivity, 288 
in toasters, 290, 294-296 
units, 288 

resistive heating, 251 
resistivities 

cell membranes, 288-289 
cell walls, 289 
overview, 15 
superconductors, 324 
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tabulated values, 288 
in terms of conductivity, 291 
wires, 288, 296-297 

resistors 
ac voltage, 594-595 
bridge circuits, 359, 368-372 
charge conservation, 348 
color codes, 289-290 
Kirchhoff's second rule, 349 
load, 343 
in parallel, 295-296 
potentiometers, 306 
RC circuits, 357-365 
in series, 293-295, 301, 

313-314 
shunt, 299-300 

resonance curves, 610-611 
resonant absorption of 

electromagnetic radiation, 
409 

resonant frequencies, 411,586, 641, 
664-665 

rest mass, 441 
reverse bias voltage, 325 
Richmann, G. W., 71-72 
right distributive law, 30, 33 
right-hand rules 

Ampere's, 422, 427 
circuit-normal, 475 
equivalence of, 426-427 
Oersted's, 420-421, 427 
vector product, 27, 31-33, 425 

ring, area of, 61, 63 
ring magnets, 404 
ring of charge 

electric fields, 125, 212 
electric potential, 206-207, 

210-211,212 
thermoelectric effect, 308 

ripple voltage, 602 
RLC circuits 

impedance, 606, 611-612 
phase shifts, 607 
power absorbed by, 610-611 
power transfer, 611-612 
series circuits, 605-607 
transients, 587-591 
tuning AC, 604-607 

Robison, John, 81 
rods, charged. See line charges 
Roemer, Ole, 692 
Roentgen, Wilhelm Conrad, 724 
Rogowski coils, 480, 482, 490 
Rohrer, Heinrich, 217 
root mean square (rms) voltage, 582 
rotors, 573, 591 
rubber, dielectric properties of, 

243 
Rutherford, Ernest, 133 

$ 

salmon runs and number current, 
319 

salt, index of refraction, 652 
salt water, skin depth of, 620 
sassafras oil, index of refraction of, 

703 
Savart, F61ix, 421 
scalar products, 29-32 
scalars, 26-27, 55, 88 
scaling, proportional reasoning and, 

101 
scanning tunneling microscopy 

(STM), 217-218 
Shockley, William, 323, 326 
Schrieffer, J. Robert, 322 
scientific notation, A-1 to A-2 
scooping-out theorem, 162-163, 

170-171 
screening 

capacitors, 265-267 
dielectrics, 266 
electrical, 65, 169-173, 

175-176, 265-267 
electromagnetic, 665 
electrostatic, 173-174, 487, 

578 
gravitational, 172-173 
microscopic length, 175-176 

screening length, 175-176, 266 
secondary batteries, 342 
second-order differential equations, 

585 
Seebeck, Thomas Johann, 283 
seismic waves, 637 
self-capacitance, 229-232 
self-inductance 

calculating, 536-537 
co-axial cables, 537, 544 
discovery of, 508 
LR circuits, 538-542 
Mr. Jenkins's experiment, 

533-534, 542, 546-547 
mutual inductance and, 

534-536 
self-induction, Faraday's 

investigation into, 533-534 
self resonance, 587 
semiconductors 

carrier density, 447 
conduction process, 324 
depletion layers, 176-177, 206 
doped, 324, 447 
Hall effect, 447 
light energy, 324 
MOSFETS, 583 
non-ohmic responses, 

283-284 

screening length, 176, 266-267 
triodes, 326 

series circuits 
batteries in, 350-353 
capacitors in, 238-242 
identical voltaic cells in, 

339-340 
LR, 600-601 
RC, 598 
resistors in, 293-295, 297-298, 

313 
RLC, 605-607 
voltaic cells with resistors, 313 
voltmeters, 301 

sheet surfaces 
charged particle motion, 

134-136, 406-407 
electric field lines, 117, 

124-125, 152, 164-165 
electric potential, 206 
electromagnetic induction, 

515-516 
electrostatic screening, 

173-174 
equipotential surfaces, 195 
magnetic fields, 470-471, 

484-485 
parallel-plate capacitors, 

233-234 
parallel sheets, 127-128, 

165-166 
shells, 209, 476-480 
shocks, electrical 

current amount and, 18-19, 
629 

grounded wiring and, 2-3 
Leyden jars, 45-46 
lightning, 71-72 
rock 'n' roll bands, 10, 16-17 
self-inductance, 533-534, 542 
suspended people, 71 
toasters and people inseries, 

294-295 
ventricular fibrillation, 18-19, 

629 
shorts 

circuits, 312-313, 359 
in generators, 571 
grounded wiring and, 2-3 
voltaic cells, 312-313 

shunt resistors, 299-300 
signals, 602-603, 605-606, 657 
sign conventions 

circuit Rule 0, 346-347 
current, 318 
falling motion, 34 7 
voltage, 304 

silicon, 288, 322-324, 448-449 
silver, resistivity of, 288 
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sine function, A-4 to A-5 
sintering, 413 
skin depth, 616, 619-623 
skin effect, 660 
slabs 

demagnetization fields, 
404-406 

electric potential, 213-214 
magnetic fields, 406-407, 

469-470 
slide rules, A-3 
slip-rings, 428, 561 
Snell's law, 654-655, 685-689, 692, 

715. See also refraction 
soap films, 702-703 
sodium, spectrum of, 721 
sodium chloride, 202-203, 

322-323, 724 
solar wind, 445 
solenoids 

concentric, 486 
EMF and electric field 

induction, 544-546 
equivalent, 424 
fields outside, 485-486 
fields within, 467, 484, 

485-486 
magnetic energy, 543 
as monopoles, 429-430 
mutual inductance, 525-526 
rectangular loop within, 522, 

525 
self-inductance, 536-538 
surface currents, 490 
torque on, 429 

sound waves 
acoustic cavities, 659 
complete internal reflection, 

655 
longitudinal motion, 643 
Newton on, 697 
nondispersive nature of, 647 
in pipes, 671 
stringed instruments, 640-642 
velocity of, 670-671 
wave pulses, 693 

space charge, 68 
spacecraft, radiation pressure on, 

651 
sparking, 19-20, 261-263. See also 

dielectric strength 
speaker cones, 435-437, 449 
specific capacitance, 247 
specular reflection, 685 
speed of light, 376, 645, 652, 692 
spheres 

capacitance of two, 232, 237, 
251,258 

cell membranes, 247 

coefficients of potential, 
256-257 

concentric capacitors, 234-235, 
258 

concentric Gaussian surfaces, 
149, 154, 156-157 

electric field lines, 23, 116, 136 
electric field magnitude, 

156-157 
electric potential, 208-209, 215 
energy calculation of 

capacitance, 250 
radiation sources, 649-650 
self-capacitance, 230-231,250 
surface area formula, 60, 64, 

649 
two connected, 215 
volume formula, 62-63 

spherical shells, electric potential of, 
209 

spin, electron, 413, 431 
spin-orbit energy, 413 
spiral motion, 440-441,444 
spreadsheets, numerical 

approximations by 
Biot-Savart law, 462-464 
electrical potential, 209-211 
electric field analysis, 122-123 
fill command, A- 12 
overview, 96-100, A-11 to 

A-12 
potential differences, 191-192 

spring compression, 82, 565, 
584-586 

squares, eddy currents in, 563 
squirrel-cage frames, 562-563 
standing waves, 639-642, 

659-661 
static electricity 

charge electrometers, 86-88 
Coulomb's law, 83-86 
discovery of, 80-83 
humidity and, 19 

stators, 573, 591 
steel, resistivity of, 288 
Steinmetz, Charles Proteus, 593 
stepped leaders, 263-265 
step-up/step-down transformers, 

612-614 
storage of charge, 45, 50, 82, 

248-249. See also batteries 
St~Srmer, Horst, 449 
streetcars, electricity-powered, 562 
sucking rings, 618-619 
sulfur globes, 69-70 
supercapacitors, 246 
superconductors 

discovery of, 324-325 
mode of conduction, 325 

perfect diamagnets as, 490-491 
surface currents, 486-489 
temperature dependence, 

322-323 
supermalloy, 402 
superposition. See principle of 

superposition 
surface area formulas, 60-61, 64, 

649 
surface charge 

charge distribution, 122 
density, 68, 255, 366-367 
electric field outside conductors 

and, 163-166 
Gauss's Law, 146-148, 158- 

159 
Maxwell's trick, 197-199 
parasitic capacitance, 367-368 
planar symmetry, 158-159 
screening length, 175 
on a wire, 366-367 

surface charge density, 68, 255, 
366-367 

surface currents, 426, 469, 
486-491,663 

synchrocyclotrons, 441 

T 
telegrapher's equation, 662 
telegraphs, 631-632 
telephones, 631-632 
teleportation, 575 
telescopes, 678-679, 714-715 
televisions 

antennas, 656-657 
black-and-white, 609 
color, 609 
degaussing coils, 609 
screens, 135-136 
tubes, 125 
tuning circuits, 587 

temperature 
coefficient of resistivity, 288, 

325 
conductivity and, 322-323 
Curie, 403, 413 
magnetization, 403, 413 
thermoelectric force, 307-308 

terminal velocity, 317 
terminal voltage, 304, 312, 314, 

341-342, 535 
tesla (units), 385, 389 
Tesla, Nikola, 385, 619 
Tesla coils, 615-616, 620 
Theory of Light and Colours (Young), 

698-699 
thermoelectric effect, 307-308 
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thin films, light on, 690-691, 
701-705 

Thomson, Elihu, 561,618 
Thomson, J. J., 10, 267, 318, 384, 

442-444 
Thomson, William (Lord Kelvin), 

60, 109, 173, 581,583, 
631-632 

time constants 
LR, 540 
RC, 361 

time scales, limitations of circuit 
theory and, 375-376 

toasters, 6, 290, 294-296 
toroidal coils, 484, 526 
toroid magnets, 404-406, 492 
torque 

Coulomb's torsion balance, 82 
on current loops, 427-429, 

434-435 
dipoles in uniform fields, 

130-132, 388 
on magnetic dipoles, 407 
magnitude, 32 

torsion balance, 82 
torsion constant, 82 
trains, electric, 561 
transformers, electrical 

design of, 615 
field within core, 492-493 
field within gap, 493-494 
laminated cores, 563 
step-up/step-down, 612-613 

transients, 571-573, 587-591 
transistors, 326, 583 
transverse coherence length, 699 
transverse resistance, 446, 448-449 
traveling waves, 642-643 
Treatise on Electricity and Magnetism 

(Maxwell), 267 
Treatise on Light (Huygens), 694 
triangles, 95-96, A-3 to A-6 
trigonometry, A-3 to A-6, A-7, A-9 

to A-10 
triodes, 326, 608 
Tsui, Daniel, 449 
tubes, conducting, 532 
tuners, 607-612. See also radio 

signals 
tungsten, resistivity of, 288 
tunneling, 217-218 
turns (unit), 396 
turntables, rotating, 517-518 
twisted pairs, 469 

U 
underdamping, 588-589 
units, SI, 83, 473 

V 
vacuum tubes, 22, 608 
valves, 607-608. See also amplifiers 
Van de Graaf generators, 18 
vector product right-hand rule, 

27-28, 31-33, 425-426 
vector products, 32-35 
vectors. See also principle of 

superposition 
addition and subtraction, 

26-27, 92-94 
conventions, 26, 88 
geometry, 83-84 
line charge calculation, 96-100 
magnitudes, 27-28, 89-90 
multiplication, 29-35 
multiplication by scalars, 27-28 
overview, 25-26 
principle of superposition, 

88-94 
rotation of, 28-29, 88 
scalar product, 29-32 
testing for vectorness, 34-35 
unit, 27-28 
use of symmetry, 94-96 
vector notation, 26, 83 
vector product, 32-35 
zero-force position, 90-91, 95 

velocity 
drift, 320, 446 
electromagnetic waves, 

582-583, 646 
Maxwell recession, 575 
of propagation, 661-662, 

670-671 
terminal velocity, 317 

velocity selectors, 443 
ventricular fibrillation, 18-19, 629 
versorium, 42-43, 64 
Volta, Alessandro Guiseppe, 16, 

53-54, 229, 336-339 
voltage. See also electrical potential 

across ac generators, 592, 598, 
600-601 

capacitor, 596-597, 603 
current and, 5 
from electrical potential energy, 

189 
electric fluid model, 12 
forward/reverse bias, 325 
Hall, 445-448 
high power voltage lines, 613 
of home electrical power, 3-4 
inductor, 595-596 
oscillating, 561,581-582, 588 

(See also alternating 
current) 

path independence, 203-205, 
348 

profile around a circuit, 
529-530 

rectified oscillating, 561, 
602-604 

resistor, 594-595 
ripple, 602 
root mean square, 582 
sign convention, 304 
terminal, 304, 312, 314, 

341-342, 535 
in transformers, 612 

voltage dividers, 294 
voltage electrometers, 194-195 
voltaic cells See also batteries 

charging capacitors, 311-312 
current-voltage relationship, 

305-306 
definition, 309 
discovery of, 337-338 
electric fluid model, 15-16 
electrolytes and electrodes in, 

309-310 
electromagnetic induction, 

508-510 
emf in, 304-308 
energy and rate of discharge, 

310-311 
ideal (resistanceless), 312 
identical, in series, 339-340, 

350-353 
on open circuits, 314-315 
in parallel, 341,353-357 
properties of, 309-310 
in series with resistors, 313-314 
shorted, 312-313 

voltaic piles, 338-339. See also 
batteries 

Volta's law, 229, 349 
voltmeters, 300-301,446 
volts (units), 3, 185 
volume charge distribution, 61-64, 

122 
volumes, 62-64, 121 
von Klitzing, Klaus, 448 

W 
wall outlets, 2-3 
water 

dielectric properties, 243 
dipole moment, 118 
electric field lines, 119 
humidity and sparking, 19-20 
index of refraction, 652, 655 
skin depth, 620 

watts (units), 4 
waveffonts, 693-694, 699 
waveguides, 661-663 
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wavelength 
colors (See colors) 
diffraction and, 683-684 
notation, 636 
refraction and, 654, 656 
wavenumber-wavelength 

relation, 643 
x-rays, 724 

wavenumber, 640-641,643, 
646 

waves. See also electromagnetic 
radiation 

coherence, 699 
complete internal reflection, 

655 
compressional motion, 668-671 
diffraction, 683-685 
electromagnetic wave equation, 

645 
electron orbitals as, 326 
energy and momentum, 651 
energy and power flow, 

648-650 
energy transport, 667-668 
equation, 636, 638-639, 

645 
frequency-wavelength relation, 

643 
interference (See interference) 
linearly polarized, 644, 

657-658 
longitudinal, 668-669 
microwave cavities, 659-661 
motion of a string under 

tension, 636-639 
nondispersive vs. dispersive, 

636-637, 647 
notation, 636, 638, 640-641 
plane, 643-644 

properties of electromagnetic, 
646-647 

pulses, 693-694 
reflection (See reflection) 
refraction (See refraction) 
scattering, 683-684, 701 
sound (See sound waves) 
in space, 665 
standing, 639-642, 659-661 
transverse, 646, 656-659 
traveling, 642-643, 661-663, 

667-668 
velocity of propagation, 

661-662, 670-671 
wavenumber, 640-641 
wavenumber-wavelength 

relation, 643 
in wires, 661-663, 665 
Young's two-slit experiment, 

705-707 
Weber, Wilhelm, 402, 431 
webers (units), 520 
welder's arcs, magnetic blow-out of, 

433 
windings, 573 
wires 

Amphre's law, 479 
bends in, 366 
drift velocity, 320 
electric fluid model, 15, 24 
flow through, 22, 319-320 
gauge, 288 
magnetic field outside, 483-484 
magnetic fields and electric 

current in, 420-421, 
468-469, 472-4 73 

magnetic force on 
current-carrying, 431-437 

parallel, 472-4 73 

parasitic capacitance, 367-368, 
539 

ponderomotive force, 451 
resistance in connecting, 349 
resistivities, 15, 288, 296-297 
surface charge, 366-367 
traveling waves, 661-663, 665 
uniform current density, 

482-483 
work, ponderomotive, 449-451 
work functions, 216-217, 251,338 

X 
x-ray scattering, 724-726 

Y 
Young, Thomas 

accomplishments of, 698 
colors of striated surfaces, 700 
colors of thin films and plates, 

701-705 
on diffraction, 707-708 
eriometers, 712 
on interference, 678 
micrometers, 700, 719 
ripple tank studies, 679 
transverse vibrations, 718 
two-slit experiment, 705-707 

Young's modulus, 669-670, 698 
yttrium (YBa2 Cu3 O7), 322-323, 

325 

Z 
zeroth rule, for vector 

cross-products, 425 
zinc, cost of, 561 
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